Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Microbiol ; 24(1): 7, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172646

RESUMO

BACKGROUND: Hosts, parasites, and microbiota interact with each other, forming a complex ecosystem. Alterations to the microbial structure have been observed in various enteric parasitic infections (e.g. parasitic protists and helminths). Interestingly, some parasites are associated with healthy gut microbiota linked to the intestinal eubiosis state. So the changes in bacteria and metabolites induced by parasite infection may offer benefits to the host, including protection from other parasitesand promotion of intestinal health. The only ciliate known to inhabit the hindgut of grass carp, Balantidium ctenopharyngodoni, does not cause obvious damage to the intestinal mucosa. To date, its impact on intestinal microbiota composition remains unknown. In this study, we investigated the microbial composition in the hindgut of grass carp infected with B. ctenopharyngodoni, as well as the changes of metabolites in intestinal contents resulting from infection. RESULTS: Colonization by B. ctenopharyngodoni was associated with an increase in bacterial diversity, a higher relative abundance of Clostridium, and a lower abundance of Enterobacteriaceae. The family Aeromonadaceae and the genus Citrobacter had significantly lower relative abundance in infected fish. Additionally, grass carp infected with B. ctenopharyngodoni exhibited a significant increase in creatine content in the hindgut. This suggested that the presence of B. ctenopharyngodoni may improve intestinal health through changes in microbiota and metabolites. CONCLUSIONS: We found that grass carp infected with B. ctenopharyngodoni exhibit a healthy microbiota with an increased bacterial diversity. The results suggested that B. ctenopharyngodoni reshaped the composition of hindgut microbiota similarly to other protists with low pathogenicity. The shifts in the microbiota and metabolites during the colonization and proliferation of B. ctenopharyngodoni indicated that it may provide positive effects in the hindgut of grass carp.


Assuntos
Balantidium , Carpas , Microbioma Gastrointestinal , Animais , Bactérias/genética , Virulência
2.
Fish Shellfish Immunol ; 147: 109429, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342413

RESUMO

Gibel carp (Carassius auratus gibelio) is an important economically farmed fish in China. Chilodonella hexasticha parasitizes on the gills and fins of host fish, causing disruption to their normal respiration and movement, ultimately resulting in death of the fish. In this study, a combination of histopathological, immunohistochemical, transferase dUTP nick end labeling (TUNEL), multi-omics, and molecular approaches were employed to identify the immune reaction and cell apoptosis in gill tissue in response to C. hexasticha infection. Significant lamellae fusion, hyperplasia, hyperemia, necrosis, and desquamation of infected gibel carp gills were observed. In total, the expression of 3619 genes was higher, and 3143 lower, for gills in the infected group compared to the control group. Furthermore, 76 metabolites were significantly increased and 105 were significantly decreased in the infected group compared with the control group. From the qRT-PCR analysis results, immune system-related genes encoding IL-8, CXCL8a, and CXC11 were significantly up-regulated in infected gibel carp, while ZAP70 was significantly down-regulated. Immunohistochemical results also showed the down-regulated ZAP70 in the infected group. Apoptosis-related genes encoding CASP3 and Mcl-1b were up-regulated in response to C. hexasticha infection. These genes indicate the activation of CASP family-related apoptosis and Bim-mediated mitochondrial apoptotic pathways. TUNEL assays also revealed severe apoptosis in the infected group. Based on this study's results, it can be concluded that C. hexasticha infection leads to histopathological changes in the gills of infected fish, and induces both a significant immune response and apoptosis.


Assuntos
Doenças dos Peixes , Carpa Dourada , Animais , Brânquias/metabolismo , Multiômica , Imunidade , Apoptose
3.
BMC Genomics ; 24(1): 624, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858069

RESUMO

Anaerobic parasitic ciliates are a specialized group of ciliates that are adapted to anoxic and oxygen-depleted habitats. Among them, Balantidium polyvacuolum, which inhabits the hindgut of Xenocyprinae fishes, has received very limited scientific attention, so the molecular mechanism of its adaptation to the digestive tract microenvironment is still unclear. In this study, transmission electron microscopy (TEM) and single-cell transcriptome analysis were used to uncover the metabolism of B. polyvacuolum. Starch granules, endosymbiotic bacteria, and multiple specialized mitochondrion-related organelles (MROs) of various shapes were observed. The MROs may have completely lost the electron transport chain (ETC) complexes I, III, IV, and V and only retained succinate dehydrogenase subunit A (SDHA) of complex II. The tricarboxylic acid (TCA) cycle was also incomplete. It can be inferred that the hypoxic intestinal environment has led to the specialization of the mitochondria in B. polyvacuolum. Moreover, carbohydrate-active enzymes (CAZymes), including carbohydrate esterases, enzymes with a carbohydrate-binding module, glycoside hydrolases, and glycosyltransferases, were identified, which may constitute evidence that B. polyvacuolum is able to digest carbohydrates and starch. These findings can improve our knowledge of the energy metabolism and adaptive mechanisms of B. polyvacuolum.


Assuntos
Balantidium , Cipriniformes , Animais , Carboidratos , Metabolismo Energético , Amido
4.
J Fish Dis ; 46(4): 357-367, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36606558

RESUMO

Ichthyophthiriasis, caused by the parasitic ciliate Ichthyophthirius multifiliis (Ich), is considered one of the most harmful diseases affecting freshwater fish globally. It can cause mass mortalities of fish in intensive farming systems. In such systems, it is thus necessary to detect and quantify the number of Ich in the water so that control measures can be implemented before Ichthyophthiriasis breaks out. In recent years, molecular diagnostic methods have become increasingly important in aquaculture. Real-time quantitative polymerase chain reaction (qPCR) and droplet digital polymerase chain reaction (ddPCR) have become robust assays for detecting pathogens. In this study, a set of specific primers and a TaqMan-minor groove binder probe targeting the small-subunit rDNA (SSU rDNA) of Ich were developed. They were used in qPCR and ddPCR assays to compare the performance of these two different methods in quantitatively detecting Ich. After optimizing the reaction conditions, both qPCR and ddPCR assays were found to have high linearity and quantitative correlations for standard plasmid DNA. When used for the detection of Ich eDNA in water samples, the qPCR assay had a wider detection range, making it a suitable method to screen for the prevalence of Ichthyophthiriasis. However, the ddPCR approach had higher sensitivity, which would help provide advance notice of the disease in complex water environmental samples.


Assuntos
Doenças dos Peixes , Hymenostomatida , Animais , Doenças dos Peixes/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Reação em Cadeia da Polimerase em Tempo Real/métodos , Água Doce , Água , DNA Ribossômico
5.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685862

RESUMO

Chilodonella hexasticha is a harmful parasitic ciliate that can cause severe damage to fish and high mortalities worldwide. Its congeneric species, C. uncinata, is a facultative parasite that not only can be free-living but also can parasitize on fish gills and fins. In this study, single-cell transcriptomes of these two species were assembled and characterized. Numerous enzymes related to energy metabolism and parasitic adaption were identified through annotation in the Non-Redundant (NR), Clusters of Orthologous Genes (COG), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The expression of isocitrate dehydrogenase (IDH), cytochrome c oxidase subunit 1 (Cox1) and ATP synthase F1, delta subunit (ATP5D) was up-regulated in C. hexasticha compared with C. uncinata. The oxidative phosphorylation process was also enriched in C. hexasticha. The main mitochondrial metabolic pathways in C. hexasticha were depicted and enzymes related to energy metabolism pathways were compared between these two species. More importantly, mitochondrial division inhibitor 1 (mdivi-1) proved to be very effective in killing both C. hexasticha and C. uncinata, which could be a novel drug for Chilodonellosis control. This study can help us better understand the energy metabolisms of C. hexasticha and C. uncinata and provide new insight into novel targets for chilodonellosis control. Meanwhile, the transcriptome data can also facilitate genomic studies of these two species in the future.


Assuntos
Cilióforos , Parasitos , Animais , Transcriptoma , Aclimatação , Perfilação da Expressão Gênica
6.
BMC Genomics ; 23(1): 376, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585506

RESUMO

BACKGROUND: Within the class Enoplea, the earliest-branching lineages in the phylum Nematoda, the relatively highly conserved ancestral mitochondrial architecture of Trichinellida is in stark contrast to the rapidly evolving architecture of Dorylaimida and Mermithida. To better understand the evolution of mitogenomic architecture in this lineage, we sequenced the mitogenome of a fish parasite Pseudocapillaria tomentosa (Trichinellida: Capillariidae) and compared it to all available enoplean mitogenomes. RESULTS: P. tomentosa exhibited highly reduced noncoding regions (the largest was 98 bp), and a unique base composition among the Enoplea. We attributed the latter to the inverted GC skew (0.08) in comparison to the ancestral skew in Trichinellidae (-0.43 to -0.37). Capillariidae, Trichuridae and Longidoridae (Dorylaimida) generally exhibited low negative or low positive skews (-0.1 to 0.1), whereas Mermithidae exhibited fully inverted low skews (0 to 0.05). This is indicative of inversions in the strand replication order or otherwise disrupted replication mechanism in the lineages with reduced/inverted skews. Among the Trichinellida, Trichinellidae and Trichuridae have almost perfectly conserved architecture, whereas Capillariidae exhibit multiple rearrangements of tRNA genes. In contrast, Mermithidae (Mermithida) and Longidoridae (Dorylaimida) exhibit almost no similarity to the ancestral architecture. CONCLUSIONS: Longidoridae exhibited more rearranged mitogenomic architecture than the hypervariable Mermithidae. Similar to the Chromadorea, the evolution of mitochondrial architecture in enoplean nematodes exhibits a strong discontinuity: lineages possessing a mostly conserved architecture over tens of millions of years are interspersed with lineages exhibiting architectural hypervariability. As Longidoridae also have some of the smallest metazoan mitochondrial genomes, they contradict the prediction that compact mitogenomes should be structurally stable. Lineages exhibiting inverted skews appear to represent the intermediate phase between the Trichinellidae (ancestral) and fully derived skews in Chromadorean mitogenomes (GC skews = 0.18 to 0.64). Multiple lines of evidence (CAT-GTR analysis in our study, a majority of previous mitogenomic results, and skew disruption scenarios) support the Dorylaimia split into two sister-clades: Dorylaimida + Mermithida and Trichinellida. However, skew inversions produce strong base composition biases, which can hamper phylogenetic and other evolutionary studies, so enoplean mitogenomes have to be used with utmost care in evolutionary studies.


Assuntos
Genoma Mitocondrial , Nematoides , Animais , Composição de Bases , Cromadoria/genética , Evolução Molecular , Nematoides/genética , Filogenia
7.
Parasitology ; 149(8): 1057-1064, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35443900

RESUMO

Host density is a key regulatory factor in parasite transmission. The goldfish (Carassius auratus)-Gyrodactylus kobayashii model was used to investigate effects of host density on population growth of gyrodactylids. A donor fish infected by five gravid gyrodactylids was mixed with 11 parasite-free goldfish at five host densities. There was a significant positive correlation between host density and mean abundance of G. kobayashii throughout the 58-day experiment. During early infection (days 15­24), mean abundance in medium high (0.5 fish L−1) and high host density groups (1 and 2 fish L−1) was significantly higher than that in the low host density groups (0.125 and 0.25 fish L−1). At high host density, prevalence increased more rapidly, and the peak prevalence was higher. Fitting of an exponential growth model showed that the population growth rate of the parasite increased with host density. A hypothesis was proposed that higher host density contributed to increased reinfection of detached gyrodactylids. A reinfection experiment was designed to test this hypothesis. Both mean abundance and prevalence at a host density of 1 fish L−1 were significantly higher than those at 0.25 fish L−1 on days 1 and 3, which suggested that more reinfections of G. kobyashii occurred at the higher host density. Density-dependent transmission during the early infection was an important contributor of population growth of G. kobayashii, as well as density-dependent reinfection of the detached gyrodactylids.


Assuntos
Doenças dos Peixes , Trematódeos , Infecções por Trematódeos , Animais , Doenças dos Peixes/parasitologia , Carpa Dourada/parasitologia , Crescimento Demográfico , Reinfecção , Infecções por Trematódeos/parasitologia
8.
Exp Parasitol ; 240: 108333, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35850274

RESUMO

The development of dactylogyrids is dependent on water temperature, and their eggs fail to hatch below 5 °C. In the field, however, mean abundance of Dactylogyrus species increases and reaches a high level in winter, which suggests that infective oncomiracidia hatch from eggs in winter. Therefore, the effect of low water temperature on in vitro egg hatching of D. vastator was determined in laboratory. D. vastator hatching success was 65.3%, 62.7%, 42.6% and 22.3% when eggs were firstly incubated for 0, 7, 14 and 21 days at 5 °C and then consecutively maintained for 15 days at 20 °C. When eggs were directly incubated at 5 °C, eggs failed to hatch within one month. However, hatching success was 69.8% and 66.7%, respectively, when maintained at 5 °C after 12 and 24 h incubation at 20 °C. The results suggested that egg incubation for more than 1 week at 5 °C had significant impacts on hatching success of D. vastator subsequently maintained at 20 °C. But low temperature (5 °C) had no effect on hatching success when eggs were firstly exposed to room temperature (20 °C) for one day.


Assuntos
Trematódeos , Animais , Temperatura Baixa , Estações do Ano , Temperatura , Água
9.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36362255

RESUMO

Mitochondrion-related organelles (MROs) are loosely defined as degenerated mitochondria in anaerobic and microaerophilic lineages. Opalinids are commonly regarded as commensals in the guts of cold-blooded amphibians. It may represent an intermediate adaptation stage between the conventional aerobic mitochondria and derived anaerobic MROs. In the present study, we sequenced and analyzed the MRO genome of Cepedea longa. It has a linear MRO genome with large inverted repeat gene regions at both ends. Compared to Blastocystis and Proteromonas lacertae, the MRO genome of C. longa has a higher G + C content and repeat sequences near the central region. Although three Opalinata species have different morphological characteristics, phylogenetic analyses based on eight concatenated nad genes indicate that they are close relatives. The phylogenetic analysis showed that C. longa clustered with P. lacertae with strong support. The 18S rRNA gene-based phylogeny resolved the Opalinea clade as a sister clade to Karotomorpha, which then further grouped with Proteromonas. The paraphyly of Proteromonadea needs to be verified due to the lack of MRO genomes for key species, such as Karotomorpha, Opalina and Protoopalina. Besides, our dataset and analyses offered slight support for the paraphyly of Bigyra.


Assuntos
Anuros , Estramenópilas , Animais , Filogenia , Anuros/genética , Estramenópilas/genética , Organelas/metabolismo , Mitocôndrias/genética
10.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614116

RESUMO

The intestinal microbiota contributes to energy metabolism, but the molecular mechanisms involved remain less clear. Bacteria of the genus Bacillus regulate lipid metabolism in the host and are thus commonly used as beneficial probiotic supplements. In the present study, Bacillus licheniformis FA6 was selected to assess its role in modulating lipid metabolism of zebrafish (Danio rerio). Combining 16S rRNA high-throughput sequencing, micro-CT scan, metabolic parameters measurement, and gene expression analysis, we demonstrated that B. licheniformis FA6 changed the gut microbiota composition of zebrafish and increased both the Firmicutes/Bacteroidetes ratio and lipid accumulation. In terms of metabolites, B. licheniformis FA6 appeared to promote acetate production, which increased acetyl-CoA levels and promoted lipid synthesis in the liver. In contrast, addition of B. licheniformis lowered carnitine levels, which in turn reduced fatty acid oxidation in the liver. At a molecular level, B. licheniformis FA6 upregulated key genes regulating de novo fatty acid synthesis and downregulated genes encoding key rate-limiting enzymes of fatty acid ß-oxidation, thereby promoting lipid synthesis and reducing fatty acid oxidation. Generally, our results reveal that B. licheniformis FA6 promotes lipid accumulation in zebrafish through improving lipid synthesis and reducing ß-oxidation.


Assuntos
Bacillus licheniformis , Metabolismo dos Lipídeos , Animais , Acetilcoenzima A , Bacillus licheniformis/genética , Ácidos Graxos , Lipídeos , RNA Ribossômico 16S , Peixe-Zebra , Oxirredução
11.
Mol Ecol ; 30(21): 5488-5502, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34418213

RESUMO

Base composition skews (G-C/G+C) of mitochondrial genomes are believed to be primarily driven by mutational pressure, which is positively correlated with metabolic rate. In marine animals, metabolic rate is also positively correlated with locomotory capacity. Given the central role of mitochondria in energy metabolism, we hypothesised that selection for locomotory capacity should be positively correlated with the strength of purifying selection (dN/dS), and thus be negatively correlated with the skew magnitude. Therefore, these two models assume diametrically opposite associations between the metabolic rate and skew magnitude: positive correlation in the prevailing paradigm, and negative in our working hypothesis. We examined correlations between the skew magnitude, metabolic rate, locomotory capacity, and several other variables previously associated with mitochondrial evolution on 287 crustacean mitogenomes. Weakly locomotory taxa had higher skew magnitude and ω (dN/dS) values, but not the gene order rearrangement rate. Skew and ω magnitudes were correlated. Multilevel regression analyses indicated that three competing variables, body size, gene order rearrangement rate, and effective population size, had negligible impacts on the skew magnitude. In most crustacean lineages selection for locomotory capacity appears to be the primary factor determining the skew magnitude. Contrary to the prevailing paradigm, this implies that adaptive selection outweighs nonadaptive selection (mutation pressure) in crustaceans. However, we found indications that effective population size (nonadaptive factor) may outweigh the impact of locomotory capacity in sessile crustaceans (Thecostraca). In conclusion, skew magnitude is a product of the interplay between adaptive and nonadaptive factors, the balance of which varies among lineages.


Assuntos
Braquiúros , Genoma Mitocondrial , Animais , Composição de Bases , Evolução Molecular , Genoma Mitocondrial/genética , Mutação , Filogenia
12.
Mol Phylogenet Evol ; 164: 107288, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34365015

RESUMO

Inversions of the origin of replication (ORI) in mitochondrial genomes produce asymmetrical mutational pressures that can cause strong base composition skews. Due to skews often being overlooked, the total number of crustacean lineages that underwent ORI events remains unknown. We analysed skews, cumulative skew plots, conserved sequence motifs, and mitochondrial architecture of all 965 available crustacean mitogenomes (699 unique species). We found indications of an ORI in 159 (22.7%) species, and mapped these to 23 ORI events: 16 identified with confidence and 7 putative (13 newly proposed, and for 5 we improved the resolution). Two ORIs occurred at or above the order level: Isopoda and Copepoda. Shifts in skew plots are not a precise tool for identifying the replication mechanism. We discuss how ORIs can produce mutational bursts in mitogenomes and show how these can interfere with various types of evolutionary studies. Phylogenetic analyses were plagued by artefactual clustering, and ORI lineages exhibited longer branches, a higher number of synonymous substitutions, higher mutational saturation, and higher compositional heterogeneity. ORI events also affected codon usage and protein properties. We discuss how this may have caused erroneous interpretation of data in previous studies that did not account for skew patterns.


Assuntos
Evolução Biológica , Copépodes/classificação , Genoma Mitocondrial , Isópodes , Filogenia , Animais , Composição de Bases , Isópodes/classificação
13.
J Eukaryot Microbiol ; 67(4): 417-426, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32053248

RESUMO

The ciliate Balantidium ctenopharyngodoni is the most prominent protist in the guts of grass carp, where it mainly inhabits the creamy luminal contents of the hindgut. Ciliates are generally colonized by microorganisms via phagotrophic feeding. In order to study the intracellular bacteria in this ciliate, we have successfully established it in in vitro culture. Herein, we investigated and compared the bacterial community structures of cultured and freshly collected B. ctenopharyngodoni. The results showed that these two groups exhibited different bacterial communities. The most abundant bacterial family in freshly collected samples was Enterobacteriaceae, while in cultured samples it was Fusobacteriaceae. In addition, a key intracellular bacterium, Cetobacterium somerae, was identified in the cytoplasm of cultured ciliates using fluorescence in situ hybridization (FISH). This study shows that ciliates can retain the intracellular bacteria acquired in the natural habitat for quite a long time, but the bacterial community structure of ciliates eventually changes after a long period of cultivation.


Assuntos
Bactérias/classificação , Balantidium/crescimento & desenvolvimento , Carpas/parasitologia , Análise de Sequência de DNA/métodos , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Balantidium/microbiologia , Citoplasma/microbiologia , Citoplasma/ultraestrutura , DNA Bacteriano/genética , DNA Ribossômico/genética , Hibridização in Situ Fluorescente , Técnicas Microbiológicas , Filogenia , RNA Ribossômico 16S/genética
14.
Fish Shellfish Immunol ; 97: 344-350, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31846776

RESUMO

To study the effect of dietary supplementation of Bacillus licheniformis FA6 on the growth, survival and intestinal health of grass carp, we assessed the antioxidant capacity, intestinal barrier, expression levels of immune genes, and the resistance to Aeromonas hydrophila AH-1 infection. Experimental setup comprised three groups (90 specimens each; average initial weight = 16.5 g): the control group was fed the basal diet without B. licheniformis, the low-dose (LD) group was supplemented with B. licheniformis at the concentration of 1 × 105 cfu/g, and the high-dose (HD) group with 1 × 106 cfu/g. After 56 days of growth trial, the challenge test with A. hydrophila AH-1 was conducted for 14 days. The results revealed that the grass carp in LD group and HD group had significantly (p < 0.05) improved percent weight gain (PWG) and specific growth rate (SGR) parameters. Additionally, the antioxidant status was improved, which included increased superoxide dismutase (SOD) activity and decreased malondialdehyde (MDA) levels in the serum, and upregulated mRNA levels of antioxidant enzymes MnSOD and catalase (CAT) in the intestine. Meanwhile, B. licheniformis FA6 supplementation groups exhibited a decreased mRNA expression of proinflammatory cytokines (such as IL-1ß and TNF-α) and increased the expression of anti-inflammatory cytokine IL-10. Histological (villi length was increased) and gene expression (qPCR: upregulated ZO-1, occludin, and claudin-c) analyses suggested improved functioning of the intestinal barrier. Post-challenge mortality rates in LD and HD groups were significantly lower (56.6% and 70% respectively) than in the control group (100%). Overall, these results indicated that dietary supplementation of B. licheniformis FA6 can improve growth, antioxidant capacity, intestinal barrier functions and disease resistance of grass carp.


Assuntos
Antioxidantes/metabolismo , Bacillus licheniformis/química , Carpas/imunologia , Intestinos/imunologia , Probióticos/farmacologia , Ração Animal/análise , Animais , Carpas/crescimento & desenvolvimento , Carpas/metabolismo , Dieta/veterinária , Resistência à Doença/fisiologia , Relação Dose-Resposta a Droga , Doenças dos Peixes/imunologia , Probióticos/administração & dosagem , Distribuição Aleatória
15.
J Eukaryot Microbiol ; 65(6): 783-791, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29611243

RESUMO

The redescription of Opalina undulata Nie 1932, collected from the rectum of the frog Fejervarya limnocharis, is presented in this paper based on detailed morphological information and molecular data. Our results revealed that specimens collected from Diaocha Lake in late August were larger and had more nuclei than those collected from the same site in early May. We sequenced their SSU rDNA-ITS1-5.8S rDNA-ITS2-LSU rDNA (5' end) and found that they were completely identical, which means that the two populations belonged to the same species. These facts gave us a hint that body dimension and number of nuclei are not reliable taxonomic parameters for opalinids during their life cycle. Therefore, we recommended that the specific identification of opalinids based on morphological features should be carried out during seasons except spring. Meanwhile, our molecular phylogenetic analysis confirmed the monophyly of Opalinata. Within Opalinata, Opalinea were monophyletic with all opalinid species grouping together. Karotomorpha and Proteromonas did not group together confirming the paraphyly of Proteromonadea.


Assuntos
Anuros/parasitologia , Estramenópilas/classificação , Estramenópilas/citologia , Estramenópilas/genética , Animais , Sequência de Bases , China , DNA Ribossômico/química , DNA Ribossômico/classificação , DNA Ribossômico/genética , Estágios do Ciclo de Vida , Filogenia , Subunidades Ribossômicas/química , Subunidades Ribossômicas/classificação , Subunidades Ribossômicas/genética , Análise de Sequência de DNA
16.
World J Microbiol Biotechnol ; 34(6): 71, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29777414

RESUMO

Gut microbiota plays a crucial importance in their host. Disturbance of the microbial structure and function is known to be associated with inflammatory intestinal disorders. Enteritis is a significant cause of high mortality in fish species, including grass carp (Ctenopharyngodon idellus). Study regarding the association between microbial alternations and enteritis in grass carp is still absent. In this study, changes in the gut microbiota of grass carp suffering from enteritis were investigated using NGS-based 16S rRNA sequencing. Six healthy and ten abnormal fish (showing reddening anus, red odiferous fluid accumulating in the abdominal capacity, and flatulence and haemorrhage in the intestine) were collected from a fish farm in Huanggang Fisheries Institute (Hubei, China). Our results revealed that the diversity, structure, and function of gut microbiota were significantly different between diseased and healthy fish (P < 0.05). Particularly, members of the genera Dechloromonas, Methylocaldum, Planctomyces, Rhodobacter, Caulobacter, Flavobacterium, and Pseudomonas were significantly increased in diseased fish compared with that in healthy fish (P < 0.05). Predicted function indicated that microbiota significantly changed the specific metabolic pathways (related to amino acid metabolism, xenobiotics biodegradation and metabolism, and carbohydrate metabolism) in diseased fish (P < 0.05). Taken together, our findings point out the association between changes of the gut microbiota and enteritis in grass carp, which provide basic information useful for diagnoses, prevention, and treatment of intestinal diseases occurring in cultured fish.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Carpas/microbiologia , Doenças dos Peixes/microbiologia , Microbioma Gastrointestinal , Enteropatias/microbiologia , Enteropatias/veterinária , Animais , Bactérias/genética , Bactérias/patogenicidade , Fenômenos Fisiológicos Bacterianos , Biodiversidade , China , DNA Bacteriano/genética , Pesqueiros , Intestinos/microbiologia , Redes e Vias Metabólicas , Filogenia , RNA Ribossômico 16S/genética
17.
BMC Genomics ; 18(1): 840, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29096600

RESUMO

BACKGROUND: Complete mitochondrial genomes are much better suited for the taxonomic identification and phylogenetic studies of nematodes than morphology or traditionally-used molecular markers, but they remain unavailable for the entire Camallanidae family (Chromadorea). As the only published mitogenome in the Camallanina suborder (Dracunculoidea superfamily) exhibited a unique gene order, the other objective of this research was to study the evolution of mitochondrial architecture in the Spirurida order. Thus, we sequenced the complete mitogenome of the Camallanus cotti fish parasite and conducted structural and phylogenomic comparative analyses with all available Spirurida mitogenomes. RESULTS: The mitogenome is exceptionally large (17,901 bp) among the Chromadorea and, with 46 (pseudo-) genes, exhibits a unique architecture among nematodes. Six protein-coding genes (PCGs) and six tRNAs are duplicated. An additional (seventh) tRNA (Trp) was probably duplicated by the remolding of tRNA-Ser2 (missing). Two pairs of these duplicated PCGs might be functional; three were incomplete and one contained stop codons. Apart from Ala and Asp, all other duplicated tRNAs are conserved and probably functional. Only 19 unique tRNAs were found. Phylogenomic analysis included Gnathostomatidae (Spirurina) in the Camallanina suborder. CONCLUSIONS: Within the Nematoda, comparable PCG duplications were observed only in the enoplean Mermithidae family, but those result from mitochondrial recombination, whereas characteristics of the studied mitogenome suggest that likely rearrangement mechanisms are either a series of duplications, transpositions and random loss events, or duplication, fragmentation and subsequent reassembly of the mitogenome. We put forward a hypothesis that the evolution of mitogenomic architecture is extremely discontinuous, and that once a long period of stasis in gene order and content has been punctuated by a rearrangement event, such a destabilised mitogenome is much more likely to undergo subsequent rearrangement events, resulting in an exponentially accelerated evolutionary rate of mitogenomic rearrangements. Implications of this model are particularly important for the application of gene order similarity as an additive source of phylogenetic information. Chromadorean nematodes, and particularly Camallanina clade (with C. cotti as an example of extremely accelerated rate of rearrangements), might be a good model to further study this discontinuity in the dynamics of mitogenomic evolution.


Assuntos
Cromadoria/genética , Evolução Molecular , Genoma Mitocondrial/genética , Animais , Composição de Bases , Duplicação Gênica , Tamanho do Genoma , Genômica , Filogenia , RNA de Transferência/genética
18.
J Eukaryot Microbiol ; 63(6): 751-759, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27096441

RESUMO

The morphology of Nyctotheroides hubeiensis (Acta Hydrobiol. Sin. 1998, 22(suppl.):187), collected from the rectum of Phelophylax nigromaculatus, is presented in this paper based on detailed morphological information and molecular data. Our phylogenetic analysis showed that N. hubeiensis fell into the Nyctotheroides clade, which was strongly supported as monophyletic and clustered as basal to the genera Nyctotherus and Clevelandella. Also, the monophyly of the Order Clevelandellida and the affinity of parasitic nyctotherids and free-living metopids were indicated in our work. The origin of clevelandellid ciliates as well as their possible evolutionary history was also discussed here; however, the analysis of more species from other vertebrate hosts (fish, reptiles) should be made before a well-supported conclusion can be drawn.


Assuntos
Anuros/parasitologia , Cilióforos/crescimento & desenvolvimento , Cilióforos/isolamento & purificação , Filogenia , Animais , Cilióforos/classificação , Cilióforos/genética , DNA de Protozoário/genética , DNA Ribossômico/genética
19.
Parasitol Int ; 101: 102893, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38588816

RESUMO

Three new species of Gyrodactylus are described from three species of bitterling in Donghu Lake, China: Gyrodactylus ocellorhodei n. sp. from Rhodeus ocellatus; G. sinenorhodei n. sp. from Rhodeus sinensis; and G. acheilorhodei n. sp. from Acheilognathus macropterus. All the three new species showed similar opisthaptor morphology, especially the marginal hooks: all had a slender and perpendicular sickle shaft, and flat sickle base with distinct heel and inner arch which was different from the G. rhodei-group species parasitic on bitterling. Multivariate analyses based on hamulus and marginal hooks suggested that these three new species cannot be completely distinguished, despite some morphology divergence observed in certain less reliable morphometric features, such as hamulus root length, ventral bar total length and process shape. These three new species shared an identical 18S ribosomal RNA gene sequence, while the variation in the Internal Transcribed Spacers (ITS1-ITS2) sequence among them (8.4-11.2%, K2P) far exceeded the 1% ITS sequence difference that had been suggested as a threshold for species delimitation of Gyrodactylus. Phylogenetic analysis based on ITS1-ITS2 showed that all these sequenced Gyrodactylus spp. parasitic on the subfamily Acheilognathinae host formed a monophyletic group. However, a clear differentiation (18.9-20.9%, K2P of ITS1-ITS2) could be found between the subgroup from China (G. ocellorhodei n. sp., G. sinenorhodei n. sp. and G. acheilorhodei n. sp.) and that from Europe (G. rhodei).


Assuntos
Doenças dos Peixes , Filogenia , Trematódeos , Infecções por Trematódeos , Animais , Doenças dos Peixes/parasitologia , China , Infecções por Trematódeos/parasitologia , Infecções por Trematódeos/veterinária , Trematódeos/classificação , Trematódeos/anatomia & histologia , Trematódeos/genética , Trematódeos/isolamento & purificação , RNA Ribossômico 18S/análise , Cyprinidae/parasitologia , DNA Espaçador Ribossômico/análise , DNA de Helmintos/análise , Lagos/parasitologia , Platelmintos/classificação , Platelmintos/anatomia & histologia , Platelmintos/isolamento & purificação , Platelmintos/genética
20.
Microorganisms ; 12(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38792728

RESUMO

The liver fluke disease caused by Clonorchis sinensis is one of the most serious food-borne parasitic diseases in China. Many freshwater fish and shrimps can be infected with C. sinensis metacercariae as the second intermediate hosts in endemic regions. Owing to the lack of infected humans and the good administration of pet dogs and cats in cities of non-endemic regions, few fish are expected to be infected with C. sinensis metacercariae in urban lakes. To determine the infection of C. sinensis metacercariae in freshwater fish and shrimps in urban lakes, a total of 18 fish species and one shrimp species were investigated in the East Lake of Wuhan City. Metacercariae were isolated by artificial digestive juice and identified using morphology and rDNA-ITS2 sequences. Five species of fish, Pseudorasbora parva, Ctenogobius giurinus, Squalidus argentatus, Hemiculter leuciclus, and Rhodeus spp., were infected with C. sinensis metacercariae. The overall prevalence of C. sinensis was 32.5%. The highest prevalence was found in P. parva with 57.9%, while S. argentatus exhibited the highest mean abundance (13.9). Apart from the C. sinensis metacercariae, four species of other trematode metacercariae were also identified across twelve fish species in total. Owing to the consumption of undercooked fish and feeding cats with small fish caught by anglers, there is a potential risk that the small fish infected with C. sinensis metacercariae may act as an infection source to spread liver fluke. Given the complete life cycle of C. sinensis, stray cats and rats were inferred to act as the important final hosts of C. sinensis in urban lakes in non-endemic areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA