RESUMO
Cognitive and behavioral rigidity are observed in various psychiatric diseases, including in autism spectrum disorder (ASD). However, the underlying mechanism remains to be elucidated. In this study, we found that neuroligin-3 (NL3) R451C knockin mouse model of autism (KI mice) exhibited deficits in behavioral flexibility in choice selection tasks. Single-unit recording of medium spiny neuron (MSN) activity in the nucleus accumbens (NAc) revealed altered encoding of decision-related cue and impaired updating of choice anticipation in KI mice. Additionally, fiber photometry demonstrated significant disruption in dynamic mesolimbic dopamine (DA) signaling for reward prediction errors (RPEs), along with reduced activity in medial prefrontal cortex (mPFC) neurons projecting to the NAc in KI mice. Interestingly, NL3 re-expression in the mPFC, but not in the NAc, rescued the deficit of flexible behaviors and simultaneously restored NAc-MSN encoding, DA dynamics, and mPFC-NAc output in KI mice. Taken together, this study reveals the frontostriatal circuit dysfunction underlying cognitive inflexibility and establishes a critical role of the mPFC NL3 deficiency in this deficit in KI mice. Therefore, these findings provide new insights into the mechanisms of cognitive and behavioral inflexibility and potential intervention strategies.
Assuntos
Moléculas de Adesão Celular Neuronais , Cognição , Modelos Animais de Doenças , Dopamina , Proteínas de Membrana , Proteínas do Tecido Nervoso , Núcleo Accumbens , Córtex Pré-Frontal , Animais , Camundongos , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/fisiopatologia , Masculino , Dopamina/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Cognição/fisiologia , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/fisiopatologia , Neurônios/metabolismo , Recompensa , Corpo Estriado/metabolismo , Técnicas de Introdução de Genes/métodos , Vias Neurais/metabolismo , Vias Neurais/fisiopatologia , Transtorno Autístico/genética , Transtorno Autístico/fisiopatologia , Transtorno Autístico/metabolismo , Camundongos Endogâmicos C57BL , Comportamento de Escolha/fisiologiaRESUMO
The column chromatography with silica gel, reversed-phase C_(18), and Sephadex LH-20 was employed to separate the methanol extract of the aerial parts of Hypericum elatoides. The compounds were identified by the comprehensive analysis of IR, NMR, and MS data as methyl 8-O-ß-D-glucopyranosyl-(Z)-5-octenoate(1), methyl 3-O-ß-D-glucopyranosyl-4-methylhexanoate(2), byzantionoside B(3), 9-epi-blumenol C glucoside(4), corchoionoside C(5),(6S,9R)-roseoside(6), cis-p-coumaric acid 4-O-ß-D-glucopyranoside(7), trans-p-coumaric acid 4-O-ß-D-glucopyranoside(8), methyl 3-(4-hydroxyphenyl)propanoate(9),(E)-chlorogenic acid methyl ester(10), quercetin-3-O-ß-D-glucopyranoside(11), ß-sitosterol(12), stigmasterol(13), stigmast-4-en-3-one(14), ß-amyrin(15), daucosterol(16), sitoindoside â (17), oleic acid(18), methyl α-linolenate(19), trilinolein(20), and cassipourol(21). Among them, compounds 1 and 2 were identified as new glycosides and named hyperelatosides G and H. Compounds 3-5, 7-9, 17, and 20-21 were isolated from the genus Hypericum for the first time. The remaining compounds were isolated from H. elatoides for the first time. The results of biological assays revealed that compound 11 exhibited significant anti-neuroinflammatory activity, and compounds 1, 3, and 19 displayed certain neuroprotective effects.
Assuntos
Glicosídeos , Hypericum , Hypericum/química , Glicosídeos/química , Glicosídeos/isolamento & purificação , Estrutura Molecular , Medicamentos de Ervas Chinesas/química , Espectroscopia de Ressonância MagnéticaRESUMO
To obtain atomic-level insights into the decomposition behavior of 1,3,5-trinitro-2,4,6-trinitroaminobenzene (TNTNB) under different stimulations, this study applied reactive molecular dynamics simulations to illustrate the effects of thermal and shock stimuli on the TNTNB crystal. The results show that the initial decomposition of the TNTNB crystal under both thermal and shock stimuli starts with the breakage of the N-NO2 bond. However, the C6 ring in TNTNB undergoes structural rearrangement to form a C3-C5 bicyclic structure at a constant high temperature. Then, the C3 and C5 rings break in turn. The main final products of TNTNB under shock are N2, CO2, and H2O, while NO, N2, H2O and CO are formed instead at 1 atm under a constant high temperature. Pressure is the main reason for this difference. High pressure promotes the complete oxidation of the reactants.
RESUMO
Hollow structured metal-organic frameworks (MOFs) and their derivatives are desired in catalysis, energy storage, etc. However, fabrication of novel hollow MOFs and revelation of their formation mechanisms remain challenging. Herein, open hollow 2D MOFs in the form of hexagonal nut are prepared through self-template method, which can be readily scaled up at gram scale in a one-pot preparation. The evolution from the initial superstructure to the final stable MOFs is tracked by wide-angle X-ray scattering, transforming from solid hexagon to open hollow hexagon. More importantly, this protocol can be extended to synthesizing a series of open hollow structured MOFs with sizes ranging from ≈120 to ≈1200 nm. Further, open hollow structured cobalt/N-doped porous carbon composites are realized through conformal transformation of the as-prepared MOFs, which demonstrates promising applications in sustainable energy conversion technologies. This study sheds light on the kinetically controlled synthesis of novel 2D MOFs for their extended utilizations.
Assuntos
Estruturas Metalorgânicas , Catálise , Cobalto/química , Estruturas Metalorgânicas/química , Conformação Molecular , NozesRESUMO
Circular RNAs (circRNAs) are known to regulate tumorigenesis. In this study, circRNAs microarray was used to analyze the circRNA expression in lung adenocarcinoma (LUAD) tissues, and CircRNA zinc finger MYM-type containing 4(circZMYM4) was selected for further analysis. In this study, we detected circZMYM4 expression in LUAD specimens and cell lines using RT-PCR. The expression of circZMYM4 was further verified in the GEO datasets and TCGA datasets. Gain-of-function and loss-of-function experiments were used to analyze the effects of circZMYM4 on LUAD in vivo and in vitro. The relationship between miR-587 and circZMYM4 or ODAM was predicted by bioinformatics tools and confirmed using dual-luciferase reporter assays and RNA-pull down. We found that circZMYM4 was distinctly down-regulated in LUAD tissues and cell lines. Functional assays revealed that circZMYM4 overexpression suppressed LUAD cell proliferation, metastasis and suppressed apoptosis, while miR-587 overexpression could weaken these effects. Importantly, circZMYM4 upregulated ODAM expression via sponging miR-587 to suppress LUAD progression. ODAM knockdown could reverse the repressive effect of circZMYM4 overexpression on cell proliferation, migration and invasion abilities. Overall, circZMYM4 regulates the miR-587/ODAM axis to suppress LUAD progression, which may become a potential biomarker and therapeutic target.
Assuntos
Adenocarcinoma de Pulmão/genética , Amiloide/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , Proteínas de Neoplasias/genética , RNA Circular/genética , Adenocarcinoma de Pulmão/patologia , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica/genética , Metástase Neoplásica/patologiaRESUMO
Proteins containing nuclear localization signals (NLSs) are actively transported into the nucleus via the classic importin-α/ß-mediated pathway, and NLSs are recognized by members of the importin-α family. Most studies of insect importin-αs have focused on Drosophila to date, little is known about the importin-α proteins in Lepidoptera insects. In this study, we identified four putative importin-α homologues, Spodoptera frugiperda importin-α1 (SfIMA1), SfIMA2, SfIMA4 and SfIMA7, from Sf9 cells. Immunofluorescence analysis showed that SfIMA2, SfIMA4 and SfIMA7 localized to the nucleus, while SfIMA1 distributed in cytoplasm. Additionally, SfIMA4 and SfIMA7 were also detected in the nuclear membrane of Sf9 cells. SfIMA1, SfIMA4 and SfIMA7, but not SfIMA2, were found to associate with the C terminus of AcMNPV DNA polymerase (DNApol) that harbours a typical monopartite NLS and a classic bipartite NLS. Further analysis of protein-protein interactions revealed that SfIMA1 specifically recognizes the bipartite NLS, while SfIMA4 and SfIMA7 bind to both monopartite and bipartite NLSs. Together, our results suggested that SfIMA1, SfIMA4 and SfIMA7 play important roles in the nuclear import of AcMNPV DNApol C terminus in Sf9 cells.
Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Nucleopoliedrovírus , Spodoptera , alfa Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Proteínas de Insetos/metabolismo , Sinais de Localização Nuclear/metabolismo , Nucleopoliedrovírus/genética , Nucleopoliedrovírus/metabolismo , Domínios e Motivos de Interação entre Proteínas , Células Sf9/metabolismo , Células Sf9/virologia , Spodoptera/metabolismo , Spodoptera/virologia , Proteínas Virais/metabolismoRESUMO
The unprecedented pandemic of coronavirus disease 2019 (COVID-19) demands effective treatment for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The infection of SARS-CoV-2 critically depends on diverse viral or host proteases, which mediate viral entry, viral protein maturation, as well as the pathogenesis of the viral infection. Endogenous and exogenous agents targeting for proteases have been proved to be effective toward a variety of viral infections ranging from HIV to influenza virus, suggesting protease inhibitors as a promising antiviral treatment for COVID-19. In this Review, we discuss how host and viral proteases participated in the pathogenesis of COVID-19 as well as the prospects and ongoing clinical trials of protease inhibitors as treatments.
Assuntos
Antivirais , Betacoronavirus , Infecções por Coronavirus , Pandemias , Pneumonia Viral , Inibidores de Proteases , Enzima de Conversão de Angiotensina 2 , Betacoronavirus/efeitos dos fármacos , Betacoronavirus/enzimologia , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/fisiopatologia , Infecções por Coronavirus/virologia , Interações Hospedeiro-Patógeno , Humanos , Peptídeo Hidrolases , Peptidil Dipeptidase A , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/fisiopatologia , Pneumonia Viral/virologia , SARS-CoV-2 , Serina Endopeptidases , Proteínas ViraisRESUMO
BACKGROUND: Neoadjuvant therapy plus oesophagectomy has been accepted as the standard treatment for patients with potentially curable locally advanced oesophageal cancer. No completed randomized controlled trial (RCT) has directly compared neoadjuvant chemotherapy and neoadjuvant chemoradiation in patients with oesophageal squamous cell carcinoma (ESCC). The aim of the current RCT is to investigate the impact of neoadjuvant chemotherapy plus surgery and neoadjuvant chemoradiotherapy plus surgery on overall survival for patients with resectable locally advanced ESCC. METHODS: This open label, single-centre, phase III RCT randomized patients (cT2-T4aN + M0 and cT3-4aN0M0) in a 1:1 fashion to receive either the CROSS regimen (paclitaxel 50 mg/m2; carboplatin (area under the curve = 2), q1w, 5 cycles; and concurrent radiotherapy, 41.4 Gy/23 F, over 5 weeks) or neoadjuvant chemotherapy (paclitaxel 175 mg/m2; and cisplatin 75 mg/m2, q21d, 2 cycles). Assuming a 12% 5-year overall survival difference in favour of the CROSS regimen, 80% power with a two-sided alpha level of 0.05 and a 5% dropout each year for an estimated 3 years enrolment, the power calculation requires 456 patients to be recruited (228 in each group). The primary endpoint is 5-year overall survival, with a minimum 5-year follow-up. The secondary endpoints include 5-year disease-free survival, toxicity, pathological complete response rate, postoperative complications, postoperative mortality and quality of life. A biobank of pre-treatment and resected tumour tissue will be built for translational research in the future. DISCUSSION: This RCT directly compares a neoadjuvant chemotherapy regimen with a standard CROSS regimen in terms of overall survival for patients with locally advanced ESCC. The results of this RCT will provide an answer for the controversy regarding the survival benefits between the two treatment strategies. TRIAL REGISTRATION: NCT04138212, date of registration: October 24, 2019.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Quimiorradioterapia/métodos , Neoplasias Esofágicas/terapia , Carcinoma de Células Escamosas do Esôfago/terapia , Esofagectomia/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carboplatina/administração & dosagem , Carboplatina/uso terapêutico , Cisplatino/administração & dosagem , Cisplatino/uso terapêutico , Fracionamento da Dose de Radiação , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Feminino , Humanos , Masculino , Terapia Neoadjuvante , Estadiamento de Neoplasias , Paclitaxel/administração & dosagem , Paclitaxel/uso terapêutico , Projetos de Pesquisa , Análise de Sobrevida , Resultado do TratamentoRESUMO
OBJECTIVE: Voltage-gated sodium channels (SCNs) share similar amino acid sequence, structure, and function. Genetic variants in the four human brain-expressed SCN genes SCN1A/2A/3A/8A have been associated with heterogeneous epilepsy phenotypes and neurodevelopmental disorders. To better understand the biology of seizure susceptibility in SCN-related epilepsies, our aim was to determine similarities and differences between sodium channel disorders, allowing us to develop a broader perspective on precision treatment than on an individual gene level alone. METHODS: We analyzed genotype-phenotype correlations in large SCN-patient cohorts and applied variant constraint analysis to identify severe sodium channel disease. We examined temporal patterns of human SCN expression and correlated functional data from in vitro studies with clinical phenotypes across different sodium channel disorders. RESULTS: Comparing 865 epilepsy patients (504 SCN1A, 140 SCN2A, 171 SCN8A, four SCN3A, 46 copy number variation [CNV] cases) and analysis of 114 functional studies allowed us to identify common patterns of presentation. All four epilepsy-associated SCN genes demonstrated significant constraint in both protein truncating and missense variation when compared to other SCN genes. We observed that age at seizure onset is related to SCN gene expression over time. Individuals with gain-of-function SCN2A/3A/8A missense variants or CNV duplications share similar characteristics, most frequently present with early onset epilepsy (<3 months), and demonstrate good response to sodium channel blockers (SCBs). Direct comparison of corresponding SCN variants across different SCN subtypes illustrates that the functional effects of variants in corresponding channel locations are similar; however, their clinical manifestation differs, depending on their role in different types of neurons in which they are expressed. SIGNIFICANCE: Variant function and location within one channel can serve as a surrogate for variant effects across related sodium channels. Taking a broader view on precision treatment suggests that in those patients with a suspected underlying genetic epilepsy presenting with neonatal or early onset seizures (<3 months), SCBs should be considered.
Assuntos
Síndromes Epilépticas/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Canal de Sódio Disparado por Voltagem NAV1.3/genética , Canal de Sódio Disparado por Voltagem NAV1.6/genética , Canais de Sódio/genética , Idade de Início , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Criança , Pré-Escolar , Códon sem Sentido , Variações do Número de Cópias de DNA , Eletroencefalografia , Síndromes Epilépticas/tratamento farmacológico , Síndromes Epilépticas/fisiopatologia , Feminino , Mutação com Ganho de Função , Deleção de Genes , Duplicação Gênica , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Humanos , Lactente , Recém-Nascido , Mutação com Perda de Função , Masculino , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.3/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6/metabolismo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/fisiopatologia , Fenótipo , Bloqueadores dos Canais de Sódio/uso terapêutico , Canais de Sódio/metabolismoRESUMO
Combretastatin-4 (CA-4) as a tubulin polymerization inhibitor draws extensive attentions. However, due to its weak stability of cis-olefin and poor metabolic stability, structure modifications on cis-configuration are being performed. In this work, we constructed a series of novel CA-4 analogues with linkers on olefin containing diphenylethanone, cis-locked dihydrofuran, α-substituted diphenylethanone, cyclobutane and cyclohexane on its cis-olefin. Cytotoxic activity of all analogues was measured by an SRB assay. Among them, compound 6b, a by-product in the preparation of diphenylethanone analogues, was found to be the most potent cytotoxic agents against HepG2 cells with IC50 values of less than 0.5 µM. The two isomers of 6b induced cellular apoptosis tested by Annexin V-FITC and propidium iodide (PI) double staining, arrested cells in the G2/M phase by PI staining analysis, and disrupted microtubule network by immunohistochemistry study in HepG2 cells. Moreover, 6b-(E) displayed a dose-dependent inhibition effect for tubulin assembly in in vitro tubulin polymerization assay. In addition, molecular docking studies showed that two isomers of 6b could bind efficiently at colchicine binding site of tubulin similar to CA-4.
Assuntos
Microtúbulos/efeitos dos fármacos , Estilbenos/química , Estilbenos/farmacologia , Moduladores de Tubulina/farmacologia , Tubulina (Proteína)/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Apoptose , Proliferação de Células , Células Hep G2 , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Moduladores de Tubulina/químicaRESUMO
Energetic salts based on pentazolate anion (cyclo-N5-) have attracted much attention due to their high nitrogen contents. However, it is an enormous challenge to efficiently screen out an appropriate cation that can match well with cyclo-N5-. The vertical electron affinity (VEA) of the cations and vertical ionization potential (VIP) of the anions for 135 energetic salts and some cyclo-N5- salts were calculated by the density functional theory (DFT). The magnitudes of VEA and VIP, and their matchability were analyzed. The results based on the calculations at the B3LYP/6-311++G(d,p) and B3LYP/aug-cc-pVTZ levels indicate that there is an excellent compatibility between cyclo-N5- and cation when the difference between the VEA of cation and the VIP of cyclo-N5- anion is -2.8 to -1.0 eV. The densities of the salts were predicted by the DFT method. Relationship between the calculated density and the experimental density was established as ρExpt = 1.111ρcal - 0.06067 with a correlation coefficient of 0.905. This regression equation could be in turn used to calibrate the calculated density of the cyclo-N5- energetic salts accurately. This work provides a favorable way to explore the energetic salts with excellent performance based on cyclo-N5-.
Assuntos
Ânions/química , Nitrogênio/química , Sais/química , Cátions/química , Química Computacional , Gravidade Específica , Temperatura , TermodinâmicaRESUMO
OBJECTIVE: To systematically summarize the clinical features of coronavirus disease 2019 (COVID-19) in children. METHODS: PubMed, Embase, Web of Science, The Cochrane Library, CNKI, Weipu Database, and Wanfang Database were searched for clinical studies on COVID-19 in children published up to May 21, 2020. Two reviewers independently screened the articles, extracted data, and assessed the risk of bias of the studies included. A descriptive analysis was then performed for the studies. Related indices between children with COVID-19 and severe acute respiratory syndromes (SARS) or Middle East respiratory syndrome (MERS) were compared. RESULTS: A total of 75 studies were included, with a total of 806 children with COVID-19. The research results showed that the age of the children ranged from 36 hours after birth to 18 years, with a male-female ratio of 1.21 : 1. Similar to SARS and MERS, COVID-19 often occurred with familial aggregation, and such cases accounted for 74.6% (601/806). The children with COVID-19, SARS, and MERS had similar clinical symptoms, mainly fever and cough. Some children had gastrointestinal symptoms. The children with asymptomatic infection accounted for 17.9% (144/806) of COVID-19 cases, 2.5% (2/81) of SARS cases, and 57.1% (12/21) of MERS cases. The children with COVID-19 and MERS mainly had bilateral lesions on chest imaging examination, with a positive rate of lesions of 63.4% (421/664) and 26.3% (5/19) respectively, which were lower than the corresponding positive rates of viral nucleic acid detection, which were 99.8% and 100% respectively. The chest radiological examination of the children with SARS mainly showed unilateral lesion, with a positive rate of imaging of 88.9% (72/81), which was higher than the corresponding positive rate of viral nucleic acid detection (29.2%). Viral nucleic acid was detected in the feces of children with COVID-19 or SARS, with positive rates of 60.2% (56/93) and 71.4% (5/7) respectively. The children with COVID-19 had a rate of severe disease of 4.6% (31/686) and a mortality rate of 0.1% (1/806), the children with SARS had a rate of severe disease of 1.5% (1/68) and a mortality rate of 0%, and those with MERS had a rate of severe disease of 14.3% (3/21) and a mortality rate of 9.5% (2/21). CONCLUSIONS: Children with COVID-19 have similar symptoms to those with SARS or MERS, mainly fever and cough. Asymptomatic infection is observed in all three diseases. Children with COVID-19 or SARS have milder disease conditions than those with MERS. COVID-19 in children often occurs with familial aggregation. Epidemiological contact history, imaging examination findings, and viral nucleic acid testing results are important bases for the diagnosis of COVID-19.
Assuntos
Infecções por Coronavirus/fisiopatologia , Pneumonia Viral/fisiopatologia , Síndrome Respiratória Aguda Grave/fisiopatologia , Síndrome Respiratória Aguda Grave/virologia , Betacoronavirus , COVID-19 , Criança , Tosse/virologia , Feminino , Febre/virologia , Humanos , Masculino , Coronavírus da Síndrome Respiratória do Oriente Médio , Pandemias , SARS-CoV-2RESUMO
Multicopper oxidases (MCOs) are a pervasive family of enzymes that oxidize a wide range of phenolic and nonphenolic aromatic substrates, concomitantly with the reduction of dioxygen to water. MCOs are usually divided into two functional classes: metalloxidases and laccases. Given their broad substrate specificity and eco-friendliness (molecular oxygen from air as is used as the final electron acceptor and they only release water as byproduct), laccases are regarded as promising biological green tools for an array of applications. Among these laccases, those of bacterial origin have attracted research attention because of their notable advantages, including broad substrate spectrum, wide pH range, high thermostability, and tolerance to alkaline environments. This review aims to summarize the significant research efforts on the properties, mechanisms and structures, laccase-mediator systems, genetic engineering, immobilization, and biotechnological applications of the bacteria-source laccases and laccase-like enzymes, which principally include Bacillus laccases, actinomycetic laccases and some other species of bacterial laccases. In addition, these enzymes may offer tremendous potential for environmental and industrial applications.
Assuntos
Bactérias/enzimologia , Bioengenharia/tendências , Química Verde/tendências , Indústrias/tendências , Lacase/fisiologia , Animais , Bactérias/genética , Bioengenharia/métodos , Microbiologia Ambiental , Química Verde/métodos , Humanos , Indústrias/métodos , Invenções/tendências , Lacase/genéticaRESUMO
BACKGROUND: West Nile virus (WNV), the most widely distributed flavivirus causing encephalitis globally, is a vector-borne pathogen of global importance. The changing climate is poised to reshape the landscape of various infectious diseases, particularly vector-borne ones like WNV. Understanding the anticipated geographical and range shifts in disease transmission due to climate change, alongside effective adaptation strategies, is critical for mitigating future public health impacts. This scoping review aims to consolidate evidence on the impact of climate change on WNV and to identify a spectrum of applicable adaptation strategies. MAIN BODY: We systematically analyzed research articles from PubMed, Web of Science, Scopus, and EBSCOhost. Our criteria included English-language research articles published between 2007 and 2023, focusing on the impacts of climate change on WNV and related adaptation strategies. We extracted data concerning study objectives, populations, geographical focus, and specific findings. Literature was categorized into two primary themes: 1) climate-WNV associations, and 2) climate change impacts on WNV transmission, providing a clear understanding. Out of 2168 articles reviewed, 120 met our criteria. Most evidence originated from North America (59.2%) and Europe (28.3%), with a primary focus on human cases (31.7%). Studies on climate-WNV correlations (n = 83) highlighted temperature (67.5%) as a pivotal climate factor. In the analysis of climate change impacts on WNV (n = 37), most evidence suggested that climate change may affect the transmission and distribution of WNV, with the extent of the impact depending on local and regional conditions. Although few studies directly addressed the implementation of adaptation strategies for climate-induced disease transmission, the proposed strategies (n = 49) fell into six categories: 1) surveillance and monitoring (38.8%), 2) predictive modeling (18.4%), 3) cross-disciplinary collaboration (16.3%), 4) environmental management (12.2%), 5) public education (8.2%), and 6) health system readiness (6.1%). Additionally, we developed an accessible online platform to summarize the evidence on climate change impacts on WNV transmission ( https://2xzl2o-neaop.shinyapps.io/WNVScopingReview/ ). CONCLUSIONS: This review reveals that climate change may affect the transmission and distribution of WNV, but the literature reflects only a small share of the global WNV dynamics. There is an urgent need for adaptive responses to anticipate and respond to the climate-driven spread of WNV. Nevertheless, studies focusing on these adaptation responses are sparse compared to those examining the impacts of climate change. Further research on the impacts of climate change and adaptation strategies for vector-borne diseases, along with more comprehensive evidence synthesis, is needed to inform effective policy responses tailored to local contexts.
Assuntos
Mudança Climática , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Humanos , Adaptação Fisiológica , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/transmissão , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/fisiologiaRESUMO
Carbon, nitrogen, phosphorus, and potassium in the soil are the necessary nutrient elements for plant growth, and their contents and ecological stoichiometry can reflect the status of soil quality and nutrient limitation. The Huayuankou Yellow River Floating Bridge Wetland in the lower Yellow River was selected as the research object. The methods of ANOVA, redundancy analysis, and linear regression fitting were used to study the contents of organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), alkaline nitrogen (AN), available phosphorus (AP), available potassium (AK), and their ecological stoichiometric ratios as well as the limiting elements of soil nutrients, and the key physicochemical properties that affect soil nutrients and their ecological stoichiometry in the wetland were revealed. The results showed that the mean values of ω(SOC), ω(TN), ω(TP), ω(TK), ω(AN), ω(AP), and ω(AK) in wetland soil were 5.46 g·kg-1, 0.60 g·kg-1, 0.28 g·kg-1, 17.06 g·kg-1, 13.75 mg·kg-1, 6.54 mg·kg-1, and 158.56 mg·kg-1, respectively, which showed an increasing trend from the river bank to the shoaly land and were generally higher at the high vegetation coverage areas than at the low vegetation coverage areas. There were significant correlations among SOC, TN, TP, and TK. Soil C/P, C/K, N/P, and N/K showed a consistent trend with soil nutrients, whereas C/N showed the opposite. The coefficients of variation of SOC, TN, AN, N/P, and N/K in the soil exceeded 50.00%, with significant spatial differences. The average value of C/N in wetland soil was 11.882, which was close to the average level of soils in China, whereas the average values of C/P and N/P were 49.119 and 4.516, respectively, both of which were lower than the average level of soils in China, and the N/P of soil was far less than 14, which indicated that N was limited in the soil. The proportion of clay and electrical conductivity combined to explain 61.4% and 43.9% of the variation in the soil nutrients and their ecological stoichiometry, respectively, which were the dominant soil physicochemical properties affecting the soil nutrients and their ecological stoichiometry of Huayuankou Yellow River Floating Bridge Wetland. The research results are helpful to improve our knowledge of nutrients and their influencing factors in the wetland soil of the lower Yellow River and provide an important scientific basis for the ecological restoration and management of the wetland in the lower Yellow River.
RESUMO
With the rapid development of the livestock industry, finding new sources of feed has become a critical issue that needs to be addressed urgently. China is one of the top five sunflower producers in the world and generates a massive amount of sunflower stalks annually, yet this resource has not been effectively utilized. Therefore, in order to tap into the potential of sunflower stalks for animal feed, it is essential to explore and develop efficient methods for their utilization.In this study, various proportions of alfalfa and sunflower straw were co-ensiled with the following mixing ratios: 0:10, 2:8, 4:6, 5:5, 6:4, and 8:2, denoted as A0S10, A2S8, A4S6, A5S5, A6S4, and A8S2, respectively. The nutrient composition, fermentation quality, microbial quantity, microbial diversity, and broad-spectrum metabolomics on the 60th day were assessed. The results showed that the treatment groups with more sunflower straw added (A2S8, A4S6) could start fermentation earlier. On the first day of fermentation, Weissella spp.dominated overwhelmingly in these two groups. At the same time, in the early stage of fermentation, the pH in these two groups dropped rapidly, which could effectively reduce the loss of nutrients in the early stage of fermentation.In the later fermentation period, a declining trend in acetic acid levels was observed in A0S10, A2S8, and A4S6, while no butyric acid production was detected in A0S10 and A2S8 throughout the process. In A4S6, butyric acid production was observed only after 30 days of fermentation. From the perspective of metabolites, compared with sunflower ensiling alone, many bioactive substances such as flavonoids, alkaloids, and terpenes are upregulated in mixed ensiling.
RESUMO
BACKGROUND: The albumin/fibrinogen ratio (AFR) is an independent predictor of clinical outcomes of some diseases; however, the prognostic value of AFR and the admission Hunt-Hess (HH) score is still unclear for patients with an aneurysmal subarachnoid hemorrhage (aSAH). This study aimed to assess the relationship between the AFR-HH score and 6-month outcomes of aSAH patients. METHODS: The clinical characteristics of aSAH patients admitted to our department between December 2017 and December 2021 were retrospectively analyzed. The candidate risk factors were screened using univariate regression analysis, and the independence of the resultant risk factors was evaluated by binary logistic regression analysis. The predictive value of the combined AFR and HH score for unfavorable outcomes was assessed using receiver operating characteristic curve analysis. RESULTS: A total of 112 aSAH patients were included. Binary logistic regression analysis showed the perioperative period AFR, Glasgow coma scale score, and admission HH score were independent risk factors for unfavorable outcomes for aSAH patients. The receiver operating characteristic curve analysis showed the predictive capacity of AFR plus the admission HH score outperformed the AFR, Glasgow coma scale score, and admission HH scale alone and the combination of the AFR and Glasgow coma scale score. CONCLUSIONS: A low AFR during the perioperative period is associated with unfavorable outcomes for aSAH patients at 6 months. The combination of the AFR and admission HH scale score provides superior predictive capacity to either the AFR or HH scale score alone.
Assuntos
Hemorragia Subaracnóidea , Humanos , Hemorragia Subaracnóidea/diagnóstico , Hemorragia Subaracnóidea/cirurgia , Estudos Retrospectivos , Fibrinogênio , Prognóstico , Escala de Coma de GlasgowRESUMO
The proficiency of phyllosphere microbiomes in efficiently utilizing plant-provided nutrients is pivotal for their successful colonization of plants. The methylotrophic capabilities of Methylobacterium/Methylorubrum play a crucial role in this process. However, the precise mechanisms facilitating efficient colonization remain elusive. In the present study, we investigate the significance of methanol assimilation in shaping the success of mutualistic relationships between methylotrophs and plants. A set of strains originating from Methylorubrum extorquens AM1 are subjected to evolutionary pressures to thrive under low methanol conditions. A mutation in the phosphoribosylpyrophosphate synthetase gene is identified, which converts it into a metabolic valve. This valve redirects limited C1-carbon resources towards the synthesis of biomass by up-regulating a non-essential phosphoketolase pathway. These newly acquired bacterial traits demonstrate superior colonization capabilities, even at low abundance, leading to increased growth of inoculated plants. This function is prevalent in Methylobacterium/Methylorubrum strains. In summary, our findings offer insights that could guide the selection of Methylobacterium/Methylorubrum strains for advantageous agricultural applications.
Assuntos
Metanol , Methylobacterium , Methylobacterium/metabolismo , Methylobacterium/genética , Methylobacterium/enzimologia , Methylobacterium/crescimento & desenvolvimento , Metanol/metabolismo , Simbiose , Mutação , Aldeído Liases/metabolismo , Aldeído Liases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Folhas de Planta/microbiologia , Folhas de Planta/crescimento & desenvolvimento , Methylobacterium extorquens/genética , Methylobacterium extorquens/metabolismo , Methylobacterium extorquens/crescimento & desenvolvimento , Methylobacterium extorquens/enzimologia , Desenvolvimento Vegetal , Microbiota/genética , BiomassaRESUMO
Human-induced pluripotent stem cells (hiPSCs) can differentiate into functional cardiomyocytes (iCell Cardiomyocytes) with ion channel activities that are remarkably similar to adult cardiomyocytes. Here, we extend this characterization to cardiac ion transporters. Additionally, we document facile molecular biological manipulation of iCell Cardiomyocytes to overexpress and knockdown transporters and regulatory proteins. Na/Ca exchange (NCX1) and Na/K pump currents were recorded via patch clamp, and Na/H and Cl/OH exchanges were recorded via oscillating proton-selective microelectrodes during patch clamp. Flux densities of all transport systems are similar to those of nonrodent adult cardiomyocytes. NCX1 protein and NCX1 currents decline after NCX1 small interfering (si)RNA transfection with similar time courses (τ ≈ 2 days), and an NCX1-Halo fusion protein is internalized after its extracellular labeling by AlexaFluor488 Ligand with a similar time course. Loss of the cardiac regulatory protein phospholemman (PLM) occurs over a longer time course (τ ≈ 60 h) after PLM small interfering RNA transfection. Similar to multiple previous reports for adult cardiomyocytes, Na/K pump currents in iCell Cardiomyocytes are not enhanced by activating cAMP production with either maximal or submaximal cytoplasmic Na and using either forskolin or isoproterenol to activate adenylate cyclases. Finally, we describe Ca influx-dependent changes of iCell Cardiomyocyte capacitance (Cm). Large increases of Cm occur during Ca influx via NCX1, thereby documenting large internal membrane reserves that can fuse to the sarcolemma, and subsequent declines of Cm document active endocytic processes. Together, these results document a great potential of iCell Cardiomyocytes for both short- and long-term studies of cardiac ion transporters and their regulation.