Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(26): 8189-8197, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38904278

RESUMO

IV-V two-dimensional materials have emerged as key contenders for polarization-sensitive and angle-resolved devices, given their inherent anisotropic physical properties. While these materials exhibit intriguing high-pressure quasi-particle behavior and phase transition, the evolution of quasi-particles and their interactions under external pressure remain elusive. Here, employing a diamond anvil cell and spectroscopic measurements coupled with first-principles calculations, we unveil rarely observed pressure-induced phonon-phonon coupling in layered SiP flakes. This coupling manifests as an anomalous phonon hardening behavior for the A1 mode within a broad wavenumber phonon softening region. Furthermore, we demonstrate the effective tuning of exciton emissions in SiP flakes under pressure, revealing a remarkable 63% enhancement in the degree of polarization (DOP) within the pressure range of 0-3.5 GPa. These findings contribute to our understanding of high-pressure phonon evolution in SiP materials and offer a strategic approach to manipulate the anisotropic performance of in-plane anisotropic 2D materials.

2.
J Am Chem Soc ; 146(6): 3890-3899, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38294957

RESUMO

Topological insulators offer significant potential to revolutionize diverse fields driven by nontrivial manifestations of their topological electronic band structures. However, the realization of superior integration between exotic topological states and superconductivity for practical applications remains a challenge, necessitating a profound understanding of intricate mechanisms. Here, we report experimental observations for a novel superconducting phase in the pressurized second-order topological insulator candidate Ta2Pd3Te5, and the high-pressure phase maintains its original ambient pressure lattice symmetry up to 45 GPa. Our in situ high-pressure synchrotron X-ray diffraction, electrical transport, infrared reflectance, and Raman spectroscopy measurements, in combination with rigorous theoretical calculations, provide compelling evidence for the association between the superconducting behavior and the densified phase. The electronic state change around 20 GPa was found to modify the topology of the Fermi surface directly, which synergistically fosters the emergence of robust superconductivity. In-depth comprehension of the fascinating properties exhibited by the compressed Ta2Pd3Te5 phase is achieved, highlighting the extraordinary potential of topological insulators for exploring and investigating high-performance electronic advanced devices under extreme conditions.

3.
Nano Lett ; 23(19): 8833-8841, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37726204

RESUMO

Moiré superlattices induced by twisted van der Waals (vdW) heterostructures or homostructures have recently gained significant attention due to their potential to generate exotic strong-correlation electronic and phonon phenomena. However, the lack of dynamic tuning for interlayer coupling of moiré superlattices hinders a thorough understanding and development of the moiré correlation state. Here, we present a dynamic tuning method for twisted WSe2/WSe2 homobilayers using a diamond anvil cell (DAC). We demonstrate the powerful tuning of interlayer coupling and observe an enhanced response to pressure for interlayer breathing modes and the rapid descent of indirect excitons in twisted WSe2/WSe2 homobilayers. Our findings indicate that the introduction of a moiré superlattice for WSe2 bilayers gives rise to hybridized excitons, which lead to the different pressure-evolution exciton behaviors compared to natural WSe2 bilayers. Our results provide a novel understanding of moiré physics and offer an effective method to tune interlayer coupling of moiré superlattices.

4.
J Am Chem Soc ; 145(2): 1301-1309, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36579888

RESUMO

Various transition-metal trichalcogenides (TMTC) show unique electronic properties, such as metal-insulator transition, topological insulator, and even superconducting transition. Currently, almost all metallic TMTC compounds can show superconductivity either at ambient pressure or at high pressure. However, most TMTC compounds are semiconductors and even insulators. Does superconductivity exist in any non-metallic TMTC compound by artificial manipulation? In this work, the electronic behavior of highly insulating HfS3 has been manipulated in terms of pressure. HfS3 undergoes an insulator-to-semiconductor transition near 17 GPa with a band gap reduction of ∼1 eV. Optical absorption, Raman spectroscopy, and X-ray diffraction measurements provide consistent results, suggesting the structural origin of the electronic transition. Upon further compression, HfS3 becomes a superconductor without further structural transition. The superconducting transition occurs as early as 50.6 GPa, and the Tc reaches 8.1 K at 121 GPa, which sets a new record for TMTCs. This work reveals that all TMTCs may be superconductors and opens a new avenue to explore the abundant emergent phenomena in the TMTC material family.

5.
Small ; 19(26): e2207988, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36938893

RESUMO

The exploration of moiré superlatticesholds promising potential to uncover novel quantum phenomena emerging from the interplay of atomic structure and electronic correlation . However, the impact of the moiré potential modulation on the number of twisted layers has yet to be experimentally explored. Here, this work synthesizes a twisted WSe2 homotrilayer using a dry-transfer method and investigates the enhancement of the moiré potential with increasing number of twisted layers. The results of the study reveal the presence of multiple exciton resonances with positive or negative circularly polarized emission in the WSe2 homostructure with small twist angles, which are attributed to the excitonic ground and excited states confined to the moiré potential. The distinct g-factor observed in the magneto-optical spectroscopy is also shown to be a result of the confinement of the exciton in the moiré potential. The moiré potential depths of the twisted bilayer and trilayer homostructures are found to be 111 and 212 meV, respectively, an increase of 91% from the bilayer structure. These findings demonstrate that the depth of the moiré potential can be manipulated by adjusting the number of stacked layers, providing a promising avenue for exploration into highly correlated quantum phenomena.

6.
Opt Lett ; 48(9): 2393-2396, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37126281

RESUMO

Monolayer transition metal dichalcogenides (TMDs) have a crystalline structure with broken spatial inversion symmetry, making them promising candidates for valleytronic applications. However, the degree of valley polarization is usually not high due to the presence of intervalley scattering. Here, we use the nanoindentation technique to fabricate strained structures of WSe2 on Au arrays, thus demonstrating the generation and detection of strained localized excitons in monolayer WSe2. Enhanced emission of strain-localized excitons was observed as two sharp photoluminescence (PL) peaks measured using low-temperature PL spectroscopy. We attribute these emerging sharp peaks to excitons trapped in potential wells formed by local strains. Furthermore, the valley polarization of monolayer WSe2 is modulated by a magnetic field, and the valley polarization of strained localized excitons is increased, with a high value of up to approximately 79.6%. Our results show that tunable valley polarization and localized excitons can be realized in WSe2 monolayers, which may be useful for valleytronic applications.

7.
Phys Chem Chem Phys ; 24(11): 6782-6787, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35244113

RESUMO

Searching for magnetic silicide thin films has long been a hot topic in condensed matter physics and materials science based on their fundamental physics and promising device applications. Here we report a systematic study on the structural, magnetic, and electronic properties of EuSi2 thin films on the Si(111) surface by ab initio calculations. Total energy calculations show that the EuSi2 thin film in AA stacking is more favorable than that in AB or ABC stacking. The Eu2 + ions are coupled ferromagnetically within each layer and antiferromagnetically across the adjacent silicene layers with a large local spin moment of 6.96-7.00µB derived from the Eu-4f orbital electrons. Electronic band structure calculations indicate that the monolayer EuSi2 thin film is a semiconductor with an indirect surface band gap of 0.45 eV, while the multilayer EuSi2 thin films exhibit metallic behavior. These findings provide a systematic understanding of rare-earth metal silicides on the Si surface and will provide guidance for Si-based nanoelectronics and spintronics.

8.
Neoplasma ; 69(4): 841-858, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35532293

RESUMO

The present study aimed to investigate LINC00278 expression in laryngeal squamous cell carcinoma (LSCC) and its involvement in the process of proliferation, migration, and invasion, providing a rationale for mining potential diagnostic and therapeutic targets of LSCC. Univariate and multivariate Cox regression analyses were performed to identify optimal prognostic lncRNAs. MTS, colony formation, wound healing, and Transwell invasion assays were used to determine the effects of LINC00278 overexpression on the proliferation, migration, and invasion of cancer cells. The expressions of signaling pathway-related proteins and epithelial-mesenchymal transition (EMT) marker proteins were detected using western blot. The chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays were performed to demonstrate the binding of ETS proto-oncogene 1, transcription factor (ETS1), and LINC00278 promoter region. The molecular targets of LINC00278 were identified by RNA sequencing analysis and co-expression analysis. Kaplan-Meier analysis and CIBERSORT algorithm were used to analyze survival and immune cell infiltration based on LINC00278, COL4A1, and COL4A2. Multivariate Cox regression was used to establish a six-gene prognostic model. LINC00278 expression was low in LSCC tissues, and it was significantly associated with the TNM (tumors/nodes/metastases) stage (p<0.001), lymphatic metastasis (p<0.01), and pathological differentiation (p<0.01). LINC00278 overexpression significantly reduced LSCC cell proliferation, migration, and invasion in TU686, TU177, and AMC-HN-8 cell lines. E-cadherin protein expression was increased, while N-cadherin, Vimentin, Zeb1, and Snail protein expression was decreased in the LINC00278 group, compared to the pcDNA3.1 group. Additionally, in AMC-HN-8 and FaDu cell lines, the LINC00278-treated group had significantly lower p-AKT and p-mTOR protein levels than the control group. ETS1 is a direct transcriptional regulator of the LINC00278 gene based on luciferase reporter assays and ChIP experiments. Western blot analysis demonstrated that high LINC00278 expression inhibited both ETS1 expression and phosphorylation. COL4A1/COL4A2 were identified as potential downstream targets of LINC00278. Meanwhile, the LINC00278/COL4A1/COL4A2-dominated low-risk group showed higher antigen-presenting activity and a higher immune score than the high-risk group. The findings indicated that ETS1 upregulated LINC00278 expression on the Y chromosome, which in turn inhibited LSCC growth in vivo and in vitro by inhibiting the AKT/mTOR signaling pathway via downregulation of COL4A1/COL4A2.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Laríngeas , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Transição Epitelial-Mesenquimal , Retroalimentação , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Humanos , Neoplasias Laríngeas/genética , Neoplasias Laríngeas/patologia , Proteína Proto-Oncogênica c-ets-1/genética , Proteína Proto-Oncogênica c-ets-1/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
9.
J Am Chem Soc ; 143(18): 6798-6804, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33938744

RESUMO

Spin structure of a magnetic system results from the competition of various exchange couplings. Pressure-driven spin structure evolution, through altering interatomic distance, and hence, electronic structure produces baromagnetic effect (BME), which has potential applications in sensor/actuator field. Here, we report a new spin structure(CyS-AFMb) with antiferromagnetic(AFM) nature in Fe-doped Mn0.87Fe0.13NiGe. Neutron powder diffraction (NPD) under in situ hydrostatic pressure and magnetic field was conducted to reveal the spin configuration and its instabilities. We discovered that a pressure higher than 4 kbar can induce abnormal change of Mn(Fe)-Mn(Fe) distances and transform the CyS-AFMb into a conical spiral ferromagnetic(FM) configuration(45°-CoS-FMa) with easily magnetized but shortened magnetic moment by as much as 22%. The observed BME far exceeds previous reports. Our first-principles calculations provide theoretical supports for the enhanced BME. The compressed lattice by pressure favors the 45°-CoS-FMa and significantly broadened 3d bandwidth of Mn(Fe) atoms, which leads to the shortened magnetic moment and evolution of spin structure.

10.
Phys Rev Lett ; 126(15): 155701, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33929239

RESUMO

The layered crystal of EuSn_{2}As_{2} has a Bi_{2}Te_{3}-type structure in rhombohedral (R3[over ¯]m) symmetry and has been confirmed to be an intrinsic magnetic topological insulator at ambient conditions. Combining ab initio calculations and in situ x-ray diffraction measurements, we identify a new monoclinic EuSn_{2}As_{2} structure in C2/m symmetry above ∼14 GPa. It has a three-dimensional network made up of honeycomblike Sn sheets and zigzag As chains, transformed from the layered EuSn_{2}As_{2} via a two-stage reconstruction mechanism with the connecting of Sn-Sn and As-As atoms successively between the buckled SnAs layers. Its dynamic structural stability has been verified by phonon mode analysis. Electrical resistance measurements reveal an insulator-metal-superconductor transition at low temperature around 5 and 15 GPa, respectively, according to the structural conversion, and the superconductivity with a T_{C} value of ∼4 K is observed up to 30.8 GPa. These results establish a high-pressure EuSn_{2}As_{2} phase with intriguing structural and electronic properties and expand our understandings about the layered magnetic topological insulators.

11.
Phys Chem Chem Phys ; 23(45): 25944-25950, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34783340

RESUMO

Searching for new topological phases of matter has long been a hot topic in condensed matter physics and materials science based on its fundamental physics and promising device applications. Here we report a systematic ab initio study on the topological electronic properties of CoAs3, RhAs3, and RhSb3 binary compounds. Without spin-orbit coupling, there is a six-fold band crossing node at the high-symmetric Γ point with topological charge , which is denoted as "six-fold excitation". This nodal point is formed by the highest occupied band and two of the lowest unoccupied bands, and protected by time-reversal symmetry, and spatial-inversion symmetry and stabilized by the two-fold rotational symmetry. Detailed band structure and elementary band representation analysis shows that the six-fold band degeneracy at the Γ point near the Fermi level is formed by the bands of Ag@8c originating from the d-orbital of metal atoms. Meanwhile, with spin-orbit coupling, the six-fold nodal point becomes a four-fold degenerate quadratic Dirac point with the topological charge conserved as . These results provide a systematic understanding of the electronic properties of the skutterudite compounds and enrich the families of topological fermions in condensed matter systems.

12.
Phys Chem Chem Phys ; 23(19): 11466-11471, 2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-33959738

RESUMO

Using first-principles calculations, we identify a robust R30° reconstruction of a Si3 trimer bilayer on the Si(111) surface with a La coverage of 2/3 monolayer. Each surface unit cell contains two Si3 trimers and two La atoms, where the upper Si3 trimer is located just above the lower one with a rotation of about 60°, while two La atoms with different heights are distributed between the Si3 trimers and located on the T4 top site of the Si(111) surface, forming a honeycomb-like network structure. We find that the two La atoms have different valence states, La2+ and La3+, respectively. The high structural stability is attributed to the lower La atom saturating all the three dangling bonds of the upper Si3 trimer, while the higher La atom compensates two electrons to the lower Si3 trimer. The electronic band structure and band-decomposed charge density distribution show a semiconducting characteristic with a small surface band gap of 42 meV. Moreover, simulated STM images show a good structural match with the recent experimental observations.

13.
Neoplasma ; 68(6): 1212-1224, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34585589

RESUMO

This study aimed to elucidate the potential genes of the matrix metalloproteinase (MMP) family, responsible for the progression of laryngeal squamous cell carcinoma (LSCC). Besides, we ascertained the changes in common malignant behaviors in vitro by knocking down MMP1. TCGA, GEO, Oncomine, and microarray data were conducted to analyze the expression levels of MMPs and to find tissue-specific genes in LSCC. Univariate and multivariate Cox regression analyses were established in the construction of a prognostic model based on expression profiles and clinical information of LSCC in TCGA. We then comprehensively analyzed survival, co-expression network, and immune infiltration based on a prognostic model by Kaplan-Meier analysis, WGCNA, and CIBERSORT. Thereafter, qRT-PCR, proliferation, Transwell, and wound-healing assays were used to assess the accuracy of the bioinformatics data. A total of seven genes in the MMP family were identified as differentially expressed genes (DEGs) by integrating three public databases and microarray data. Additionally, multivariate Cox regression was used to establish a four-gene (MMP1/3/8/10) prognostic model, which exhibited a better predictive accuracy than the TNM (tumors/nodes/metastases) based model. The prognostic model was related to plasma cells, CD8+ T cells, follicular helper T cells, resting NK cells, and M0 macrophages infiltration. The expression of MMP1, MMP3, and MMP10 was the highest in head and neck squamous cell carcinoma (HNSC) compared to other cancer in the Oncomine and GEPIA dataset. Further, MMP1 demonstrated significant upregulation in 40 paired LSCC tissues. Eventually, MMP1 downregulation inhibited cell viability, colony formation, and cell migration in TU686 and FaDu cells. Our findings suggest that the four-gene signature might be associated with the prognosis. Further, we revealed that MMP1 is a pivotal biomarker for the biotherapy and prognostic evaluation of patients with LSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Laríngeas , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Laríngeas/genética , Prognóstico , Carcinoma de Células Escamosas de Cabeça e Pescoço
14.
Metab Brain Dis ; 36(8): 2329-2341, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34665375

RESUMO

Type 2 diabetes mellitus (T2DM) is one of the most common chronic diseases among the elderly people. The T2DM increases the risk of cardio-cerebrovascular disease (CCD), and the main pathological change of the CCD is atherosclerosis (AS). Meanwhile, the carbonic anhydrases (CAs) are involved in the formation and progression of plaques in AS. However, the exact physiological mechanism of carbonic anhydrase III (CAIII) has not been clear yet, and there are also no correlation study between CAIII protein and T2DM with CCD. The 8-week old diabetic mice (db/db-/- mice) and wild-type mice (wt mice) were feed by a normal diet till 32 weeks, and detected the carotid artery vascular opening angle using the method of biomechanics; The changes of cerebral cortex and myocardium were watched by the ultrastructure, and the autophagy were observed by electron microscope; The tissue structure, inflammation and cell injury were observed by Hematoxylin and eosin (HE) staining; The apoptosis of cells were observed by TUNEL staining; The protein levels of CAIII, IL-17, p53 were detected by immunohistochemical and Western Blot, and the Beclin-1, LC3, NF-κB were detected by Western Blot. All statistical analysis is performed using PRISM software. Compared with wt mice, db/db-/- mice' carotid artery open angle increased significantly. Electron microscope results indicated that autophagy in db/db-/- mice cerebral cortex and heart tissue decreased and intracellular organelle ultrastructure were damaged. HE staining indicated that, db/db-/- mice' cerebral cortex and heart tissue stained lighter, inflammatory cells infiltration, cell edema were obvious, myocardial fibers were disorder, and myocardial cells showed different degrees of degeneration. Compared with wt mice, TUNEL staining showed that there was obviously increase in db/db-/- mice cortex and heart tissue cell apoptosis. The results of immunohistochemistry and Western Blot indicated that CAIII, Beclin-1 and LC3II/I expression levels conspicuously decreased in cortex and heart tissue of db/db-/- mice, and the expression level of IL-17, NF-κB and p53 obviously increased. The carotid artery' vascular stiffness was increased and which was probably related with formation of AS in diabetic mice. And the autophagy participated in the occurrence and development of diabetic CCD. CAIII protein might somehow be involved in the regulation of autophagy probably through affecting cell apoptosis and inflammation, but the underlying mechanism remains to be further studied.


Assuntos
Anidrase Carbônica III , Transtornos Cerebrovasculares , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Animais , Autofagia , Camundongos
15.
Phys Chem Chem Phys ; 22(22): 12489-12495, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32452472

RESUMO

Besides commonly used graphite, carbon nanotubes are also often chosen as precursor materials for the synthesis of new carbon phases. Here we identify, using ab initio calculations, two new three-dimensional crystalline modifications of carbon nanotubes with P63/mcm (D36h) symmetry derived from (6,0) and (9,0) nanotubes via a three-fold distortion assisted reconstruction mechanism. The resulting sp2 + sp3 hybrid network structures have a 24- and 36-atom hexagonal unit cell, termed as (6,0)-hP24 and (9,0)-hP36 carbon, and they topologically correspond to two-dimensional graphyne and graphdiyne. Total-energy calculations show that they are energetically more stable than the original nanotubes and previously reported polymerized nanotube structures. Their dynamic stability has been confirmed by phonon mode analysis. Electronic band structure calculations reveal that they are semiconductors with an indirect band gap of 0.18 eV for hP24, and a direct band gap of 2.15 eV for hP36. The present results establish a new type of carbon phase and offer insights into understanding the complex structural landscape of polymerized nanotubes.

16.
Phys Rev Lett ; 120(2): 026402, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29376700

RESUMO

Topological semimetals are characterized by the nodal points in their electronic structure near the Fermi level, either discrete or forming a continuous line or ring, which are responsible for exotic properties related to the topology of bulk bands. Here we identify by ab initio calculations a distinct topological semimetal that exhibits nodal nets comprising multiple interconnected nodal lines in bulk and have two coupled drumheadlike flat bands around the Fermi level on its surface. This nodal net semimetal state is proposed to be realized in a graphene network structure that can be constructed by inserting a benzene ring into each C─C bond in the bct-C_{4} lattice or by a crystalline modification of the (5,5) carbon nanotube. These results expand the realm of nodal manifolds in topological semimetals, offering a new platform for exploring novel physics in these fascinating materials.

17.
Phys Chem Chem Phys ; 20(35): 22762-22767, 2018 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-30140841

RESUMO

We identified by ab initio calculations a new simple orthorhombic carbon allotrope with Pmc21 (C2v2) symmetry that has a 32-atom unit cell in all-sp3 hybridized covalent bonds. This new carbon phase can be formed from graphite via a one-layer by three-layer slip and buckling mechanism along the [210] direction above 7.16 GPa and is more favorable than previously proposed cold-compressed graphite phases such as Z-carbon and M-carbon in terms of both kinetics and energetics. Its dynamic stability has been confirmed by phonon mode analysis. Electronic band structure calculations reveal that it has a large indirect band gap of 5.91 eV, wider than that of diamond, which is expected to be optically transparent. The calculated hardness of 95.1 GPa is comparable to 97.5 GPa for diamond. These results offer insights into understanding the complex structural landscape of compressed graphite.

18.
Phys Chem Chem Phys ; 20(12): 7962-7967, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29383355

RESUMO

We identify using ab initio calculations new types of three-dimensional carbon allotrope constructed by inserting acetylenic or diacetylenic bonds into a body-centered cubic C8 lattice. The resulting sp + sp3-hybridized cubane-yne and cubane-diyne structures consisting of C8 cubes can be characterized as a cubic crystalline modification of linear carbon chains, but energetically more favorable than the simplest linear carbyne chain and the cubic tetrahedral diamond and yne-diamond consisting of C4 tetrahedrons. Electronic band calculations indicate that these new carbon allotropes are semiconductors with an indirect band gap of 3.08 eV for cubane-yne and 2.53 eV for cubane-diyne. The present results establish new types of carbon phases consisting of C8 cubes and offer insights into their outstanding structural and electronic properties.

19.
Phys Chem Chem Phys ; 20(18): 13092, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29701215

RESUMO

Correction for 'New carbon allotropes in sp + sp3 bonding networks consisting of C8 cubes' by Jian-Tao Wang et al., Phys. Chem. Chem. Phys., 2018, 20, 7962-7967.

20.
Phys Chem Chem Phys ; 20(39): 25235-25239, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30264069

RESUMO

Alkaline-earth metal (Ca, Sr, and Ba) induced Si(111)-(3 × 2) honeycomb chain-channel (HCC) surfaces have been systematically studied by means of ab initio calculations. The large adsorption energy and anisotropic diffusion energy barriers ensure the high structural stability of the one-dimensional HCC structure. Electronic band structures and band-decomposed charge density distributions reveal that the first conduction band and the third valence band level are contributed by the surface Si and metal atoms, while the top first and second valence bands are caused by the bulk silicon atoms. These results identify a larger surface band gap of 1.65-1.68 eV and provide an excellent explanation for the recent experimental observations of a band gap of 1.7 eV for the Sr/Si(111)-(3 × 2) HCC surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA