Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Rev Neurosci ; 35(6): 627-637, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-38517315

RESUMO

Peripheral nerve injury (PNI) is one of the most serious causes of disability and loss of work capacity of younger individuals. Although PNS has a certain degree of regeneration, there are still challenges like disordered growth, neuroma formation, and incomplete regeneration. Regarding the management of PNI, conventional methods such as surgery, pharmacotherapy, and rehabilitative therapy. Treatment strategies vary depending on the severity of the injury. While for the long nerve defect, autologous nerve grafting is commonly recognized as the preferred surgical approach. Nevertheless, due to lack of donor sources, neurological deficits and the low regeneration efficiency of grafted nerves, nerve guide conduits (NGCs) are recognized as a future promising technology in recent years. This review provides a comprehensive overview of current treatments for PNI, and discusses NGCs from different perspectives, such as material, design, fabrication process, and composite function.


Assuntos
Regeneração Nervosa , Traumatismos dos Nervos Periféricos , Humanos , Traumatismos dos Nervos Periféricos/terapia , Traumatismos dos Nervos Periféricos/cirurgia , Traumatismos dos Nervos Periféricos/fisiopatologia , Regeneração Nervosa/fisiologia , Animais , Regeneração Tecidual Guiada/métodos
2.
Front Neurol ; 14: 1079757, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36970536

RESUMO

Peripheral nerve injury (PNI) is one of the most common neurological diseases. Recent studies on nerve cells have provided new ideas for the regeneration of peripheral nerves and treatment of physical trauma or degenerative disease-induced loss of sensory and motor neuron functions. Accumulating evidence suggested that magnetic fields might have a significant impact on the growth of nerve cells. Studies have investigated different magnetic field properties (static or pulsed magnetic field) and intensities, various magnetic nanoparticle-encapsulating cytokines based on superparamagnetism, magnetically functionalized nanofibers, and their relevant mechanisms and clinical applications. This review provides an overview of these aspects as well as their future developmental prospects in related fields.

3.
Free Radic Biol Med ; 166: 1-10, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33588051

RESUMO

Lithium chloride (LiCl), a pharmacological compound, was effective in reducing inflammation, but whether it can protect against abdominal aortic aneurysm (AAA) is largely unknown. This study is designed to investigate therapeutic effects of LiCl on AAA and the potential mechanism. Rat AAA models were induced by periaortic application of CaCl2. AAA rats were treated by daily intraperitoneal injection of LiCl or vehicle alone to study the protection effects of LiCl in vivo. Rat primary vascular smooth muscle cells (VSMCs) stimulated with tumor necrosis factor (TNF)-α served as an in vitro model. LiCl treatment prevented the development of AAA through inhibiting the inflammatory cells infiltration and inflammatory cytokines overproduction, as well as attenuating superoxide production and elastin degradation in aorta of AAA rats. Additionally, the downregulation of p-GSK3ß(Ser9) and SIRT1, upregulation of NF-κB(p-65), MMP-2 and MMP-9 in AAA were abolished by LiCl treatment. In vitro by upregulating p-GSK3ß(Ser9), LiCl significantly induced SIRT1 expression, along with inhibition of the NF-κB activation and decreased elastin level elicited in VSMCs by TNF-α stimulation. SIRT1 activator SRT1720 achieved similar repressive effects as LiCl on TNF-α-induced NF-κB activation and decreased elastin in VSMCs. Moreover, administration of LiCl also caused regression of established rats AAA. This study provided the first evidence that LiCl prevented the development of AAA through inhibiting inflammation, MMPs, and superoxide production, and facilitating the biosynthesis of elastin. The beneficial effect of LiCl may be mediated by regulation GSK3ß/SIRT1/NF-κB cascade.


Assuntos
Aneurisma da Aorta Abdominal , NF-kappa B , Animais , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/tratamento farmacológico , Aneurisma da Aorta Abdominal/genética , Modelos Animais de Doenças , Glicogênio Sintase Quinase 3 beta/genética , Cloreto de Lítio/farmacologia , NF-kappa B/genética , NF-kappa B/metabolismo , Ratos , Transdução de Sinais , Sirtuína 1/genética
4.
Front Cell Dev Biol ; 9: 649552, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239869

RESUMO

The mesenchymal stem cells have multidirectional differentiation potential and can differentiate into adipocytes, osteoblasts, cartilage tissue, muscle cells and so on. The adipogenic differentiation of mesenchymal stem cells is of great significance for the construction of tissue-engineered fat and the treatment of soft tissue defects. Exosomes are nanoscale vesicles secreted by cells and widely exist in body fluids. They are mainly involved in cell communication processes and transferring cargo contents to recipient cells. In addition, exosomes can also promote tissue and organ regeneration. Recent studies have shown that various exosomes can influence the adipogenic differentiation of stem cells. In this review, the effects of exosomes on stem cell differentiation, especially on adipogenic differentiation, will be discussed, and the mechanisms and conclusions will be drawn. The main purpose of studying the role of these exosomes is to understand more comprehensively the influencing factors existing in the process of stem cell differentiation into adipocytes and provide a new idea in adipose tissue engineering research.

5.
Stem Cells Int ; 2020: 3763069, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32802080

RESUMO

The mesenchymal stem cells (MSCs) are known as highly plastic stem cells and can differentiate into specialized tissues such as adipose tissue, osseous tissue, muscle tissue, and nervous tissue. The differentiation of mesenchymal stem cells is very important in regenerative medicine. Their differentiation process is regulated by signaling pathways of epigenetic, transcriptional, and posttranscriptional levels. Circular RNA (circRNA), a class of noncoding RNAs generated from protein-coding genes, plays a pivotal regulatory role in many biological processes. Accumulated studies have demonstrated that several circRNAs participate in the cell differentiation process of mesenchymal stem cells in vitro and in vivo. In the current review, characteristics and functions of circRNAs in stem cell differentiation will be discussed. The mechanism and key role of circRNAs in regulating mesenchymal stem cell differentiation, especially adipogenesis, will be reviewed and discussed. Understanding the roles of these circRNAs will present us with a more comprehensive signal path network of modulating stem cell differentiation and help us discover potential biomarkers and therapeutic targets in clinic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA