Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; 42(1): 435-444, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37029713

RESUMO

Actin bundles are an important component of cellular cytoskeleton and participate in the movement of cells. The formation of actin bundles requires the participation of many actin binding proteins (ABPs). Fascin is a member of ABPs, which plays a key role in bundling filamentous actin (F-actin) to bundles. However, the detailed interactions between fascin and F-actin are unclear. In this study, we construct an atomic-level structure of fascin - F-actin complex based on a rather poor cryo-EM data with resolution of 20 nm. We first optimized the geometries of the complex by molecular dynamics (MD) simulation and analyzed the binding site and pose of fascin which bundles two F-actin chains. Next, binding free energy of fascin was calculated by MM/GBSA method. Finally, protein structure network analysis (PSNs) was performed to analyze the key residues for fascin binding. Our results show that residues of K22, E27, E29, K41, K43, R110, R149, K358, R408 and K471 on fascin are important for its bundling, which are in good agreement with the experimental data. On the other hand, the consistent results indicate that the atomic-level model of fascin - F-actin complex is reliable. In short, this model can be used to understand the detailed interactions between fascin and F-actin, and to develop novel potential drugs targeting fascin.Communicated by Ramaswamy H. Sarma.


Assuntos
Actinas , Simulação de Dinâmica Molecular , Actinas/química , Proteínas dos Microfilamentos/química , Proteínas dos Microfilamentos/metabolismo , Citoesqueleto de Actina/metabolismo
2.
Nat Commun ; 15(1): 1628, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388527

RESUMO

Euglena gracilis, a model organism of the eukaryotic supergroup Discoba harbouring also clinically important parasitic species, possesses diverse metabolic strategies and an atypical electron transport chain. While structures of the electron transport chain complexes and supercomplexes of most other eukaryotic clades have been reported, no similar structure is currently available for Discoba, limiting the understandings of its core metabolism and leaving a gap in the evolutionary tree of eukaryotic bioenergetics. Here, we report high-resolution cryo-EM structures of Euglena's respirasome I + III2 + IV and supercomplex III2 + IV2. A previously unreported fatty acid synthesis domain locates on the tip of complex I's peripheral arm, providing a clear picture of its atypical subunit composition identified previously. Individual complexes are re-arranged in the respirasome to adapt to the non-uniform membrane curvature of the discoidal cristae. Furthermore, Euglena's conformationally rigid complex I is deactivated by restricting ubiquinone's access to its substrate tunnel. Our findings provide structural insights for therapeutic developments against euglenozoan parasite infections.


Assuntos
Euglena , Membranas Mitocondriais , Transporte de Elétrons , Membranas Mitocondriais/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Metabolismo Energético
3.
Commun Biol ; 6(1): 549, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217525

RESUMO

Human multidrug resistance protein 4 (hMRP4, also known as ABCC4), with a representative topology of the MRP subfamily, translocates various substrates across the membrane and contributes to the development of multidrug resistance. However, the underlying transport mechanism of hMRP4 remains unclear due to a lack of high-resolution structures. Here, we use cryogenic electron microscopy (cryo-EM) to resolve its near-atomic structures in the apo inward-open and the ATP-bound outward-open states. We also capture the PGE1 substrate-bound structure and, importantly, the inhibitor-bound structure of hMRP4 in complex with sulindac, revealing that substrate and inhibitor compete for the same hydrophobic binding pocket although with different binding modes. Moreover, our cryo-EM structures, together with molecular dynamics simulations and biochemical assay, shed light on the structural basis of the substrate transport and inhibition mechanism, with implications for the development of hMRP4-targeted drugs.


Assuntos
Resistência a Múltiplos Medicamentos , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Humanos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Transportadores de Cassetes de Ligação de ATP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA