Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2402819, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38837885

RESUMO

Janus-micromotors, as efficient self-propelled materials, have garnered considerable attention for their potential applications in non-agitated liquids. However, the design of micromotors is still challenging and with limited approaches, especially concerning speed and mobility in complex environments. Herein, a two-step spray-drying approach encompassing symmetrical assembly and asymmetrical assembly is introduced to fabricate the metal-organic framework (MOF) Janus-micromotors with hierarchical pores. Using a spray-dryer, a symmetrical assembly is first employed to prepare macro-meso-microporous UiO-66 with intrinsic micropores (<0.5 nm) alongside mesopores (≈24 nm) and macropores (≈400 nm). Subsequent asymmetrical assembly yielded the UiO-66-Janus loaded with the reducible nanoparticles, which underwent oxidation by KMnO4 to form MnO2 micromotors. The micromotors efficiently generated O2 for self-propulsion in H2O2, exhibiting ultrahigh speeds (1135 µm s-1, in a 5% H2O2 solution) and unique anti-gravity diffusion effects. In a specially designed simulated sand-water system, the micromotors traversed from the lower water to the upper water through the sand layer. In particular, the as-prepared micromotors demonstrated optimal efficiency in pollutant removal, with an adsorption kinetic coefficient exceeding five times that of the micromotors only possessing micropores and mesopores. This novel strategy fabricating Janus-micromotors shows great potential for efficient treatment in complex environments.

2.
Small ; 20(17): e2307283, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38109154

RESUMO

Platinum (Pt)-based alloys have received considerable attention due to their compositional variability and unique electrochemical properties. However, homogeneous element distribution at the nanoscale, which is beneficial to various electrocatalytic reactions, is still a great challenge. Herein, a universal approach is proposed to synthesize homogeneously alloyed and size-tunable Pt-based nanoflowers utilizing high gravity technology. Owing to the significant intensification of micro-mixing and mass transfer in unique high gravity shearing surroundings, five typical binary/ternary Pt-based nanoflowers are instantaneously achieved at room temperature. As a proof-of-concept, as-synthesized Platinum-Silver nanoflowers (PtAg NFs) demonstrate excellent catalytic performance and anti-CO poisoning ability for anodic methanol oxidation reaction with high mass activity of 1830 mA mgPt -1, 3.5 and 3.2 times higher than those of conventional beaker products and commercial Pt/C, respectively. The experiment in combination with theory calculations suggest that the enhanced performance is due to additional electronic transmission and optimized d-band center of Pt caused by high alloying degree.

3.
Langmuir ; 40(17): 9134-9143, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38636482

RESUMO

Wound healing has been a persistent clinical challenge for a long time. Electrical stimulation is an effective therapy with the potential to accelerate wound healing. In this work, the self-powered electrospun nanofiber membranes (triples) were constructed as multifunctional wound dressings with electrical stimulation and biochemical capabilities. Triple was composed of a hydrolyzable inner layer with antiseptic and hemostatic chitosan, a hydrophilic core layer loaded with conductive AgNWs, and a hydrophobic outer layer fabricated by self-powered PVDF. Triple exhibited presentable wettability and acceptable moisture permeability. Electrical performance tests indicated that triple can transmit electrical signals formed by the piezoelectric effect to the wound. High antibacterial activities were observed for triple against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, with inhibition rates of 96.52, 98.63, and 97.26%, respectively. In vitro cell assays demonstrated that triple cells showed satisfactory proliferation and mobility. A whole blood clotting test showed that triple can enhance hemostasis. The innovative self-powered multifunctional fibers presented in this work offer a promising approach to addressing complications and expediting the promotion of chronic wound healing.


Assuntos
Antibacterianos , Escherichia coli , Nanofibras , Pseudomonas aeruginosa , Staphylococcus aureus , Cicatrização , Cicatrização/efeitos dos fármacos , Nanofibras/química , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Quitosana/química , Humanos , Animais , Proliferação de Células/efeitos dos fármacos
4.
Langmuir ; 40(31): 16511-16520, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39072506

RESUMO

An intelligent delivery nanoformulation could enhance the utilization efficacy, uptake, and translocation of pesticides in plants. Herein, a redox/pH-triggered and fluorescent smart delivery nanoformulation was designed and constructed by using hollow mesoporous organosilica nanoparticles (HMONs) and ZnO quantum dots as the nanocarrier and capping agent, respectively. Boscalid was further loaded to generate Boscalid@HMONs@ZnO with a loading rate of 9.8% for controlling Botrytis cinerea (B. cinerea). The quantity of boscalid released by Boscalid@HMONs@ZnO in a glutathione environment or at pH 3.0 was 1.3-fold and 1.9-fold higher than that in a neutral condition. Boscalid@HMONs@ZnO has 1.7-fold the toxicity index of boscalid technical against B. cinerea in antifungal experiments. Pot experiments revealed that the efficacy of Boscalid@HMONs@ZnO was significantly enhanced more than 1.27-fold compared to commercially available water-dispersible granules of boscalid. Due to the fluorescence properties of Boscalid@HMONs@ZnO, pesticide transport's real-time monitoring of pesticide translocation in tomato plants could be observed by confocal laser scanning microscopy. Fluorescence images revealed that HMONs@ZnO had been effectively transported via treated leaves or roots in tomato plants. This research showed the successful application of HMONs@ZnO as a nanocarrier for controlling disease and offered an effective avenue to explore the real-time tracking of pesticide translocation in plants.


Assuntos
Botrytis , Nanopartículas , Oxirredução , Óxido de Zinco , Botrytis/efeitos dos fármacos , Nanopartículas/química , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Concentração de Íons de Hidrogênio , Corantes Fluorescentes/química , Compostos de Bifenilo/química , Pontos Quânticos/química , Pontos Quânticos/toxicidade , Solanum lycopersicum/química , Praguicidas/química , Praguicidas/toxicidade , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Compostos de Organossilício/química , Compostos de Organossilício/farmacologia , Liberação Controlada de Fármacos , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Niacinamida/análogos & derivados
5.
Small ; 19(52): e2303848, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649216

RESUMO

The preservation and accessibility of pores are prerequisites to the application of metal-organic frameworks (MOFs). Activation is a key step to eliciting rich features of pores, but it needs a repeated solvent-exchange process which is tedious and time/cost-consuming. Herein, a facile strategy for highly-efficient activation of MOFs utilizing rotating packed bed is proposed. With the tremendous enhancement of molecular mixing and mass transfer in high-gravity and strong-shearing surrounding, nine representative MOFs are completely activated within 2 h without structural change. Compared with conventional process, this activation displays surprising efficiency by accelerating the diffusion of solvents and redissolution of residual reactants in the pores. The complete activation time can be significantly shortened by over 90%. As a proof-of-concept, the methane storage of as-activated UiO-66 is five times that of as-synthesized UiO-66. This strategy provides a potential platform with industrial worth for the activation of MOF materials with ultra-high efficiency and versatility.

6.
Langmuir ; 39(49): 17808-17817, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38015806

RESUMO

Intelligent responsive colloidosomes have attracted increasing attention for their potential to enhance the efficacy and decrease the side effects of drugs in biomedical applications. However, a low encapsulation efficiency and complicated preparation method greatly limit their development. Herein, we report an efficient approach for the construction of pH-stimuli-responsive colloidosomes with high encapsulation efficiency by a high-gravity technology. The conditions under which latex particles with different methacrylic acid contents can successfully self-assemble into colloidosomes are explored. During the preparation process, emulsions emulsified for only 10 min at 2500 rpm in a unique high-gravity shearing surroundings are clarified owing to the greatly enhanced micromixing, while the emulsions emulsified for 30 min by a traditional high-speed shear machine at 4000 rpm are still yellow-white. More importantly, regular spherical colloidosomes encapsulating an anticancer drug doxorubicin not only achieve a small mean diameter of 2.82 µm but also realize a high encapsulation efficiency of 76.5%. The release performance of doxorubicin has an obvious pH-stimuli-responsive regularity and follows the first-order model of sustained release. The construction of intelligent responsive colloidosomes as drug carriers provides a route for controlled drug release and biomedical applications.

7.
Langmuir ; 39(37): 13109-13120, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37672621

RESUMO

Controlled pesticide delivery systems offer many distinctive advantages over conventional pesticide formulations. In this work, degradable poly(N-isopropylacrylamide) (PNIPAM)-tannic acid (TA) microgels and multifunctional PDA@PNIPAM-TA nanocomposites were prepared in a high-gravity rotating packed bed reactor (RPB) for smart pesticide delivery and release. The as-prepared microgels and nanocomposites showed reversible temperature-dependent swelling/deswelling behavior and irreversible pH-induced degradation. A dynamic contact angle test suggested that the introduction of TA and PDA into the PNIPAM matrix could enhance foliar adhesion and deposition efficiency. The nanocomposites were further used for the encapsulation and delivery of imidacloprid (IMI) to protect it from rapid photolysis and improve its pest-control efficiency. Their thermoresponsive behavior as well as pesticide loading capacity could be tuned by tailoring the PNIPAM-TA shell thickness, which could be varied by the NIPAM amount. The release rate of IMI from the core/shell nanocomposites was positively correlated with environmental temperature and near-infrared (NIR) light, which was adaptive to the positive temperature-dependent toxicity correlation of IMI and the increasing trend of pests under high temperature. The cumulative release of IMI was 23.5% at 25 °C, while it was 81.2% at 40 °C after 24 h of incubation, and the release rate was greatly enhanced under NIR irradiation. The results indicated that the facile control of pesticide release could be realized by regulating environmental conditions. This work also provides an idea for using high-gravity technology to conveniently construct a smart, effective, and environmentally friendly pesticide delivery system for sustainable crop protection.

8.
Langmuir ; 39(50): 18466-18475, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38054693

RESUMO

Extremely inefficient utilization of pesticides has prompted a study of low-cost, sustainable, and smart application systems. Herein, as a promising pesticide nanocarrier, hollow mesoporous organosilica nanoparticles (HMONs) were first synthesized by using inexpensive CaCO3 nanoparticles as the hollow templates. A redox/near-infrared light dual-triggered pesticide release system was further achieved via loading avermectin (AVM) into the HMONs and coating a layer of polydopamine (PDA). The as-prepared AVM@HMONs@PDA displays a favorable pesticide load capability (24.8 wt %), outstanding photothermal performance, and high adhesion to leaves. In addition, with glutathione (GSH), the AVM cumulative release from AVM@HMONs@PDA was 3.5 times higher than that without GSH. Under ultraviolet light irradiation, the half-life of AVM@HMONs@PDA was prolonged by 17.0-fold compared to that of the AVM technical. At day 21 after treatment in the insecticidal activity, the median lethal concentrations (LC50) values displayed that the toxicity of AVM@HMONs@PDA for Panonychus citri (McGregor) was enhanced 4.0-fold compared with the commercial emulsifiable concentrate. In the field trial, at day 28 after spraying, AVM@HMONs@PDA was significantly more control effective than AVM-EC in controlling the P. citri (McGregor), even at a 50% reduced dosage. Moreover, HMONs@PDA was safe for crops. This research presents a novel preparation approach for HMONs, and it also offers a promising nanoplatform for the precise release of pesticides.


Assuntos
Nanopartículas , Praguicidas , Praguicidas/toxicidade , Nanopartículas/toxicidade , Ivermectina/toxicidade , Raios Ultravioleta
9.
Small ; 18(15): e2106643, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35224851

RESUMO

The design of efficient and sustainable Pt-based catalysts is the key to the development of direct methanol fuel cells. However, most Pt-based catalysts still exhibit disadvantages including unsatisfied catalytic activity and serious CO poisoning in the methanol oxidation reaction (MOR). Herein, highly porous PtAg nanoflowers (NFs) with rich defects are synthesized by using liquid reduction combining chemical etching. It is demonstrated that the proportion of precursors determines the inhomogeneity of alloy elements, and the strong corrosiveness of nitric acid to silver leads to the eventual porous flower-like structure. Impressively, the optimal etched Pt1 Ag2 NFs have the mixed defects of surface steps, dislocations, and bulk holes, and their mass activity (1136 mA mgPt-1 ) is 2.6 times higher than that of commercial Pt/C catalysts, while the ratio of forward and backward peak current density (If /Ib ) can reach 3.2, exhibiting an excellent anti-poisoning ability. Density functional theory calculations further verify their high anti-poison properties from both an adsorption and an oxidation perspective of CO intermediate. The introduction of Ag makes it easier for CO to be oxidized and removed. This study provides a facile approach to prepare rich defects and porous alloy with excellent MOR performance and superior anti-poisoning ability.


Assuntos
Ligas , Metanol , Ligas/química , Catálise , Metanol/química , Porosidade , Prata
10.
Small ; 18(48): e2204720, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36269882

RESUMO

Enhancing the catalytic activity of Pt-based alloy by a rational structural design is the key to addressing the sluggish kinetics of direct alcohol fuel cells. Herein, a facile one-pot method is reported to synthesize PtCuRu nanoflowers (NFs). The synergetic effect among Pt, Cu, and Ru can lower the d-band center of Pt, regulate the morphology, generate Ru-rich edge, and allow the exposure of more high index facets. The optimized Pt0.68 Cu0.18 Ru0.14 NFs exhibit outstanding electrocatalytic performances and excellent anti-poisoning abilities. The specific activities for the methanol oxidation reaction (MOR) (7.65 mA cm-2 ) and ethanol oxidation reaction (EOR) (7.90 mA cm-2 ) are 6.0 and 7.1 times higher than commercial Pt/C, respectively. The CO stripping experiment and the chronoamperometric (5000 s) demonstrate the superior anti-poisoning property and durability performance. Density functional theory calculations confirm that high metallization degree leads to the decrease of d-band center, the promotion of oxidation of CO, and improvement of the inherent activity and anti-poisoning ability. A Ru-rich edge exposes abundant high index facets to accelerate the reaction kinetics of rate-determining steps by decreasing the energy barrier for forming *HCOOH (MOR) and CC bond breaking (EOR).


Assuntos
Ligas , Etanol , Cinética
11.
Langmuir ; 38(4): 1567-1577, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35037464

RESUMO

The removal of Cr(VI) has attracted extensive attention since it causes serious harm to public health. Herein, we report a two-step method to synthesize N-doped MoS2 nanoflowers (NFs) with controllable sizes, which are first utilized for Cr(VI) removal and display outstanding removal performance. The N-MoS2 NFs with an average size of 40 nm (N-MoS2 NFs-40 nm) can rapidly remove Cr(VI) in 15 min under optimal conditions. The maximum adsorption capacity of N-MoS2 NFs-40 nm can reach 787.41 mg·g-1, which is significantly larger than that of N-MoS2 NFs-150 and -400 nm (314.46 and 229.88 mg·g-1). Meanwhile, N-MoS2 NFs-400 nm have a higher maximum adsorption capacity than pure MoS2 NFs-400 nm (172.12 mg·g-1). In this adsorption/reduction process, N-MoS2 NFs have abundant adsorption sites due to a high surface area. N doping can generate more sulfur vacancy defects in the MoS2 NF structure to accelerate electron transfer and enhance the reduction of Cr(VI) to low-toxicity Cr(III). This study provides a facile approach to fabricating N-MoS2 nanoflowers and demonstrates their superior removal ability for Cr(VI).


Assuntos
Molibdênio , Poluentes Químicos da Água , Adsorção , Cromo/análise , Cromo/química , Poluentes Químicos da Água/análise
12.
Langmuir ; 38(51): 16194-16202, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36517019

RESUMO

Colloidosomes as Pickering emulsion microcapsules are expected to serve various applications, including encapsulation of drugs and loading of functional materials. Normally, when using colloidosomes for drug encapsulation, the latex particles as shell materials need to be mixed with drugs before the assembly process. However, this procedure may cause aggregation of latex particles, thereby resulting in disordered assembled shells or a low loading efficiency. Herein, we propose a three-fluid nozzle spray drying process to efficiently assemble latex particles of P(styrene (St)-co-butyl acrylate (BA)) into colloidosomes. The three-fluid nozzle spray drying equipment allows for the preparation for drug encapsulation without advance mixing of drug and shell materials. This strategy enables the construction of colloidosomes with uniform and controllable pores and the loading of functional materials. The effects of the compressed air flow rate, inlet temperature, feed rate, and solid content were explored, revealing the formation mechanism of colloidosomes during the spray drying process. Doxycycline hydrochloride (DH) was encapsulated in colloidosomes for controllable release, and the sustained release time is up to 100 h. The release rate can be adjusted by varying the glass transition temperature (Tg) and size of latex particles. Furthermore, Fe3O4 nanoparticle (NP)-loaded colloidosomes were constructed by this strategy. The magnetic response intensity of colloidosomes can be modulated by varying the amount of Fe3O4 NPs. The anticancer drug encapsulation and loading of other functional particles were also explored to expand applications.


Assuntos
Secagem por Atomização , Emulsões
13.
Langmuir ; 37(39): 11520-11525, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34555896

RESUMO

Lead halide perovskite quantum dots (QDs) are known as prospective optoelectronic device materials because of their excellent luminescence, extraordinary photoelectric performance, and specific octahedron framework. Herein, we report a cost-effective approach for synthesizing highly stable CH3NH3PbBr3 QDs in low-polarity binary solvents without nitrogen protection. The CH3NH3PbBr3 QDs are tunable from 1.2 to 4.2 nm by adjusting the proportion of oleic acid and oleylamine as capping ligands. The photoluminescence quantum yield of CH3NH3PbBr3 QDs can reach 87.4%. The fluorescence can maintain over 80% of its earliest emission intensity under the atmosphere after 5 days, which is much better than that (∼10%) of QDs with ligand-assisted reprecipitation. The possible reaction mechanism of preparing CH3NH3PbBr3 QDs was also addressed. Notably, such a strategy can be applied extensively in the preparation of other lead halide perovskite QDs. Furthermore, the as-prepared thick PMMA-coated CH3NH3PbBr3 QDs were further conjoined with a red luminescence powder on a blue InGaN chip to obtain a powerful efficiency (45.4 lm W-1) warm white light-emitting diode.

14.
Langmuir ; 37(8): 2707-2713, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33591769

RESUMO

We report a newly developed surface engineering approach for TiO2 nanoparticles toward transparent TiO2/silicone nanocomposites with high refractive index (RI) values. Zirconate coupling agents are adopted on the TiO2 nanoparticles for surface passivation and to enhance the dispersibility of the nanoparticles in organic substrates. The modified TiO2 nanoparticles can be uniformly dispersed in silicone, forming transparent hybrid films with an ultrahigh RI of 2.01. The preparation technique of colloidal TiO2 and polymer-based nanocomposites is simple and suitable for scalable production, which is promising for expanding the application of TiO2 materials in photonic devices.

15.
Macromol Rapid Commun ; 42(17): e2100134, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34355445

RESUMO

Ultraviolet-curable polyurethane acrylate (PUA) materials can be used in a number of important applications spanning from microfluidics, surface patterning to wearable technology. For the first time, the potential of encapsulation of modified zirconia (ZrO2 ) nanoparticles is reported in PUA-based hybrid films aimed to facilitate profoundly enhanced hardness and refractive index. By successfully manipulating the interfacial reaction conditions between ZrO2 nanoparticles and PUA film, the PUA-based nanocomposites exhibit an ultrahigh hardness of 9 and superior refractive index of 1.64 (589.3 nm). The outcomes obtained pave the way for seamless application of nanozirconia/PUA as a potent encapsulating material that provides structurally morphable, water resistant, and optically transparent light emitting diodes toward wearables devices in healthcare.


Assuntos
Nanocompostos , Nanopartículas , Dispositivos Eletrônicos Vestíveis , Poliuretanos , Água
16.
Angew Chem Int Ed Engl ; 60(50): 26390-26396, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34590398

RESUMO

Ultrasmall metal-organic frameworks (MOFs) may generate unique properties to expand the scope of applications. However, the synthesis is still a great challenge. Herein, we propose a strategy to synthesize ultrasmall MOFs by high gravity technology. With the aid of tremendous intensification of molecular mixing and mass transfer in high-gravity field, six typical MOFs were obtained instantaneously in a continuous way. These samples are monodispersed with sub-5 nm in size, smaller than the previously reported values and even close to the length of one crystal unit cell. As a proof-of-concept, catalytic activity for Knoevenagel reaction can be significantly enhanced using ultrasmall ZIF-8. Conversion time of benzaldehyde was decreased by 94 % or 75 % compared to those using conventional or hierarchically porous ZIF-8. More importantly, this approach is readily scalable with the highest space-time yield for nano-MOFs, which may promote the convenient synthesis and practical applications of ultrasmall MOFs in large-scale.

17.
Small ; 16(37): e2002802, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32797713

RESUMO

Traditional liquid marbles (LMs), liquid droplets encapsulated by hydrophobic particles at the liquid-gas interface, are restricted by their short lifetime and low heat transfer efficiency. Herein, a new paradigm for LMs immersed in various liquid mediums with massive enhanced heat transfer and spatial recognition is designed; without compromising the structural integrity, the lifetime of the liquid marbles in liquid (LMIL) is extended by ≈1000 times compared to classical LMs in air or naked droplets in organic reagents. The LMIL shows promising reverse structural re-configurability while under external stimuli and maintaining their functionality for a very long period of time (≈weeks). These superior behaviors are further exploited as a miniature reactor with prolonged lifetimes and excellent temperature control, combined with its feasible operation, new opportunities will open up in the advanced chemical and biomedical engineering fields. It is also shown that LMIL can be applied in methylene blue degradation and 3D in-vitro yeast cell cultures. These findings have important implications for real-world use of LMs, with a number of applications in cell culture technology, lab-in-a-drop, polymerization, encapsulation, formulation, and drug delivery.


Assuntos
Carbonato de Cálcio , Azul de Metileno , Interações Hidrofóbicas e Hidrofílicas
18.
Langmuir ; 35(36): 11755-11763, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31411481

RESUMO

Colloidal nanocrystal clusters (CNCs) are formed by clustering nanocrystals into secondary structures, which represent a new class of materials and have attracted considerable attention, owing to their unique collective properties and novel functionalities achieved from the ensembles in addition to the properties of each individual subunit. Here, we design a simple route to prepare aqueous dispersions of highly stable ZrO2 CNCs with tunable shape and size without modification. ZrO2 CNCs are composed of many ZrO2 nanocrystals each with a size of about 7 nm and possess a mesoporous structure. Both cube-like and star-like shapes of CNCs can be achieved by using different alkaline sources, while the size of CNCs can be adjusted by changing the hydrothermal time. The as-prepared aqueous dispersions of ZrO2 CNCs display an enhanced photocatalytic activity in the degradation of rhodamine B (RhB), compared with ZrO2 nanodispersions. More interestingly, star-like ZrO2 CNCs show better photocatalytic degradation properties than those of cube-like counterparts and even commercial P25. Furthermore, ZrO2 CNCs are easily recycled and can be used for the degradation of a range of dye systems.

19.
Langmuir ; 34(23): 6806-6813, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29771538

RESUMO

The controllable synthesis of metal oxide nanoparticles is of fundamental and technological interest. In this article, highly transparent aqueous nanodispersion of ZrO2 with controllable crystalline phase, high concentration, and long-term stability was facilely prepared without any modification via the reaction of inexpensive inorganic zirconium salt and sodium hydroxide in water under an acid surrounding, combined with hydrothermal treatment. The as-prepared transparent nanodispersion had an average particle size of 7 nm, a high stability of 18 months, and a high solid content of 35 wt %. ZrO2 nanocrystals could be readily dispersed in many solvents with high polarity including ethanol, dimethyl sulfoxide, acetic acid, ethylene glycol, and N, N-dimethylformamide, forming stable transparent nanodispersions. Furthermore, highly transparent polyvinyl alcohol/ZrO2 nanocomposite films with high refractive index were successfully prepared with a simple solution mixing route. The refractive index could be tuned from 1.528 to 1.754 (@ 589 nm) by changing the mass fraction (0-80 wt %) of ZrO2 in transparent nanocomposite films.

20.
Nanotechnology ; 29(30): 305605, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-29742070

RESUMO

Transparent dispersions of inorganic nanoparticles are attractive materials in many fields. However, a facile method for preparing such dispersions of aluminium hydroxide nanoparticles is yet to be realized. Here, we report a direct reactive method to prepare transparent dispersions of pseudo-boehmite nanoparticles (1 wt%) without any surface modification, and with an average particle size of 80 nm in length and 10 nm in width, as well as excellent optical transparency over 94% in the visible range. Furthermore, transparent dispersions of boehmite nanoparticles (1.5 wt%) were also achieved after an additional hydrothermal treatment. However, the optical transparency of dispersions decreased with the rise of hydrothermal temperature and the shape of particles changed from rhombs to hexagons. In particular, monodisperse hexagonal boehmite nanoplates with an average lateral size of 58 nm and a thickness of 12.5 nm were obtained at a hydrothermal temperature of 220 °C. The selectivity of crystal growth direction was speculated as the possible formation mechanism of these as-prepared aluminium hydroxide nanoparticles. Besides, two values of 19.6 wt% and 14.64 wt% were separately measured for the weight loss of pseudo-boehmite and boehmite nanoparticles after a continuous heating, indicating their potential flame-resistant applications in the fabrication of plastic electronics and optical devices with high transparency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA