Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anim Biotechnol ; 34(7): 3016-3026, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36200839

RESUMO

Dorper and Hu sheep exhibit different characteristics in terms of reproduction, growth, and meat quality. Comparison of the genomes of two breeds help to reveal important genomic information. In this study, whole genome resequencing of 30 individuals (Dorper, DB and Hu sheep, HY) identified 15,108,125 single nucleotide polymorphisms (SNPs). Population differentiation (Fst) and cross population extended haplotype homozygosity (XP-EHH) were performed for selective signal analysis. In total, 106 and 515 overlapped genes were present in both the Fst results and XP-EHH results in HY vs DB and in DB vs HY, respectively. In HY vs DB, 106 genes were enriched in 12 GO terms and 83 KEGG pathways, such as ATP binding (GO:0005524) and PI3K-Akt signaling pathway (oas04151). In DB vs HY, 515 genes were enriched in 109 GO terms and 215 KEGG pathways, such as skeletal muscle cell differentiation (GO:0035914) and MAPK signaling pathway (oas04010). According to the annotation results, we identified a series of candidate genes associated with reproduction (UNC5C, BMPR1B, and GLIS1), meat quality (MECOM, MEF2C, and MYF6), and immunity (GMDS, GALK1, and ITGB4). Our investigation has uncovered genomic information for important traits in sheep and provided a basis for subsequent studies of related traits.


Assuntos
Fosfatidilinositol 3-Quinases , Seleção Genética , Humanos , Ovinos/genética , Animais , Fosfatidilinositol 3-Quinases/genética , Genoma/genética , Análise de Sequência de DNA , Genômica/métodos , Polimorfismo de Nucleotídeo Único/genética
2.
Anim Biotechnol ; 34(7): 2691-2700, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36001393

RESUMO

This study aimed to understand the expression level of YAP1 in the skeletal muscle of Hu sheep and to reveal the regulatory mechanism of YAP1 on Hu sheep skeletal muscle satellite cells (SMSCs). Previous research by our group has found that YAP1 may affect the growth and development of Hu sheep skeletal muscle. In the present study, we found the expression of YAP1 in the skeletal muscle is higher than in other tissues of Hu sheep. Then, we detected the effect of YAP1 on proliferation and differentiation in Hu sheep SMSCs. According to the results of qPCR, CCK-8, EDU, and Western blot, compared to the group of negative control, overexpression of YAP1 promoted the proliferation and inhibited the differentiation of SMSCs according to the results of qPCR, CCK-8, EDU, Western blot, while the interference of YAP1 was on the contrary. Overall, our study suggests that YAP1 is an important functional molecule in the growth and development of skeletal muscle by regulating the proliferation and differentiation of SMSCs. These findings are of great use for understanding the roles of YAP1 in the skeletal muscle of Hu sheep.


Assuntos
Células Satélites de Músculo Esquelético , Animais , Diferenciação Celular , Proliferação de Células , Músculo Esquelético , Ovinos
3.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068994

RESUMO

SRY-box transcription factor 18 (SOX18) is known to play a crucial role in the growth and development of hair follicles (HF) in both humans and mice. However, the specific effect of SOX18 on sheep hair follicles remains largely unknown. In our previous study, we observed that SOX18 was specifically expressed within dermal papilla cells (DPCs) in ovine hair follicles, leading us to investigate its potential role in the growth of hair follicles in sheep. In the present study, we aimed to examine the effect of SOX18 in DPCs and preliminarily study its regulatory mechanism through RNA-seq. We initially found that the overexpression of SOX18 promoted the proliferation of DPCs compared to the negative control group, while the interference of SOX18 had the opposite effect. To gain further insight into the regulatory mechanism of SOX18, we conducted RNA-seq analysis after knocking down SOX18 in Hu sheep DPCs. The result showed that the Wnt/ß-Catenin signaling pathway was involved in the growth process of DPC after SOX18 knockdown. Subsequently, we investigated the effect of SOX18 on the Wnt/ß-Catenin signaling pathway in DPCs using TOP/FOP-flash, qRT-PCR, and Western blot (WB) analysis. Our data demonstrated that SOX18 could activate the Wnt/ß-Catenin signaling pathway in DPCs. Additionally, we observed that SOX18 could rescue the proliferation of DPCs after inhibiting the Wnt/ß-Catenin signaling pathway. These findings underscore the essential role of SOX18 as a functional molecule governing the proliferation of DPCs. Additionally, these findings also greatly enhance our understanding of the role of SOX18 in the proliferation of DPCs and the growth of wool in Hu sheep.


Assuntos
Folículo Piloso , Ovinos , Via de Sinalização Wnt , Animais , Proliferação de Células , Células Cultivadas , Folículo Piloso/metabolismo , Fatores de Transcrição SOXF/genética , Fatores de Transcrição SOXF/metabolismo
4.
Anim Biotechnol ; : 1-9, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36384387

RESUMO

Previous studies have shown that melatonin has a certain regulatory effect on the growth of sheep wool. However, the mechanism of melatonin action remains unknown. In the present study, we aimed to understand the role of exogenous melatonin in the dermal papilla cells of Hu sheep. To confirm the optimal melatonin treatment regimen for Hu sheep dermal papilla cells, we detected the cell viability by exposing them to different concentrations of melatonin and different treatment times. The results showed that cell viability was best when dermal papilla cells were treated with 1000 pg/ml of melatonin for 48 h. According to the results of qPCR, CCK-8, EDU, Western blot, and Flow cytometry analysis, we found that 1000 pg/ml melatonin promoted the proliferation and inhibited the apoptosis of dermal papilla cells compared with the exogenous melatonin blank group (control group). Furthermore, we also found that 1000 pg/ml of melatonin promoted the cell cycle progress of dermal papilla cells according to the results of qPCR and Flow cytometry analysis. Overall, our findings showed that melatonin plays an important role in the dermal papilla cells of Hu sheep.

5.
Genomics ; 112(6): 4454-4462, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32768426

RESUMO

CircRNAs are involved in the regulation of various cellular and biological processes, but none of the studies have focused on hair follicle in sheep. In this study, the expression profile of circRNAs between small waves (SM) and straight wool (ST) groups was investigated using RNA-Seq. The results showed that a total of 5,527 circRNAs were identified and 114 of them were differentially expressed between two groups. Enrichment analysis revealed that the host genes with DE circRNAs were mainly enriched in TGF-beta pathway, Notch pathway. Miranda software was used to found that 129 miRNAs might be binding to 114 DE circRNAs, including miR-10a, miR-143, miR-let-7a, miR-199a-3p, miR-200a, which also had important influence on hair follicle morphogenesis. Furthermore, the coding potential of circRNAs was predicted, and 11 circRNAs were simultaneously identified with coding potential. In summary, circRNAs have important effects on hair follicle growth and development, and these results will provide a basis for molecular mechanism of pattern formation.


Assuntos
Folículo Piloso/metabolismo , RNA Circular/metabolismo , Ovinos/genética , Animais , Folículo Piloso/crescimento & desenvolvimento , MicroRNAs/metabolismo , RNA-Seq , Ovinos/crescimento & desenvolvimento , Ovinos/metabolismo
6.
BMC Genomics ; 21(1): 430, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32586272

RESUMO

BACKGROUND: During goat embryonic morphogenesis and postnatal initiation of hair follicle (HF) regeneration, dermal papilla (DP) cells play a vital role in hair formation. Growing evidence shows that microRNAs (miRNAs) participate in HF development and DP cell proliferation. However, the molecular mechanisms have not been thoroughly investigated. RESULT: In this study, we utilized miRNA sequencing (miRNA-Seq) to identify differentially expressed miRNAs at different HF cycling stages (anagen and telogen). MiRNA-Seq has identified 411 annotated miRNAs and 130 novel miRNAs in which 29 miRNAs were up-regulated and 32 miRNAs were down-regulated in the anagen phase compared to the telogen phase. Target gene prediction and functional enrichment analysis indicated some major biological pathways related to hair cycling, such as Wnt signaling pathways, ECM-receptor interaction, VEGF signaling pathway, biosynthesis of amino acids, metabolic pathways, ribosome and oxidative phosphorylation. Also, we explored the function of chi-miR-30b-5p in regulating hair growth cycle. Similar to the HF cycling, DP cells were isolated from skin and used to investigate miRNA functions. The MTT and EdU assays showed that the viability and proliferation of DP cells were inhibited or promoted after the transfection of chi-miR-30b-5p mimic or inhibitor, respectively. Bioinformatics analysis revealed CaMKIIδ as a candidate target gene of chi-miR-30b-5p, and the dual-luciferase and western blot assay demonstrated that chi-miR-30b-5p bound to the 3'UTR of CaMKIIδ and further inhibited its translation. CONCLUSION: Chi-miR-30b-5p was found to be highly expressed in the telogen than that in the anagen phase and could inhibit the proliferation of DP cells by targeting CaMKIIδ. Our study provides new information on the regulatory functions of miRNAs during HF development.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Perfilação da Expressão Gênica/veterinária , Cabras/crescimento & desenvolvimento , Folículo Piloso/citologia , MicroRNAs/genética , Regiões 3' não Traduzidas , Animais , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Cabras/genética , Células HEK293 , Folículo Piloso/química , Folículo Piloso/crescimento & desenvolvimento , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de RNA/veterinária , Regulação para Cima
7.
BMC Genomics ; 19(1): 605, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30103699

RESUMO

BACKGROUND: It is known that long non-coding RNAs (lncRNAs) play an important role in various biological processes, including cell proliferation, differentiation and apoptosis. However, their functions and profiles in lactation cycle of dairy cows are largely unknown. In this study, lncRNA-seq technique was employed to compare the expression profiles of lncRNAs and mRNAs from Chinese Holstein mammary gland in dry and lactation period. RESULT: Totally 3746 differentially expressed lncRNAs (DELs) and 2890 differentially expressed genes (DEGs) were identified from the dry and lactation mammary glands of Holstein cows. Functional enrichment analysis on target genes of lncRNAs indicated that these genes were involved in lactation-related signaling pathways, including cell cycle, JAK-STAT, cell adhesion, and PI3K-Akt signaling pathways. Additionally, the interaction between lncRNAs and their potential miRNAs was predicted and partly verified. The result indicated that the lactation-associated miR-221 might interact with lncRNAs TCONS_00040268, TCONS_00137654, TCONS_00071659 and TCONS_00000352, which revealed that these lncRNAs might be important regulators for lactation cycle. CONCLUSION: This study provides a resource for lncRNA research on lactation cycle of bovine mammary gland. Besides, the interaction between lncRNAs and the specific miRNA is revealed. It expands our knowledge about lncRNA and miRNA biology as well as contributes to clarify the regulation of lactation cycle of bovine mammary gland.


Assuntos
Sequenciamento do Exoma/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Lactação , Glândulas Mamárias Animais/metabolismo , RNA Longo não Codificante/genética , Animais , Bovinos , Feminino , Regulação da Expressão Gênica , Glândulas Mamárias Animais/fisiologia , Transdução de Sinais
8.
BMC Genomics ; 19(1): 630, 2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30139327

RESUMO

BACKGROUND: During hair growth, cortical cells emerging from the proliferative follicle bulb rapidly undergo a differentiation program and synthesize large amounts of hair keratin proteins. In this process, HOXC13 is one critical regulatory factor, proved by the hair defects in HOXC13 mutant mice and HOXC13 mutant patients. However, inconsistent conclusions were drawn from previous researches regarding the regulation of HOXC13 on different keratins. Whether HOXC13 has extensive and unified regulatory role on these numerous keratins is unclear. RESULTS: In this study, firstly, RNA-seq was performed to reveal the molecular mechanism of cashmere cycle including anagen and telogen. Subsequently, combining the sequencing with qRT-PCR and immunofluorescent staining results, we found that HOXC13 showed similar expression pattern with a large proportion of keratins except for KRT1 and KRT2, which were higher in anagen compared with telogen. Then, the regulatory role of HOXC13 on different keratins was investigated using dual-luciferase reporter system and keratin promoter-GFP system by overexpressing HOXC13 in HEK 293 T cells and dermal papilla cells. Our results demonstrated that HOXC13 up-regulated the promoter activity of KRT84 and KRT38, while down-regulated the promoter activity of KRT1 and KRT2, which suggested HOXC13 had an ambivalent effect on the promoters of different KRTs. Furtherly, the regulation on HOXC13 itself was investigated. At transcriptional level, the binding sites of HOXC13 and LEF1 were found in the promoter of HOXC13. Then, through transfecting corresponding overexpression vector and dual-luciferase reporter system into dermal papilla cells, the negative-feedback regulation of HOXC13 itself and positive regulation of LEF1 on HOXC13 promoter were revealed. In addition, melatonin could significantly increase the promoter activity of HOXC13 under the concentration of 10 µM and 25 µM by adding exogenous melatonin into dermal papilla cells. At post-transcriptional level, we investigated whether chi-miR-200a could target HOXC13 through dual-luciferase reporter system. At epigenetic level, we investigated the methylation level of HOXC13 promoter at different stages including anagen, telogen and 60d of embryonic period. As a result, miR-200a and methylation were not regulatory factors of HOXC13. Interestingly, we found two SNPs (c.812A > G and c.929A > C) in the homeodomain of HOXC13 that could deprive the regulatory function of HOXC13 on keratins without changing its protein expression. CONCLUSION: HOXC13 had an inconsistent effect on the promoters of different keratins. Two SNPs (c.812A > G and c.929A > C) in the homeodomain of HOXC13 deprived its function on keratin regulation. Besides, the negative-feedback regulation by HOXC13 itself and positive regulation by LEF1 and melatonin on HOXC13 promoter were revealed. This study will enrich the function of HOXC13 on keratin regulation and contribute to understand the mechanism of hair follicle differentiation.


Assuntos
Proteínas de Homeodomínio/metabolismo , Queratinas/metabolismo , Animais , Cabras , Células HEK293 , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Humanos , Queratinas/genética , Mutação , Regiões Promotoras Genéticas/genética , Domínios Proteicos , Lã/metabolismo
9.
Appl Microbiol Biotechnol ; 102(23): 10119-10126, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30209551

RESUMO

The full length of interested genes can be usually cloned by assembling exons or RACE products through overlap PCR. However, the procedure requires multiple PCR steps, which are prone to random mutagenesis. Here, we present a novel SSA-based method for gene cloning and seamless site-directed mutagenesis. We firstly cloned the full-length coding sequence of Cashmere goat (Capra hircus) Hoxc13 gene by assembling exons amplified from genomic DNA. Secondly, we created a Hoxc13 loss-function mutant seamlessly and further illustrated that direct repeat length of 25 bp is enough to trigger the SSA repair in routine E. coli strains including DH5α, Trans1t1, JM109, and Top10. Moreover, we cloned another full-length mutant of Foxn1 gene from Cashmere goat cDNA using further shortened direct repeats of 19 bp. In summary, our study provided an alternative method to overcome the difficulties during overlap PCR in some particular cases for gene cloning.


Assuntos
Clonagem Molecular , Reparo do DNA , DNA Complementar , Éxons , Mutagênese Sítio-Dirigida/métodos , Animais , Quebras de DNA de Cadeia Dupla , DNA Complementar/genética , Genoma , Cabras/genética , Proteínas de Homeodomínio/genética , Mutação , Fases de Leitura Aberta
10.
BMC Genomics ; 18(1): 767, 2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-29020916

RESUMO

BACKGROUND: Cashmere growth is a seasonal and cyclic phenomenon under the control of photoperiod and multiple stimulatory and inhibitory signals. Beyond relevant coding genes, microRNA (miRNA) and long non coding RNA (lncRNA) play an indispensable role in hair follicle (HF) development and skin homeostasis. Furthermore, the influence of lncRNA upon miRNA function is also rapidly emerging. However, little is known about miRNAs, lncRNAs and their functions as well as their interactions on cashmere development and cycling. RESULT: Here, based on lncRNA and miRNA high-throughput sequencing and bioinformatics analysis, we have identified 1108 lncRNAs and 541 miRNAs in cashmere goat skin during anagen and telogen. Compared with telogen, 1388 coding genes, 41 lncRNAs and 15 miRNAs were upregulated, while 1104 coding genes, 157 lncRNAs and 8 miRNAs were downregulated in anagen (adjusted P-value ≤0.05 and relative fold-change ≥2). Subsequently, we investigated the impact of lncRNAs on their target genes in cis and trans, indicating that these lncRNAs are functionally conserved during HF development and cycling. Furthermore, miRNA-mRNA and miRNA-lncRNA interaction were identified through the bioinformatics algorithm miRanda, then the ceRNA networks, miR-221-5p-lnc_000679-WNT3, miR-34a-lnc_000181-GATA3 and miR-214-3p-lnc_000344-SMAD3, were constructed under defined rules, to illustrate their roles in cashmere goat HF biology. CONCLUSION: The present study provides a resource for lncRNA, miRNA and mRNA studies in cashmere cycling and development. We also demonstrate potential ceRNA regulatory networks in cashmere goat HF cycling for the first time. It expands our knowledge about lncRNA and miRNA biology as well as contributes to the annotation of the goat genome.


Assuntos
Cabras/crescimento & desenvolvimento , Cabras/genética , Folículo Piloso/crescimento & desenvolvimento , MicroRNAs/genética , RNA Longo não Codificante/genética , Animais , Genômica , Anotação de Sequência Molecular
11.
Genome ; 58(2): 81-90, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26053224

RESUMO

Polymorphisms in miRNA genes could potentially alter various biological processes by influencing the processing and (or) target selection of miRNAs. The rs14120863 (C > G) mutation, which we characterized in a Gushi-Anka F2 resource population, resides in the precursor region of miR-1666. Association analysis with chicken carcass and growth traits showed that the SNP was significantly associated with carcass weight, evisceration weight, breast muscle weight, leg muscle weight, and body weight at 8 weeks of age, as well as some body size indexes including shank girth, chest breadth, breast bone length, and body slanting length, in the Gushi-Anka F2 resource population. Quantitative RT-PCR results showed that miR-1666 expression levels in muscle tissues differed within various genotypes. Experiment in DF1 cells further confirmed that the SNP in miR-1666 could significantly alter mature miRNA production. Subsequently, using dual-luciferase report assay, we verified that miR-1666 could perform its function through targeting of the CBFB gene. In conclusion, the SNP in the precursor of miR-1666 could significantly reduce mature miR-1666 production. It may further affect the function of miR-1666 through the target gene CBFB, hence it is associated with chicken growth traits.


Assuntos
Galinhas/genética , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único , Animais , Peso Corporal/genética , Linhagem Celular , Subunidade beta de Fator de Ligação ao Core/genética , Feminino , Genótipo , Masculino , MicroRNAs/metabolismo , Músculos/metabolismo , Conformação de Ácido Nucleico , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
Animals (Basel) ; 14(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38200892

RESUMO

This study aims to analyze the whole genome sequencing of E. coli F17 in antagonistic and susceptible Hu sheep lambs. The objective is to investigate the critical mutation loci in sheep and understand the genetic mechanism of sheep resistance to E. coli F17 at the genome level. Antagonist and susceptible venous blood samples were collected from Hu sheep lambs for whole genome sequencing and whole genome association analysis. A total of 466 genes with significant SNPs (p < 1.0 × 10-3) were found. GO and KEGG enrichment analysis and protein interaction network analysis were performed on these genes, and preliminary investigations showed that SNPs on CTNNB1, CDH8, APOD, HCLS1, Tet2, MTSS1 and YAP1 genes may be associated with the antagonism and susceptibility of Hu sheep lambs to E. coli F17. There are still some shortcomings that have not been explored via in vivo and in vitro functional experiments of the candidate genes, which will be our next research work. This study provides genetic loci and candidate genes for resistance of Hu sheep lambs to E. coli F17 infection, and provides a genetic basis for breeding disease-resistant sheep.

13.
Animals (Basel) ; 14(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38891747

RESUMO

Previous studies have shown that the BMP7 gene is differentially expressed in Hu sheep lamb skin of different pattern types, and its expression level is significantly correlated with hair follicle indices of different pattern types, but the molecular mechanism of the differential expression of the BMP7 gene remains unclear. This study investigated the effect of DNA methylation on the transcriptional expression of BMP7. Firstly, we found that the mRNA expression of the BMP7 gene and the activity of the core promoter of the BMP7 gene were upregulated after 5-Aza-Deoxycytidine-induced demethylation treatment using qRT-PCR and double luciferase reporter assay. Then, we found that the proliferation of Hu sheep DPCs in vitro was promoted after 5-Aza-Deoxycytidine-induced demethylation treatment through qRT-PCR, CCK-8, and EdU assay, and that the overexpression of DNMT1 in DPCs induced the opposite effect. In addition, the results of the cell cycle assay reveal that the percentage of cells in the S phase was increased after 5-Aza-Deoxycytidine-induced demethylation treatment, and that the percentage of cells in the S phase was decreased after overexpression of DNMT1 in DPCs. This study indicated that the differential expression of the BMP7 gene in different patterns of Hu sheep lamb skin may be regulated by DNA methylation modification. In addition, DNA methylation can regulate the proliferation and cell cycle of DPCs in Hu sheep.

14.
Animals (Basel) ; 14(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338072

RESUMO

Previous studies have demonstrated that CUX1 could contribute to the proliferation of DPCs in vitro, but the upstream transcriptional regulatory mechanisms of CUX1 remain largely unknown. This study aimed to investigate the upstream transcriptional regulators of CUX1 to enhance our comprehension of the mechanism of action of the CUX1 gene in ovine DPCs. Initially, the JASPAR (2024) software was used to predict the upstream target transcription factors for the CUX1 gene. Subsequently, through RT-qPCR and a double luciferase reporter assay, the interaction between SP1, KROX20, and CUX1 was established, respectively. The results indicated that SP1 and KROX20 were two highly reliable upstream transcription regulators for the CUX1 gene. Additionally, we found that SP1 promoted the proliferation of DPCs by overexpressing SP1 in DPCs, and KROX20 inhibited the proliferation of DPCs by overexpressing KROX20 in DPCs. These findings are also consistent with the transcriptional regulation of CUX1 by SP1 and KROX20, respectively. This study suggests that the effect of DPC proliferation in vitro by CUX1 may regulated by the transcription factors SP1 and KROX20.

15.
Genes (Basel) ; 15(3)2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38540319

RESUMO

In order to investigate the effect of FecB on litter size and growth and development traits of Suhu meat sheep and the inheritance patterns of FecB between parents and offspring in the population. In this experiment, 2241 sheep from the Suhu meat sheep population were tested for FecB using capillary electrophoresis. We combined the lambing records of 473 ewes, the growth trait records of 881 sheep at both the birth and weaning (2-month-old) stages, and the complete genealogical records of 643 lambs to analysis the distribution of FecB in the Suhu meat sheep breeding population, its effect on litter size of ewes, growth and development of lambs, and the inheritance patterns of FecB. The results showed that there were three genotypes of FecB in the Suhu meat sheep population, namely the AA genotype, AG genotype, and GG genotype. FecB in this population has a moderate polymorphism (0.25 < PIC < 0.5), and deviates from Hardy-Weinberg disequilibrium (p < 0.05). The litter size of GG genotype ewes was significantly higher than that with the AG and AA genotypes (p < 0.01). A Chi-square test showed that the inheritance patterns of FecB follows Mendel's Laws of Inheritance (p > 0.05). An association analysis of different genotypes of FecB with body weight and body size of Suhu meat sheep at birth and weaning revealed that FecB adversely affects the early growth and development of Suhu meat sheep. In summary, FecB can improve the litter size of ewes but it has negative effects on the early growth and survival rate of lambs in sheep. Therefore, FecB test results and feeding management measures should be comprehensively applied to improve the reproductive performance of ewes, the survival rate and production performance of lambs in sheep production, and thus improve the economic benefits of sheep farms.


Assuntos
Polimorfismo Genético , Reprodução , Gravidez , Ovinos/genética , Animais , Feminino , Tamanho da Ninhada de Vivíparos/genética , Reprodução/genética , Padrões de Herança , Carne
16.
Animals (Basel) ; 13(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37370543

RESUMO

In our previous study of Hu sheep hair follicles, we found that CRABP2 was highly expressed in DPCs, which suggested that CRABP2 may influence the number of DPCs. In the present study, we aimed to understand the effect of CRABP2 in Hu sheep dermal papilla cells (DPCs). First, we explored the influence of CRABP2 on the ability of Hu sheep DPCs' proliferation. Based on the results obtained from some experiments, such as CCK-8, EDU, qPCR, and Western blot experiment, we found that the overexpression of CRABP2 facilitated the proliferation of DPCs compared to the negative control group. Then, we also detected the effect of CRABP2 on the Wnt/ß-catenin pathway based on the important function of the Wnt/ß-catenin pathway in hair follicles. The results showed that CRABP2 could activate the Wnt/ß-catenin pathway in DPCs, and it rescues the proliferation of DPCs when the Wnt/ß-catenin pathway was inhibited. In summary, our findings indicate that CRABP2 is a vital functional gene in the proliferation of Hu sheep DPCs. Our study will be of great use for revealing the roles of CRABP2 in the hair follicles of Hu sheep.

17.
Animals (Basel) ; 13(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36978593

RESUMO

Escherichia coli (E. coli) F17 is one of the most common pathogens causing diarrhea in farm livestock. In the previous study, we accessed the transcriptomic and microbiomic profile of E. coli F17-antagonism (AN) and -sensitive (SE) lambs; however, the biological mechanism underlying E. coli F17 infection has not been fully elucidated. Therefore, the present study first analyzed the metabolite data obtained with UHPLC-MS/MS. A total of 1957 metabolites were profiled in the present study, and 11 differential metabolites were identified between E. coli F17 AN and SE lambs (i.e., FAHFAs and propionylcarnitine). Functional enrichment analyses showed that most of the identified metabolites were related to the lipid metabolism. Then, we presented a machine-learning approach (Random Forest) to integrate the microbiome, metabolome and transcriptome data, which identified subsets of potential biomarkers for E. coli F17 infection (i.e., GlcADG 18:0-18:2, ethylmalonic acid and FBLIM1); furthermore, the PCCs were calculated and the interaction network was constructed to gain insight into the crosstalk between the genes, metabolites and bacteria in E. coli F17 AN/SE lambs. By combing classic statistical approaches and a machine-learning approach, our results revealed subsets of metabolites, genes and bacteria that could be potentially developed as candidate biomarkers for E. coli F17 infection in lambs.

18.
Front Vet Sci ; 10: 1127501, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923053

RESUMO

Dermal papilla cell (DPC), one of the key cell types during hair follicle development and regeneration, specifies hair size, shape and cycling. It is also an important in vitro screening model for hair growth. Although some characteristics of DPCs, such as agglutinative growth and marker genes, have been studied in mice and humans, the intrinsic properties of ovine DPCs and the regulatory mechanism of the intrinsic properties during continued culture in vitro remained unknown. In this study, based on our previous single-cell transcriptome sequencing on sheep lambskin, we verified SOX18 and PDGFRA as the novel marker genes of ovine DPCs through immunofluorescence staining on skin sections and cultured DPCs. Using continued cell culture and alkaline phosphatase staining, we found that different from mice and humans, ovine DPCs exhibit particularly robust and stable aggregation with unbated alkaline phosphatase activity till 30 passages during continued culture in vitro. Also, we found that the expression of some marker genes and the activity of Wnt/ß-catenin signaling differ between early passaged DPCs and multiple passaged DPCs. Further, using Wnt/ß-catenin agonist and antagonist, we demonstrated that Wnt/ß-catenin signaling could regulate cell aggregation and alkaline phosphatase activity of ovine DPCs through regulating FGF and IGF signaling. This study provides the basis for isolating ovine DPCs and defines their intrinsic properties, which contribute to improving wool performance and medicine of hair regeneration.

19.
Genes (Basel) ; 14(10)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37895221

RESUMO

CUT-like homeobox 1 (CUX1) has been proven to be a key regulator in sheep hair follicle development. In our previous study, CUX1 was identified as a differential expressed gene between Hu sheep lambskin with small wave patterns (SM) and straight wool patterns (ST); however, the exact molecular mechanism of CUX1 expression has been obscure. As DNA methylation can regulate the gene expression, the potential association between CUX1 core promotor region methylation and lambskin pattern in Hu sheep was explored in the present study. The results show that the core promoter region of CUX1 was present at (-1601-(-1) bp) upstream of the transcription start site. A repressive region (-1151-(-751) bp) was also detected, which had a strong inhibitory effect on CUX1 promoter activity. Bisulfite amplicon sequencing revealed that no significant difference was detected between the methylation levels of CUX1 core promoter region in SM tissues and ST tissues. Although the data demonstrated the differential expression of CUX1 between SM and ST probably has no association with DNA methylation, the identification of the core region and a potential repressive region of CUX1 promoter can enrich the role of CUX1 in Hu sheep hair follicle development.


Assuntos
Metilação de DNA , Genes Homeobox , Ovinos/genética , Animais , Regiões Promotoras Genéticas , Análise de Sequência de DNA
20.
Genes (Basel) ; 14(2)2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36833350

RESUMO

CUT-like homeobox 1 protein (CUX1), also called CUX, CUTL1, and CDP, is a member of the DNA-binding protein homology family. Studies have shown that CUX1 is a transcription factor that plays an important role in the growth and development of hair follicles. The aim of this study was to investigate the effect of CUX1 on the proliferation of Hu sheep dermal papilla cells (DPCs) to reveal the role of CUX1 in hair follicle growth and development. First, the coding sequence (CDS) of CUX1 was amplified by PCR, and then CUX1 was overexpressed and knocked down in DPCs. A Cell Counting Kit-8 (CCK8), 5-ethynyl-2-deoxyuridine (EdU), and cell cycle assays were used to detect the changes in the proliferation and cell cycle of DPCs. Finally, the effects of overexpression and knockdown of CUX1 in DPCs on the expression of WNT10, MMP7, C-JUN, and other key genes in the Wnt/ß-catenin signaling pathway were detected by RT-qPCR. The results showed that the 2034-bp CDS of CUX1 was successfully amplified. Overexpression of CUX1 enhanced the proliferative state of DPCs, significantly increased the number of S-phase cells, and decreased the number of G0/G1-phase cells (p < 0.05). CUX1 knockdown had the opposite effects. It was found that the expression of MMP7, CCND1 (both p < 0.05), PPARD, and FOSL1 (both p < 0.01) increased significantly after overexpression of CUX1 in DPCs, while the expression of CTNNB1 (p < 0.05), C-JUN, PPARD, CCND1, and FOSL1 (all p < 0.01) decreased significantly. In conclusion, CUX1 promotes proliferation of DPCs and affects the expression of key genes of the Wnt/ß-catenin signaling pathway. The present study provides a theoretical basis to elucidate the mechanism underlying hair follicle development and lambskin curl pattern formation in Hu sheep.


Assuntos
Metaloproteinase 7 da Matriz , Via de Sinalização Wnt , Animais , Ovinos , Metaloproteinase 7 da Matriz/metabolismo , Metaloproteinase 7 da Matriz/farmacologia , Células Cultivadas , Folículo Piloso , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA