Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Nat Mater ; 22(12): 1499-1506, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37770677

RESUMO

Recently, the increasing demand for data-centric applications is driving the elimination of image sensing, memory and computing unit interface, thus promising for latency- and energy-strict applications. Although dedicated electronic hardware has inspired the development of in-memory computing and in-sensor computing, folding the entire signal chain into one device remains challenging. Here an in-memory sensing and computing architecture is demonstrated using ferroelectric-defined reconfigurable two-dimensional photodiode arrays. High-level cognitive computing is realized based on the multiplications of light power and photoresponsivity through the photocurrent generation process and Kirchhoff's law. The weight is stored and programmed locally by the ferroelectric domains, enabling 51 (>5 bit) distinguishable weight states with linear, symmetric and reversible manipulation characteristics. Image recognition can be performed without any external memory and computing units. The three-in-one paradigm, integrating high-level computing, weight memorization and high-performance sensing, paves the way for a computing architecture with low energy consumption, low latency and reduced hardware overhead.

2.
Nanotechnology ; 35(35)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38697050

RESUMO

Photodetectors are essential optoelectronic devices that play a critical role in modern technology by converting optical signals into electrical signals, which are one of the most important sensors of the informational devices in current 'Internet of Things' era. Two-dimensional (2D) material-based photodetectors have excellent performance, simple design and effortless fabrication processes, as well as enormous potential for fabricating highly integrated and efficient optoelectronic devices, which has attracted extensive research attention in recent years. The introduction of spontaneous polarization ferroelectric materials further enhances the performance of 2D photodetectors, moreover, companying with the reduction of power consumption. This article reviews the recent advances of materials, devices in ferroelectric-modulated photodetectors. This review starts with the introduce of the basic terms and concepts of the photodetector and various ferroelectric materials applied in 2D photodetectors, then presents a variety of typical device structures, fundamental mechanisms and potential applications under ferroelectric polarization modulation. Finally, we summarize the leading challenges currently confronting ferroelectric-modulated photodetectors and outline their future perspectives.

3.
Nano Lett ; 23(6): 2114-2120, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36867589

RESUMO

Electronic properties of two-dimensional (2D) materials can be significantly tuned by an external electric field. Ferroelectric gates can provide a strong polarization electric field. Here, we report the measurements of the band structure of few-layer MoS2 modulated by a ferroelectric P(VDF-TrFE) gate with contact-mode scanning tunneling spectroscopy. When P(VDF-TrFE) is fully polarized, an electric field up to ∼0.62 V/nm through the MoS2 layers is inferred from the measured band edges, which affects the band structure significantly. First, strong band bending in the vertical direction signifies the Franz-Keldysh effect and a large extension of the optical absorption edge. Photons with energy of half the band gap are still absorbed with 20% of the absorption probability of photons at the band gap. Second, the electric field greatly enlarges the energy separations between the quantum-well subbands. Our study intuitively demonstrates the great potential of ferroelectric gates in band structure manipulation of 2D materials.

4.
BMC Cancer ; 22(1): 620, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672673

RESUMO

BACKGROUND: Cholangiocarcinoma (CHOL) is a malignant tumor that originates in the extrahepatic bile duct and can extend from the hilar region to the lower end of the common bile duct. The prognosis of CHOL patients is particularly poor; therefore, in this study, we screened mRNAs correlated with N6-methyladenosine (m6A) to construct a risk model for prognosis in CHOL. METHODS: The TCGA-CHOL dataset was applied to obtain and analyze the coexpression of 1281 m6A-related mRNAs, from which 14 were selected for further analysis through univariate proportional hazards (cox) regression analysis. Aryl hydrocarbon receptor interacting protein (AIP), CCAAT/enhancer binding protein beta (CEBPB), syndecan1 (SDC1), vacuolar protein sorting 25 homolog (VPS25) and syntaxin binding protein 2 (STXBP2) were then screened out through the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis to develop a precise m6A-related mRNA prognosis risk model (MRMRPM) with an area under curve (AUC) of 0.908 and 0.923 after 1 and 2 years, respectively. We divided the samples into high-risk and low-risk groups using the m6A-related mRNA prognosis risk model. RESULTS: Kaplan-Meier analysis indicated poor overall survival (OS) for the high-risk group. Two Gene Expression Omnibus (GEO) datasets (GSE89748 and GSE107943) were used to validate the risk model. The results of drug sensitivity and immune cell infiltration analysis showed that the risk model could serve as a prognosis index of potential immunotherapeutic characteristics and drug sensitivity. Furthermore, the proportion of resting dendritic cells and regulatory T cells was positively associated with an increased expression of four m6A-related mRNAs - AIP, CEBPB, SDC1, and VPS25 - in the high-risk CHOL group. CONCLUSIONS: Our findings suggest that this model can be a prognostic indicator for CHOL patients.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Colangiocarcinoma/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Prognóstico , RNA Mensageiro/genética
5.
Nano Lett ; 20(5): 3872-3879, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32293186

RESUMO

GeSn offers a reduced bandgap than Ge and has been utilized in Si-based infrared photodetectors with an extended cutoff wavelength. However, the traditional GeSn/Ge heterostructure usually consists of defects like misfit dislocations due to the lattice mismatch issue. The defects with the large feature size of a photodetector fabricated on bulk GeSn/Ge heterostructures induce a considerable dark current. Here, we demonstrate a flexible GeSn/Ge dual-nanowire (NW) structure, in which the strain relaxation is achieved by the elastic deformation without introducing defects, and the feature dimension is naturally at the nanoscale. A photodetector with a low dark current can be built on a GeSn/Ge dual-NW, which exhibits an extended detection wavelength beyond 2 µm and enhanced responsivity compared to the Ge NW. Moreover, the dark current can be further suppressed by the depletion effect from the ferroelectric polymer side gate. Our work suggests the flexible GeSn/Ge dual-NW may open an avenue for Si-compatible optoelectronic circuits operating in the short-wavelength infrared range.

6.
Small ; 16(22): e2000420, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32350995

RESUMO

MoS2 , one of the most valued 2D materials beyond graphene, shows potential for future applications in postsilicon digital electronics and optoelectronics. However, achieving hole transport in MoS2 , which is dominated by electron transport, is always a challenge. Here, MoS2 transistors gated by electrolyte gel exhibit the characteristics of hole and electron transport, a high on/off ratio over 105 , and a low subthreshold swing below 50 mV per decade. Due to the electrolyte gel, the density of electrons and holes in the MoS2 channel reaches ≈9 × 1013 and 8.85 × 1013 cm-2 , respectively. The electrolyte gel-assisted MoS2 phototransistor exhibits adjustable positive and negative photoconductive effects. Additionally, the MoS2 p-n homojunction diode affected by electrolyte gel shows high performance and a rectification ratio over 107 . These results demonstrate that modifying the conductance of MoS2 through electrolyte gel has great potential in highly integrated electronics and optoelectronic photodetectors.

7.
Small ; 16(1): e1904369, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31769618

RESUMO

2D transition metal dichalcogenides (TMDs) based photodetectors have shown great potential for the next generation optoelectronics. However, most of the reported MoS2 photodetectors function under the photogating effect originated from the charge-trap mechanism, which is difficult for quantitative control. Such devices generally suffer from a poor compromise between response speed and responsivity (R) and large dark current. Here, a dual-gated (DG) MoS2 phototransistor operating based on the interface coupling effect (ICE) is demonstrated. By simultaneously applying a negative top-gate voltage (VTG ) and positive back-gate voltage (VBG ) to the MoS2 channel, the photogenerated holes can be effectively trapped in the depleted region under TG. An ultrahigh R of ≈105 A W-1 and detectivity (D*) of ≈1014 Jones are achieved in several devices with different thickness under Pin of 53 µW cm-2 at VTG = -5 V. Moreover, the response time of the DG phototransistor can also be modulated based on the ICE. Based on these systematic measurements of MoS2 DG phototransistors, the results show that the ICE plays an important role in the modulation of photoelectric performances. The results also pave the way for the future optoelectrical application of 2D TMDs materials and prompt for further investigation in the DG structured phototransistors.

9.
Opt Express ; 28(3): 4169-4177, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32122074

RESUMO

Gallium oxide (Ga2O3) has been studied as one of the most promising wide bandgap semiconductors during the past decade. Here, we prepared high quality ß-Ga2O3 films by pulsed laser deposition. ß-Ga2O3 films of different thicknesses were achieved and their crystal properties were comprehensively studied. As thickness increases, grain size and surface roughness are both increased. Based on these ß-Ga2O3 films, a series of ultraviolet (UV) photodetectors with interdigital electrodes structure were prepared. These devices embrace an ultralow dark current of 100 fA, and high photocurrent on/off ratio of 10E8 under UV light illumination. The photoresponse time is 4 ms which is faster than most of previous works. This work paves the way for the potential application of Ga2O3 in the field of UV detection.

10.
Nanotechnology ; 31(42): 424007, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32599566

RESUMO

The separation of processing and memory units in von Neumann architecture creates issues with energy consumption and speed mismatches, which is a huge obstacle on the road of integrated-circuit development. Potentially, the excellent performance of two-dimensional materials field-effect transistors controlled by organic ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) polymer could clear the path for the development of next-generation microelectronics. Here, we combined P(VDF-TrFE) polymer and molybdenum disulfide (MoS2) nanoflakes to fabricate a horizontal dual-gate ferroelectric field-effect transistor (HDG-FeFET) device. This device can provide in-situ memory of logic results while processing the AND logic function. During the logic operations, the logic output state-1/state-0 current ratio approached 105. After 900 s, the corresponding non-volatile memory state-1/state-0 current ratio remains at 104. This type of transistor is expected to provide a promising in-memory computing solution for next-generation computing architecture.

11.
Phys Chem Chem Phys ; 22(45): 26383-26389, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33179645

RESUMO

Platinum diselenide (PtSe2) has attracted huge attention due to its intriguing physical properties for both fundamental research and promising applications in electronics and optoelectronics. Here, we explored the optical properties of chemical vapor deposition-grown PtSe2 thin films with varied thicknesses via spectroscopic ellipsometry. The dielectric function was extracted by using a Lorentz model over the spectral range of 1.25-6.0 eV. We firstly ascribed the resonant energies, extracted from the Lorentz model, to different interband electronic transitions between valence bands and conduction bands in the Brillouin zone. A predicted exciton is observed at 2.18 eV for the monolayer and the corresponding exciton binding energy is 0.65 eV, in line with previous theoretical calculation and the measured absorption spectra. Additionally, the exciton peak shows a red shift with the increase of thickness, which is the consequence of strong interlayer interaction. These results enrich the fundamental understanding of PtSe2 and are conducive to its potential applications.

12.
Small ; 15(17): e1900236, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30932339

RESUMO

Van der Waals epitaxy (vdWE) is crucial for heteroepitaxy of covalence-bonded semiconductors on 2D layered materials because it is not subject to strict substrate requirements and the epitaxial materials can be transferred onto various substrates. However, planar film growth in covalence-bonded semiconductors remains a critical challenge of vdWE because of the extremely low surface energy of 2D materials. In this study, direct growth of wafer-scale single-crystalline cadmium telluride (CdTe) films is achieved on 2D layered transparent mica through molecular beam epitaxy. The vdWE CdTe films exhibit a flat surface resulting from the 2D growth regime, and high crystal quality as evidenced by a low full width at half maximum of 0.05° for 120 nm thick films. A perfect lattice fringe appears at the interfaces, implying a fully relaxed state of the epitaxial CdTe films correlated closely to the unique nature of vdWE. Moreover, the vdWE CdTe photodetectors demonstrate not only ultrasensitive optoelectronic response with optimal responsivity of 834 A W-1 and ultrahigh detectivity of 2.4 × 1014 Jones but also excellent mechanical flexibility and durability, indicating great potential in flexible and wearable devices.

14.
J Am Chem Soc ; 140(42): 13746-13752, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30257558

RESUMO

Graphene-based electric power generation that converts mechanical energy of flow of ionic droplets over the device surface into electricity has emerged as a promising candidate for blue-energy network. Yet the lack of a microscopic understanding of the underlying mechanism has prevented ability to optimize and control the performance of such devices. This requires information on interfacial structure and charging behavior at the molecular level. Here, we use sum-frequency vibrational spectroscopy to study the roles of solvated ions, graphene, surface moiety on substrate and water molecules at the aqueous solution/graphene/polymer interface. We discover that the surface dipole layer of the neutral polymer is responsible for ion attraction toward and adsorption at the graphene surface that leads to electricity generation in graphene. Graphene itself does not attract ions and only acts as a conducting sheet for the induced carrier transport. Replacing the polymer by an organic ferroelectric substrate could allow switching of the electricity generation with long durability. Our microscopic understanding of the electricity generation process paves the way for the rational design of scalable and more efficient droplet-motion-based energy transducer devices.

15.
Small ; 14(22): e1800492, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29717810

RESUMO

Zinc oxide (ZnO) nanosheets have demonstrated outstanding electrical and optical properties, which are well suited for ultraviolet (UV) photodetectors. However, they have a high density of intrinsically unfilled traps, and it is difficult to achieve p-type doping, leading to the poor performance for low light level switching ratio and a high dark current that limit practical applications in UV photodetection. Here, UV photodetectors based on ZnO nanosheets are demonstrated, whose performance is significantly improved by using a ferroelectric localized field. Specifically, the photodetectors have achieved a responsivity of up to 3.8 × 105 A W-1 , a detectivity of 4.4 × 1015 Jones, and a photocurrent gain up to 1.24 × 106 . These device figures of merit are far beyond those of traditional ZnO ultraviolet photodetectors. In addition, the devices' initial dark current can be easily restored after continuous photocurrent measurement by using a positive gate voltage pulse. This study establishes a new approach to produce high-sensitivity and low-dark-current ultraviolet photodetectors and presents a crucial step for further practical applications.

16.
Small ; 14(9)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29356363

RESUMO

Van der Waals heterostructures based on 2D layered materials have received wide attention for their multiple applications in optoelectronic devices, such as solar cells, light-emitting devices, and photodiodes. In this work, high-performance photovoltaic photodetectors based on MoTe2 /MoS2 vertical heterojunctions are demonstrated by exfoliating-restacking approach. The fundamental electric properties and band structures of the junction are revealed and analyzed. It is shown that this kind of photodetectors can operate under zero bias with high on/off ratio (>105 ) and ultralow dark current (≈3 pA). Moreover, a fast response time of 60 µs and high photoresponsivity of 46 mA W-1 are also attained at room temperature. The junctions based on 2D materials are expected to constitute the ultimate functional elements of nanoscale electronic and optoelectronic applications.

17.
Small ; 14(48): e1803465, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30328296

RESUMO

Atomic thin transition-metal dichalcogenides (TMDs) are considered as an emerging platform to build next-generation semiconductor devices. However, to date most devices are still based on exfoliated TMD sheets on a micrometer scale. Here, a novel chemical vapor deposition synthesis strategy by introducing multilayer (ML) MoS2 islands to improve device performance is proposed. A four-probe method is applied to confirm that the contact resistance decreases by one order of magnitude, which can be attributed to a conformal contact by the extra amount of exposed edges from the ML-MoS2 islands. Based on such continuous MoS2 films synthesized on a 2 in. insulating substrate, a top-gated field effect transistor (FET) array is fabricated to explore key metrics such as threshold voltage (V T ) and field effect mobility (µFE ) for hundreds of MoS2 FETs. The statistical results exhibit a surprisingly low variability of these parameters. An average effective µFE of 70 cm2 V-1 s-1 and subthreshold swing of about 150 mV dec-1 are extracted from these MoS2 FETs, which are comparable to the best top-gated MoS2 FETs achieved by mechanical exfoliation. The result is a key step toward scaling 2D-TMDs into functional systems and paves the way for the future development of 2D-TMDs integrated circuits.

18.
Nanotechnology ; 29(24): 244004, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29583135

RESUMO

In the past fifty years, complementary metal-oxide-semiconductor integrated circuits have undergone significant development, but Moore's law will soon come to an end. In order to break through the physical limit of Moore's law, 2D materials have been widely used in many electronic devices because of their high mobility and excellent mechanical flexibility. And the emergence of a negative capacitance field-effect transistor (NCFET) could not only break the thermal limit of conventional devices, but reduce the operating voltage and power consumption. This paper demonstrates a 2D NCFET that treats molybdenum disulfide as a channel material and organic P(VDF-TrFE) as a gate dielectric directly. This represents a new attempt to prepare NCFETs and produce flexible electronic devices. It exhibits a 10^6 on-/off-current ratio. And the minimum subthreshold swing (SS) of the 21 mV/decade and average SS of the 44 mV/decade in four orders of magnitude of drain current can also be observed at room temperature of 300 K.

19.
Nanotechnology ; 29(48): 485204, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-30215619

RESUMO

Photodetectors with two-dimensional (2D) materials on a SiO2/Si substrate have been extensively explored. However, these photodetectors often suffer from a large gate voltage and relatively low photoresponsivity due to the low efficiency light absorption of 2D materials. Here, we develop a MoS2 photodetector based on the Al2O3/ITO (indium tin oxide)/SiO2/Si substrate with ultrahigh photoresponsivity of 2.7 × 104 A W-1. Most of the incident light is reflected by the interface of stacked Al2O3/ITO/SiO2 substrate, which significantly increases the light absorption of 2D materials. With the help of thinner and high-κ Al2O3 dielectric, the current ON/OFF ratio could exceed 109 with a gate voltage no more than 2 V. Enhanced gate regulation also brings about a relatively high mobility of 84 cm2 V-1 s-1 and subthreshold swing of 104 mV dec-1. Additionally, two different photocurrent generation mechanisms have also been revealed by tuning the gate voltage. The reflection-enhancement substrate assisted MoS2 photodetector provides a new idea for improving the performance of 2D material photodetectors, which can be perfectly combined with other methods.

20.
Nanotechnology ; 29(10): 105202, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29384728

RESUMO

In recent years, the electrical characteristics of WSe2 field-effect transistors (FETs) have been widely investigated with various dielectrics. Among them, being able to perfectly tune the polarity of WSe2 is meaningful and promising work. In this work, we systematically study the electrical properties of bilayer WSe2 FETs modulated by ferroelectric polymer poly(vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE)). Compared to traditional gate dielectric SiO2, the P(VDF-TrFE) can not only tune both electron and hole concentrations to the same high level, but also improve the hole mobility of bilayer WSe2 to 265.96 cm2 V-1 s-1 under SiO2 gating. Its drain current on/off ratio is also improved to 2 × 105 for p-type and 4 × 105 for n-type driven by P(VDF-TrFE). More importantly, the ambipolar behaviors of bilayer WSe2 are effectively achieved and maintained because of the remnant polarization field of P(VDF-TrFE). This work indicates that WSe2 FETs with P(VDF-TrFE) gating have huge potential for complementary logic transistor applications, and paves an effective way to achieve in-plane p-n junctions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA