RESUMO
High-salinity wastewater treatment is perceived as a global water resource recycling challenge that must be addressed to achieve zero discharge. Monovalent/divalent salt separation using membrane technology provides a promising strategy for sulfate removal from chlor-alkali brine. However, existing desalination membranes often show low water permeance and insufficient ion selectivity. Herein, an aminal-linked covalent organic framework (COF) membrane featuring a regular long-range pore size of 7 Å and achieving superior ion selectivity is reported, in which a uniform COF layer with subnanosized channels is assembled by the chemical splicing of 1,4-phthalaldehyde (TPA)-piperazine (PZ) COF through an amidation reaction with trimesoyl chloride (TMC). The chemically spliced TPA-PZ (sTPA-PZ) membrane maintains an inherent pore structure and exhibits a water permeance of 13.1 L m-2 h-1 bar-1, a Na2SO4 rejection of 99.1%, and a Cl-/SO4 2- separation factor of 66 for mixed-salt separation, which outperforms all state-of-the-art COF-based membranes reported. Furthermore, the single-stage treatment of NaCl/Na2SO4 mixed-salt separation achieves a high NaCl purity of above 95% and a recovery rate of ≈60%, offering great potential for industrial application in monovalent/divalent salt separation and wastewater resource utilization. Therefore, the aminal-linked COF membrane developed in this work provides a new research avenue for designing smart/advanced membrane materials for angstrom-scale separations.
RESUMO
Membrane-based separation process for unconventional natural gas purification (mainly N2/CH4 separation) has attracted more attention due to its considerable economic benefits. However, the majority of separation membranes at this stage, particularly N2-selective membranes, achieve the desired separation target by mainly relying on the diffusivity-selectivity mechanism. To overcome the limitation of a single mechanism, 2D lamellar MXene membranes with a double selectivity mechanism are prepared to enhance N2 permeance and N2/CH4 selectivity via introducing unsaturated metal sites into MXene, which can form specific interactions with N2 molecules and enhance N2 permeation. The resulting membranes exhibit an inspiring N2/CH4 separation performance with an N2 permeance of 344 GPU and N2/CH4 selectivity of 13.76. The collaboration of the double selectivity mechanism provides a new idea for the development of a novel N2-selective membrane for N2 removal and CH4 purification, which further broadens the application prospects of membrane separation technology in the field of unconventional natural gas purification.
RESUMO
Membrane-based separation has the merit of low carbon footprint. In this study, the pore size of metal-organic framework (MOF) membranes is rationally designed for discriminating various pairs of hydrocarbon isomers. Specifically, Zr-MOF UiO-66 (UiO stands for University of Oslo) membranes are developed for separating p/o-xylene due to their proper pore size. For n-hexane/2-methylpentane separation, the functional groups and proportion of the ligands in UiO-66 are gradually adjusted to effectively regulate the pore size, and UiO-66-33Br membranes are constructed. In addition, relying on the utilization of ligands with shorter length, MOF-801 membranes with smaller pore size are fabricated for n/i-butane separation.
RESUMO
A heterotrophic nitrification-aerobic denitrification (HN-AD) strain isolated from membrane aerated biofilm reactor (MABR) was identified as Pseudomonas sp. B-1, which could effectively utilize multiple nitrogen sources and preferentially consume NH4-N. The maximum degradation efficiencies of NO3-N, NO2-N and NH4-N were 98.04%, 94.84% and 95.74%, respectively. The optimal incubation time, shaking speed, carbon source, pH, temperature and C/N ratio were 60 h, 180 rpm, sodium succinate, 8, 30 °C and 25, respectively. The strain preferred salinity of 1.5% and resisted heavy metals in the order of Mn2+ > Co2+ > Zn2+ > Cu2+. It can be preliminarily speculated from the results of enzyme assay that the strain removed nitrogen via full nitrification-denitrification pathway. The addition of strain into the conventional MABR significantly intensified the HN-AD performance of the reactor. The relative abundance of the functional bacteria including Flavobacterium, Pseudomonas, Paracoccus, Azoarcus and Thauera was obviously increased after the bioaugmentation. Besides, the expression of the HN-AD related genes in the biofilm was also strengthened. Thus, strain B-1 had great application potential in nitrogen removal process.
Assuntos
Desnitrificação , Nitrificação , Pseudomonas/genética , Pseudomonas/metabolismo , Aerobiose , Nitrogênio/metabolismo , Biofilmes , Nitritos/metabolismoRESUMO
BACKGROUND: The preference for glucose oxidative mode has crucial impacts on various physiological activities, including determining stem cell fate. External mechanical factors can play a decisive role in regulating critical metabolic enzymes and pathways of stem cells. Periodontal ligament stem cells (PDLSCs) are momentous effector cells that transform mechanical force into biological signals during the reconstruction of alveolar bone. However, mechanical stimuli-induced alteration of oxidative characteristics in PDLSCs and the underlying mechanisms have not been fully elucidated. METHODS: Herein, we examined the expression of LDH and COX4 by qRT-PCR, western blot, immunohistochemistry and immunofluorescence. We detected metabolites of lactic acid and reactive oxygen species for functional tests. We used tetramethylrhodamine methyl ester (TMRM) staining and a transmission electron microscope to clarify the mitochondrial status. After using western blot and immunofluorescence to clarify the change of DRP1, we further examined MFF, PINK1, and PARKIN by western blot. We used cyclosporin A (CsA) to confirm the regulation of mitophagy and ceased the stretching as a rescue experiment. RESULTS: Herein, we ascertained that mechanical force could increase the level of LDH and decrease the expression of COX4 in PDLSCs. Simultaneously, the yield of reactive oxygen species (ROS) in PDLSC reduced after stretching, while lactate acid augmented significantly. Furthermore, mitochondrial function in PDLSCs was negatively affected by impaired mitochondrial membrane potential (MMP) under mechanical force, and the augment of mitochondrial fission further induced PRKN-dependent mitophagy, which was confirmed by the rescue experiments via blocking mitophagy. As a reversible physiological stimulation, the anaerobic preference of PDLSCs altered by mechanical force could restore after the cessation of force stimulation. CONCLUSIONS: Altogether, our study demonstrates that PDLSCs under mechanical force preferred anaerobic oxidation induced by the affected mitochondrial dynamics, especially mitophagy. Our findings support an association between mechanical stimulation and the oxidative profile of stem cells, which may shed light on the mechanical guidance of stem cell maintenance and commitment, and lay a molecular foundation for periodontal tissue regeneration.
Assuntos
Mitofagia , Ligamento Periodontal , Anaerobiose , Espécies Reativas de Oxigênio , OxirreduçãoRESUMO
BACKGROUND: Mechanotransduction mechanisms whereby periodontal ligament stem cells (PDLSCs) translate mechanical stress into biochemical signals and thereby trigger osteogenic programs necessary for alveolar bone remodeling are being deciphered. Low-density lipoprotein receptor-related protein 6 (LRP6), a Wnt transmembrane receptor, has been qualified as a key monitor for mechanical cues. However, the role of LRP6 in the mechanotransduction of mechanically induced PDLSCs remains obscure. METHODS: The Tension System and tooth movement model were established to determine the expression profile of LRP6. The loss-of-function assay was used to investigate the role of LRP6 on force-regulated osteogenic commitment in PDLSCs. The ability of osteogenic differentiation and proliferation was estimated by alkaline phosphatase (ALP) staining, ALP activity assay, western blotting, quantitative real-time PCR (qRT-PCR), and immunofluorescence. Crystalline violet staining was used to visualize cell morphological change. Western blotting, qRT-PCR, and phalloidin staining were adopted to affirm filamentous actin (F-actin) alteration. YAP nucleoplasmic localization was assessed by immunofluorescence and western blotting. YAP transcriptional response was evaluated by qRT-PCR. Cytochalasin D was used to determine the effects of F-actin on osteogenic commitment and YAP switch behavior in mechanically induced PDLSCs. RESULTS: LRP6 was robustly activated in mechanically induced PDLSCs and PDL tissues. LRP6 deficiency impeded force-dependent osteogenic differentiation and proliferation in PDLSCs. Intriguingly, LRP6 loss caused cell morphological aberration, F-actin dynamics disruption, YAP nucleoplasmic relocation, and subsequent YAP inactivation. Moreover, disrupted F-actin dynamics inhibited osteogenic differentiation, proliferation, YAP nuclear translocation, and YAP activation in mechanically induced PDLSCs. CONCLUSIONS: We identified that LRP6 in PDLSCs acted as the mechanosensor regulating mechanical stress-inducible osteogenic commitment via the F-actin/YAP cascade. Targeting LRP6 for controlling alveolar bone remodeling may be a prospective therapy to attenuate relapse of orthodontic treatment.
Assuntos
Actinas , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Osteogênese , Ligamento Periodontal , Células-Tronco , Actinas/genética , Actinas/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células , Células Cultivadas , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Mecanotransdução Celular/genética , Mecanotransdução Celular/fisiologia , Osteogênese/genética , Osteogênese/fisiologia , Ligamento Periodontal/citologia , Ligamento Periodontal/metabolismo , Células-Tronco/metabolismoRESUMO
The Chinese government relaxed the Zero-COVID policy on Dec 15, 2022, and reopened the border on Jan 8, 2023. Therefore, COVID prevention in China is facing new challenges. Though there are plenty of prior studies on COVID, none is regarding the predictions on daily confirmed cases, and medical resources needs after China reopens its borders. To fill this gap, this study innovates a combination of the Erdos Renyl network, modified computational model [Formula: see text], and python code instead of only mathematical formulas or computer simulations in the previous studies. The research background in this study is Shanghai, a representative city in China. Therefore, the results in this study also demonstrate the situation in other regions of China. According to the population distribution and migration characteristics, we divided Shanghai into six epidemic research areas. We built a COVID spread model of the Erodos Renyl network. And then, we use python code to simulate COVID spread based on modified [Formula: see text] model. The results demonstrate that the second and third waves will occur in July-September and Oct-Dec, respectively. At the peak of the epidemic in 2023, the daily confirmed cases will be 340,000, and the cumulative death will be about 31,500. Moreover, 74,000 hospital beds and 3,700 Intensive Care Unit (ICU) beds will be occupied in Shanghai. Therefore, Shanghai faces a shortage of medical resources. In this simulation, daily confirmed cases predictions significantly rely on transmission, migration, and waning immunity rate. The study builds a mixed-effect model to verify further the three parameters' effect on the new confirmed cases. The results demonstrate that migration and waning immunity rates are two significant parameters in COVID spread and daily confirmed cases. This study offers theoretical evidence for the government to prevent COVID after China opened its borders.
Assuntos
COVID-19 , Epidemias , Quarentena , SARS-CoV-2 , Humanos , Povo Asiático , China/epidemiologia , Simulação por Computador , COVID-19/epidemiologia , COVID-19/prevenção & controleRESUMO
New membrane materials with excellent water permeability and high ion rejection are needed. Metal-organic frameworks (MOFs) are promising candidates by virtue of their diversity in chemistry and topology. In this work, continuous aluminum MOF-303 membranes were prepared on α-Al2O3 substrates via an in situ hydrothermal synthesis method. The membranes exhibit satisfying rejection of divalent ions (e.g., 93.5% for MgCl2 and 96.0% for Na2SO4) on the basis of a size-sieving and electrostatic-repulsion mechanism and unprecedented permeability (3.0 L·m-2·h-1·bar-1·µm). The water permeability outperforms typical zirconium MOF, zeolite, and commercial polymeric reverse osmosis and nanofiltration membranes. Additionally, the membrane material exhibits good stability and low production costs. These merits recommend MOF-303 as a next-generation membrane material for water softening.
RESUMO
Metal-induced ordered microporous polymers (MMPs), a class of porous polymer, are synthesized from amine-bearing polymers, small organic linkers and divalent metal ions using a polymer-directed chemical synthesis process. Specifically, small organic linkers first coordinate to metal ions, with the resulting unit cells then self-assembling along the extension of polymer chains to construct three-dimensional frameworks. The MMPs demonstrate good controllability of crystal and framework size, as well as hydrolytic stability. MMP dispersions were coated on a modified polysulfone substrate to fabricate MMP/mPSf membranes with an ultrathin selective layer (below 50 nm) and surface areas of >100 cm2. The MMPs are readily fabricated into defect-free thin selective-layered membranes with high CO2 permeance (3,000 GPU) and stable CO2/N2 selectivity (78) under both humid and dry gas feed conditions, demonstrating promising CO2 membrane separation performance. This synthetic methodology could be extended to other polymers, potentially enabling facile synthesis of membrane materials.
RESUMO
Highly permeable montmorillonite layers bonded and aligned with the chain stretching orientation of polyvinylamineacid are immobilized onto a porous polysulfone substrate to fabricate aligned montmorillonite/polysulfone mixed-matrix membranes for CO2 separation. High-speed gas-transport channels are formed by the aligned interlayer gaps of the modified montmorillonite, through which CO2 transport primarily occurs. High CO2 permeance of about 800â GPU is achieved combined with a high mixed-gas selectivity for CO2 that is stable over a period of 600â h and independent of the water content in the feed.
RESUMO
OBJECTIVE: Alveolar bone quality is essential for the maxillofacial integrity and function, and depends on alveolar bone mineralization. This study aims to investigate the in vivo changes in alveolar bone mineralization, from the perspective of mineral deposition and crystal transition in postnatal rats. DESIGN: Nine postnatal time points of Wistar rats, ranging from day 1 to 56, were set to obtain the maxillary alveolar bone samples. Each time point consisted of ninety rats, with 45 females and 45 males. Macromorphology of alveolar bone was reconducted by Micro-Computed Tomography and the mineral content was quantified via Thermogravimetric analysis, Scanning Electron Microscope, High-Resolution Transmission Electron Microscopy and vibrational spectroscopy. Furthermore, the crystallinity and composition were characterized by vibrational spectroscopy, X-ray Diffraction, X-ray Photoelectron Spectroscopy and Selected Area Electron Diffraction. RESULTS: The progressive increase of mineral deposition was accompanied by substantial growth in alveolar bone mass and volume in postnatal rats. Whereas the mineral percentage initially decreased and then increased, reaching a nadir on postnatal day 14 (P14) when tooth eruption was first observed. Besides, localized mineralization was initiated by the formation of amorphous precursors and then converted into mineral crystals, while there was no statistically significant change in the average crystallinity of the bone during growth. CONCLUSION: Mineralization of alveolar bone is ongoing throughout the early growth in postnatal rats. Mineral deposition increases with age, whereas the crystallinity remains stable within a certain range. Besides, the mineral percentage reaches its lowest point on P14, which may be attributed to tooth eruption.
Assuntos
Processo Alveolar , Calcificação Fisiológica , Microscopia Eletrônica de Varredura , Ratos Wistar , Microtomografia por Raio-X , Animais , Ratos , Feminino , Masculino , Calcificação Fisiológica/fisiologia , Processo Alveolar/crescimento & desenvolvimento , Processo Alveolar/diagnóstico por imagem , Processo Alveolar/metabolismo , Difração de Raios X , Microscopia Eletrônica de Transmissão , Termogravimetria , Densidade Óssea , Espectroscopia Fotoeletrônica , Maxila/crescimento & desenvolvimentoRESUMO
BACKGROUND: The mechanotransduction mechanisms by which cells regulate tissue remodeling are not fully deciphered. Circular RNAs (circRNAs) are crucial to various physiological processes, including cell cycle, differentiation, and polarization. However, the effects of mechanical force on circRNAs and the role of circRNAs in the mechanobiology of differentiation and remodeling in stretched periodontal ligament stem cells (PDLSCs) remain unclear. This article aims to explore the osteogenic function of mechanically sensitive circular RNA protein kinase D3 (circPRKD3) and elucidate its underlying mechanotransduction mechanism. MATERIALS AND METHODS: PDLSCs were elongated with 8% stretch at 0.5 Hz for 24 h using the Flexcell® FX-6000™ Tension System. CircPRKD3 was knockdown or overexpressed with lentiviral constructs or plasmids. The downstream molecules of circPRKD3 were predicted by bioinformatics analysis. The osteogenic effect of related molecules was evaluated by quantitative real-time PCR (qRT-PCR) and western blot. RESULTS: Mechanical force enhanced the osteogenesis of PDLSCs and increased the expression of circPRKD3. Knockdown of circPRKD3 hindered PDLSCs from osteogenesis under mechanical force, while overexpression of circPRKD3 promoted the early osteogenesis process of PDLSCs. With bioinformatics analysis and multiple software predictions, we identified hsa-miR-6783-3p could act as the sponge of circPRKD3 to indirectly regulate osteogenic differentiation of mechanically stimulated PDLSCs. CONCLUSIONS: Our results first suggested that both circPRKD3 and hsa-miR-6783-3p could enhance osteogenesis of stretched PDLSCs. Furthermore, hsa-miR-6783-3p could sponge circPRKD3 to indirectly regulate RUNX2 during the periodontal tissue remodeling process in orthodontic treatment.
Assuntos
MicroRNAs , Osteogênese , Ligamento Periodontal , RNA Circular , Células-Tronco , Ligamento Periodontal/citologia , Osteogênese/genética , Osteogênese/fisiologia , Humanos , RNA Circular/genética , RNA Circular/fisiologia , MicroRNAs/genética , Células-Tronco/metabolismo , Células Cultivadas , Mecanotransdução Celular/fisiologia , Diferenciação Celular/genética , Estresse Mecânico , Proteínas Serina-Treonina Quinases/genéticaRESUMO
BACKGROUND: Palatal expansion is a common way of treating maxillary transverse deficiency. Under mechanical force, the midpalatal suture is expanded, causing local immune responses. This study aimed to determine whether macrophages participate in bone remodeling of the midpalatal suture during palatal expansion and the effects on bone remodeling. METHODS: Palatal expansion model and macrophage depletion model were established. Micro-CT, histological staining, and immunohistochemical staining were used to investigate the changes in the number and phenotype of macrophages during palatal expansion as well as the effects on bone remodeling of the midpalatal suture. Additionally, the effect of mechanically induced M2 macrophages on palatal osteoblasts was also elucidated in vitro. RESULTS: The number of macrophages increased significantly and polarized toward M2 phenotype with the increase of the expansion time, which was consistent with the trend of bone remodeling. After macrophage depletion, the function of osteoblasts and bone formation at the midpalatal suture were impaired during palatal expansion. In vitro, conditioned medium derived from M2 macrophages facilitated osteogenic differentiation of osteoblasts and decreased the RANKL/OPG ratio. CONCLUSIONS: Macrophages through polarizing toward M2 phenotype participated in midpalatal suture bone remodeling during palatal expansion, which may provide a new idea for promoting bone remodeling from the perspective of regulating macrophage polarization.
Assuntos
Remodelação Óssea , Macrófagos , Osteoblastos , Técnica de Expansão Palatina , Microtomografia por Raio-X , Remodelação Óssea/fisiologia , Animais , Palato , Ligante RANK , Suturas Cranianas , Osteogênese/fisiologia , Diferenciação Celular , Camundongos , Osteoprotegerina , Masculino , Estresse Mecânico , FenótipoRESUMO
The mechanosensitivity of inflammation can alter cellular mechanotransduction. However, the underlying mechanism remains unclear. This study aims to investigate the metabolic mechanism of inflammation under mechanical force to guide tissue remodeling better. Herein, we found that inflammation hindered bone remodeling under mechanical force, accompanied by a simultaneous enhancement of oxidative phosphorylation (OXPHOS) and glycolysis. The control of metabolism direction through GNE-140 and Visomitin revealed that enhanced glycolysis might act as a compensatory mechanism to resist OXPHOS-induced osteoclastogenesis by promoting osteogenesis. The inhibited osteogenesis induced by inflammatory mechanical stimuli was concomitant with a reduced expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). PGC-1α knockdown impeded osteogenesis under mechanical force and facilitated osteoclastogenesis by enhancing OXPHOS. Conversely, PGC-1α overexpression attenuated the impairment of bone remodeling by inflammatory mechanical signals through promoting glycolysis. This process benefited from the PGC-1α regulation on the transcriptional and translational activity of lactate dehydrogenase A (LDHA) and the tight control of the extracellular acidic environment. Additionally, the increased binding between PGC-1α and LDHA proteins might contribute to the glycolysis promotion within the inflammatory mechanical environment. Notably, LDHA suppression effectively eliminated the bone repair effect mediated by PGC-1α overexpression within inflammatory mechanical environments. In conclusion, this study demonstrated a novel molecular mechanism illustrating how inflammation orchestrated glucose metabolism through glycolysis and OXPHOS to affect mechanically induced bone remodeling.
Assuntos
Remodelação Óssea , Glicólise , Inflamação , Osteogênese , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Transdução de Sinais , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Remodelação Óssea/fisiologia , Inflamação/metabolismo , Inflamação/patologia , Osteogênese/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , L-Lactato Desidrogenase/metabolismo , Fosforilação Oxidativa , Microambiente Celular , MasculinoRESUMO
Positively charged nanofiltration (NF) membranes offer enormous potential for lithium-magnesium separation, hard water softening, and heavy metal removal. However, fundamental performance limitations for these applications exist in conventional polyamide-based NF membranes due to the negatively charged surface and low ion-ion selectivity. We hereby innovatively develop an advanced positively charged polyamine-based NF membrane built by the nucleophilic substitution of bromine and amine groups for precise ion-ion separation. Specifically, polyethylenimine (PEI) and 1,3,5-tris(bromomethyl)benzene (TBB) are interfacially polymerized to generate an amine-linked PEI-TBB selective layer with an ultrathin thickness of â¼95 nm, an effective pore size of 6.5 Å, and a strong positively charged surface with a zeta potential of +20.9 mV at pH 7. The PEI-TBB composite membrane achieves a water permeance of 4.2 L·m-2·h-1·bar-1, various divalent salt rejections above 90%, and separation factors above 15 for NaCl/MgCl2 and LiCl/MgCl2 mixed solutions. A three-stage NF process is implemented to achieve a Mg2+/Li+ mass ratio sharply decreasing from 50 to 0.11 with a total separation factor (SLi,Mg) of 455. Furthermore, the polyamine-based NF membrane exhibits excellent operational stability under continuous filtration and high operational pressure, demonstrating great application potential for precise ion-ion separation.
RESUMO
Microimplant-assisted rapid palatal expansion is increasingly used clinically; however, the effect on the upper airway volume in patients with maxillary transverse deficiency has not been thoroughly evaluated yet. The following electronic databases were searched up to August 2022: Medline via Ovid, Scopus, Embase, Web of Science, Cochrane Library, Google Scholar, and ProQuest. The reference lists of related articles were also reviewed by manual search. The Revised Cochrane Risk of Bias Tool for randomized trials (ROB2) and the Risk of Bias in non-randomized Studies of Interventions (ROBINS-I) tool were used to evaluate the risks of bias of the included studies. The mean differences (MD) and 95% confidence intervals (CI) of changes in nasal cavity and upper airway volume were analyzed using a random-effects model, and subgroup and sensitivity analyses were also performed. Two reviewers independently completed the process of screening studies, extracting data, and assessing the quality of studies. In total, twenty-one studies met the inclusion criteria. After assessing the full texts, only thirteen studies were included, with nine studies selected for quantitative synthesis. Oropharynx volume increased significantly after immediate expansion (WMD: 3156.84; 95% CI: 83.63, 6230.06); however, there was no significant change in nasal volume (WMD: 2527.23; 95% CI: -92.53, 5147.00) and nasopharynx volume (WMD: 1138.29; 95% CI: -52.04, 2328.61). After retention a period, significant increases were found in nasal volume (WMD: 3646.27; 95% CI: 1082.77, 6209.77) and nasopharynx volume (WMD: 1021.10; 95% CI: 597.11, 1445.08). However, there was no significant change after retention in oropharynx volume (WMD: 789.26; 95% CI: -171.25, 1749.76), palatopharynx volume (WMD: 795.13; 95% CI: -583.97, 2174.22), glossopharynx volume (WMD: 184.50; 95% CI: -1745.97, 2114.96), and hypopharynx volume (WMD: 39.85; 95% CI: -809.77, 889.46). MARPE appears to be linked with long-term increases in nasal and nasopharyngeal volume. However, high-quality clinical trials are required to further verify the effects of MARPE treatment on the upper airway.
RESUMO
The orientation of amorphous regions in pure polymers has been noted to be critical to the enhancement of thermal conductivity (TC), but the available reports are still rather few. Here, we propose to prepare a polyvinylidene fluoride (PVDF) film with a multi-scale framework by introducing anisotropic amorphous nanophases in the form of cross-planar alignments among the in-planar oriented extended-chain crystals (ECCs) lamellae, which show an enhanced TC of 1.99 Wm-1 K-1 in the through-plane direction (K⟂) and 4.35 Wm-1 K-1 in the in-plane direction (Kâ¥). Structural characterization determination using scanning electron microscopy and high-resolution synchrotron X-ray scattering showed that shrinking the dimension of the amorphous nanophases can effectively reduce entanglement and lead to alignments formation. Moreover, the thermal anisotropy of the amorphous region is quantitatively discussed with the aid of the two-phase model. Superior thermal dissipation performances are intuitively displayed by means of finite element numerical analysis and heat exchanger applications. Moreover, such unique multi-scale architecture also results in significant benefit in the improvement of dimensional stability and thermal stability. This paper provides a reasonable solution for fabricating inexpensive thermal conducting polymer films from the perspective of practical applications.
RESUMO
Rapid maxillary expansion (RME) is a common therapy for maxillary transverse deficiency. However, relapses after RME usually occur because of insufficient bone formation. MicroRNA-21 (miR-21) was reported as an important post-transcriptional modulator for osteogenesis. Herein, a photocontrolled miR-21 (PC-miR-21)-loaded nanosystem using upconversion nanoparticles (UCNPs) modified with poly(ether imide) (PEI), i.e., UCNPs@PEI@PC-miR-21, was constructed to promote bone formation in the midpalatal suture. UCNPs@PEI was constructed as the light transducer and delivery carrier. The UCNPs@PEI@PC-miR-21 nanocomplexes have good aqueous dispersibility and biocompatibility. The in vitro cell experiment suggested that UCNPs@PEI could protect PC-miR-21 from biodegradation and release PC-miR-21 into the cytoplasm under near-infrared light (NIR) irradiation. Furthermore, UCNPs@PEI@PC-miR-21 upregulated the expression of the osteogenic key markers, ALP, RUNX2, and COL1A1, at the levels of both genes and proteins. Besides, the results of the in vivo RME mice models further corroborated that photocontrollable UCNPs@PEI@PC-miR-21 accelerated bone formation with upregulating osteogenic markers of ALP, RUNX2, and osteoprotegerin and inducing fewer osteoclasts formation. In conclusion, UCNPs@PEI@PC-miR-21 nanoparticles with a NIR light could facilitate the remote and precise delivery of exogenous miR-21 to the midpalatal suture to promote bone formation during RME. This work represents a cutting-edge approach of gene therapy to promote osteogenesis in the midpalatal suture during RME and provides a frontier scientific basis for later clinical treatment.
Assuntos
MicroRNAs , Nanopartículas , Animais , Camundongos , Osteogênese , Subunidade alfa 1 de Fator de Ligação ao Core , Suturas , MicroRNAs/genéticaRESUMO
ST7 Staphylococcus aureus is highly prevalent in humans, pigs, as well as food in China; however, staphylococcal food poisoning (SFP) caused by this ST type has rarely been reported. On May 13, 2017, an SFP outbreak caused by ST7 S. aureus strains occurred in two campuses of a kindergarten in Hainan Province, China. We investigated the genomic characteristics and phylogenetic analysis of ST7 SFP strains combined with the 91 ST7 food-borne strains from 12 provinces in China by performing whole-genome sequencing (WGS). There was clear phylogenetic clustering of seven SFP isolates. Six antibiotic genes including blaZ, ANT (4')-Ib, tetK, lnuA, norA, and lmrS were present in all SFP strains and also showed a higher prevalence rate in 91 food-borne strains. A multiple resistance plasmid pDC53285 was present in SFP strain DC53285. Among 27 enterotoxin genes, only sea and selx were found in all SFP strains. A ФSa3int prophage containing type A immune evasion cluster (sea, scn, sak, and chp) was identified in SFP strain. In conclusion, we concluded that this SFP event was caused by the contamination of cakes with ST7 S. aureus. This study indicated the potential risk of new emergencing ST7 clone for SFP.
RESUMO
Two-dimensional (2D) layered transition-metal carbides (MXenes) are attractive faradic materials for an efficient capacitive deionization (CDI) process owing to their high capacitance, excellent conductivity, and remarkable ion storage capacity. However, the easy restacking property and spontaneous oxidation in solution by the dissolved oxygen of MXenes greatly restrict their further application in the CDI domain. Herein, a three-dimensional (3D) heterostructure (MoS2@MXene) is rationally designed and constructed, integrating the collective advantages of MXene flakes and MoS2 nanosheets through the hydrothermal method. In such a design, the well-dispersed MXene flakes can effectively reduce the aggregation of MoS2 nanosheets, boost electrical conductivity, and provide efficient charge transfer paths. Furthermore, MoS2 nanosheets as the high-capacity interlayer spacer can prevent the self-restacking of MXene flakes and provide more active sites for ion intercalation. Meanwhile, the strong chemical interactions between MXene flakes and MoS2 nanosheets contribute to accelerating the charge transfer kinetics and enhancing structural stability. Consequently, the resulting MoS2@MXene heterostructure electrode possesses high specific capacitance (171.4 F g-1), fast charge transfer and permeation rate, abundant Na+ diffusion channels, and superior electrochemical stability. Moreover, the hybrid CDI cell (AC//MoS2@MXene) with AC as the anode and MoS2@MXene as the cathode delivers outstanding desalination capacity (35.6 mg g-1), rapid desalination rate (2.6 mg g-1 min-1), excellent charge efficiency (90.2%), and good cyclic stability (96% retention rate). Most importantly, the MoS2@MXene electrode can keep good structural integrity after the long-term repeated desalination process due to the effective shielding effect of the MoS2 layer to protect MXenes from being further oxidized. This work presents the flexible structural engineering to realize excellent ion transfer and storage process by constructing the 3D heterostructure.