RESUMO
The development of a highly specific recognition electrospray ionization source presents a major challenge for achieving rapid ambient mass spectrometry (AMS) detection of trace harmful substances in complex samples. In this study, we constructed a molecular imprinting nanofiber electrospinning membrane-coated steel substrate (MINMCS) based on the electrospinning strategy. This was designed as a highly specific recognition and enrichment electrospray ionization source module for AMS, where the molecular imprinting nanofiber membrane served as an excellent extraction and enrichment layer. The prepared ionization source demonstrated a sufficient loading capacity for three bioamines (BAs): histamine (HIS), tyramine (TYR), and tryptamine (TRY). With simplified sample pretreatment, this ionization source exhibited sensitivity comparable to that of high performance liquid chromatography-mass spectrometry (HPLC-MS/MS). Moreover, the entire analysis process could be completed within 1 min with acceptable recoveries (83.21-101.80%). In brief, this study introduces a new integrated recognition and enrichment electrospray ionization source for the detection of harmful substances such as bioamines, showcasing significant commercial potential for the rapid detection of foodborne harmful compounds.
Assuntos
Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Tiramina/análise , Tiramina/química , Histamina/análise , Triptaminas/análise , Triptaminas/química , Nanofibras/química , Impressão MolecularRESUMO
MAIN CONCLUSION: Transcription of PagMYB147 was induced in poplar infected by Melampsora magnusiana, and a decline in its expression levels increases the host's susceptibility, whereas its overexpression promotes resistance to rust disease. Poplars are valuable tree species with diverse industrial and silvicultural applications. The R2R3-MYB subfamily of transcription factors plays a crucial role in response to biotic stresses. However, the functional studies on poplar R2R3-MYB genes in resistance to leaf rust disease are still insufficient. We identified 191 putative R2R3-MYB genes in the Populus trichocarpa genome. A phylogenetic analysis grouped poplar R2R3-MYBs and Arabidopsis R2R3-MYBs into 33 subgroups. We detected 12 tandem duplication events and 148 segmental duplication events, with the latter likely being the main contributor to the expansion of poplar R2R3-MYB genes. The promoter regions of these genes contained numerous cis-acting regulatory elements associated with response to stress and phytohormones. Analyses of RNA-Seq data identified a multiple R2R3-MYB genes response to Melampsora magnusiana (Mmag). Among them, PagMYB147 was significantly up-regulated under Mmag inoculation, salicylic acid (SA) and methyl jasmonate (MeJA) treatment, and its encoded product was primarily localized to the cell nucleus. Silencing of PagMYB147 exacerbated the severity of Mmag infection, likely because of decreased reactive oxygen species (ROS) production and phenylalanine ammonia-lyase (PAL) enzyme activity, and up-regulation of genes related to ROS scavenging and down-regulation of genes related to PAL, SA and JA signaling pathway. In contrast, plants overexpressing PagMYB147 showed the opposite ROS accumulation, PAL enzyme activity, SA and JA-related gene expressions, and improved Mmag resistance. Our findings suggest that PagMYB147 acts as a positive regulatory factor, affecting resistance in poplar to Mmag by its involvement in the regulation of ROS homeostasis, SA and JA signaling pathway.
Assuntos
Basidiomycota , Ciclopentanos , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Filogenia , Doenças das Plantas , Proteínas de Plantas , Populus , Fatores de Transcrição , Populus/genética , Populus/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Basidiomycota/fisiologia , Resistência à Doença/genética , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Estudo de Associação Genômica Ampla , Reguladores de Crescimento de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Acetatos/farmacologia , Arabidopsis/genética , Arabidopsis/microbiologiaRESUMO
Leaf flattening plays a pivotal role in optimizing light capture and enhancing photosynthesis efficiency. While extensive research has clarified the molecular mechanisms governing the initial stages of leaf flattening, understanding the maintenance of this process in mature leaves remains limited. Our investigation focused on sly-miR398b in tomatoes and revealed its crucial role in maintaining leaf flattening. In situ hybridization experiments indicated predominant expression of sly-miR398b in the abaxial side. Disrupting sly-miR398b using CRISPR/Cas9 relieved its suppression on target gene (Cu/Zn-SOD, SlCSD1), elevating SlCSD1 levels specifically on the abaxial side. Consequently, this asymmetrical expression of SlCSD1 increased hydrogen peroxide (H2O2) levels in the abaxial side, hindering auxin influx genes while promoting auxin efflux gene expression. This shift reduced auxin response gene expression in the abaxial side of mature leaves compared to the adaxial side, leading to leaf epinasty in sly-miR398b mutants. Exogenous H2O2 spraying induced leaf epinasty, downregulating SlGH3.5 and upregulating SlPIN3 and SlPIN4. Remarkably, spraying with 1-naphthalacetic acid (NAA) restored leaf flattening in sly-miR398b mutants. Our findings offer novel insights into mature leaf flattening maintenance via sly-miR398b's regulation of auxin and H2O2 signalling pathways.
RESUMO
This work reports a high-performance InGaN-based red-emitting LED with a strain-release interlayer (SRI) consisting of an InGaN stress-release layer (SRL) and an AlN dislocation confinement layer (DCL) in unintentionally doped GaN (u-GaN). The SRL introduces a tensile strain which could decrease the in-plane compressive stress of the u-GaN layer, while the DCL could reduce the dislocation density and thus improve the crystal quality of the u-GaN layer. Consequently, a high-efficiency InGaN-based red-emitting LED with a peak wavelength of 651â nm and an external quantum efficiency of 6.04% is realized. In addition, the room-temperature photoluminescence (PL) mapping emission wavelength is uniform across a 4-inch wafer with a standard deviation of 3.3â nm. Therefore, the proposed SRI offers good potential for mass-producing high-performance and long-wavelength InGaN-based red-emitting LEDs.
RESUMO
The rotational spectrum of an acrolein-formaldehyde complex has been characterized using pulsed jet Fourier transform microwave spectroscopy complemented with quantum chemical calculations. One isomer has been observed in pulsed jets, which is stabilized by a dominant O=Câ¯O tetrel bond (n â π* interaction) and a secondary C-Hâ¯O hydrogen bond. Splittings arising from the internal rotation of formaldehyde around its C2v axis were also observed, from which its V2 barrier was evaluated. It seems that when V2 equals or exceeds 4.61 kJ mol-1, no splitting of the spectral lines of the rotational spectrum was observed. The nature of the non-covalent interactions of the target complex is elucidated through natural bond orbital analysis. These findings contribute to a deeper understanding on the non-covalent interactions within the dimeric complex formed by two aldehydes.
RESUMO
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract which is mediated by the inappropriate immune responses. This study was aimed to identify novel diagnostic biomarkers for diagnosis of IBD and explore the relationship between the diagnostic biomarkers and infiltrated immune cells. GSE38713, GSE53306, and GSE75214 downloaded from the Gene Expression Omnibus (GEO) database were split into training and testing sets. Differentially expressed genes (DEGs) were screened using the "limma" package. Gene Ontology (GO) and KEGG pathway enrichment analysis of DEGs were performed by clusterProfiler package. The LASSO regression and support vector machine recursive feature elimination (SVM-RFE) algorithms were conducted to identify novel diagnostic biomarkers. The receiver operating characteristic (ROC) curve was applied to evaluate the diagnostic value of the candidate biomarkers. The relationship of the candidate biomarkers and infiltrating immune cells in IBD were evaluated by CIBERSOTR. Quantitative Real-Time PCR (qRT-PCR) was applied to measure the expression level of the biomarkers in IBD. A total of 289 dysregulated genes were identified as DEGs in IBD. These DEGs were significantly enriched in chemokine signaling pathway and cytokine-cytokine receptor interaction. RHOU was identified as a critical diagnostic gene in IBD, which was confirmed using ROC curve and qRT-PCR assays. Immune cell infiltration analysis showed that RHOU was correlated with macrophages M2, dendritic cells resting, mast cells resting, T cells CD4 memory resting, macrophages M0, and mast cells activated. Our results imply that RHOU may be a potential diagnostic biomarker for IBD.
Assuntos
Doenças Inflamatórias Intestinais , Humanos , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/genética , Aprendizado de Máquina , Biologia Computacional , Citocinas , BiomarcadoresRESUMO
Recently, covalent organic frameworks have gained popularity in sample pretreatment. However, the application of covalent organic frameworks in the enrichment of hydrophilic compounds remains a challenge. Thus, a functionalized magnetic covalent organic framework equipped with amino groups was constructed using a bottom-up functionalization strategy. Considering the advantages of this novel adsorbent such as high porosity, large adsorption capacity, and hydrophilic surface, a sensitive magnetic solid-phase extraction coupled with high-performance liquid chromatography-tandem mass spectrometry method was established for the effective determination of neonicotinoids. This method exhibited good linearities with correlation coefficients ranging from 0.9983 to 0.9995, low detection limits in the range 0.003-0.009 ng g-1 and 0.001-0.013 ng mL-1, and limits of quantification in the range 0.010-0.031 ng g-1 and 0.004-0.044 ng mL-1. Furthermore, satisfactory repeatability with relative standard deviations ≤ 6.7% and spiked recoveries between 82.3 and 99.8% were obtained. This work not only provided a promising adsorbent for the sensitive determination of trace-level neonicotinoids but also represented a unique insight for effective enrichment of super hydrophilic hazards.
Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Neonicotinoides , Magnetismo , Cromatografia Líquida de Alta Pressão , Fenômenos MagnéticosRESUMO
A novel 3D magnetic nanocomposite material based on covalent organic polymers was successfully synthesized and utilized as an efficient sorbent for magnetic solid-phase extraction. It exhibited a regular core-shell structure, large specific surface area, superior stability, and paramagnetism. To evaluate its extraction efficiency, six flavonoids were tested, demonstrating maximum adsorption capacities ranging from 90 to 218 mg/g. Additionally, the material exhibited remarkable reusability and mechanical stability, maintaining its original state over eight cycles with consistent recovery. An analytical strategy combining magnetic solid-phase extraction with high performance liquid chromatography and tandem mass spectrometry was developed for the determination of flavonoids in orange, honey, soybean, and Dioscorea bulbifera L. samples. The low limits of detection (0.01-0.1 ng/mL) and limits of quantification (0.05-0.5 ng/mL), as well as satisfactory recovery (80.4-114.8%), were obtained. The linear range started from the limits of quantification to 500 ng/mL with R2 ≥ 0.9929. These results suggest that the prepared adsorbent possesses excellent adsorption capabilities for flavonoids, highlighting its significant potential for detecting these compounds in complex sample matrices.
Assuntos
Flavonoides , Limite de Detecção , Nanocompostos , Polímeros , Extração em Fase Sólida , Flavonoides/química , Flavonoides/isolamento & purificação , Adsorção , Nanocompostos/química , Extração em Fase Sólida/métodos , Polímeros/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem , Glycine max/química , Mel/análise , Citrus sinensis/química , Nanopartículas de Magnetita/químicaRESUMO
Malicious social bots pose a serious threat to social network security by spreading false information and guiding bad opinions in social networks. The singularity and scarcity of single organization data and the high cost of labeling social bots have given rise to the construction of federated models that combine federated learning with social bot detection. In this paper, we first combine the federated learning framework with the Relational Graph Convolutional Neural Network (RGCN) model to achieve federated social bot detection. A class-level cross entropy loss function is applied in the local model training to mitigate the effects of the class imbalance problem in local data. To address the data heterogeneity issue from multiple participants, we optimize the classical federated learning algorithm by applying knowledge distillation methods. Specifically, we adjust the client-side and server-side models separately: training a global generator to generate pseudo-samples based on the local data distribution knowledge to correct the optimization direction of client-side classification models, and integrating client-side classification models' knowledge on the server side to guide the training of the global classification model. We conduct extensive experiments on widely used datasets, and the results demonstrate the effectiveness of our approach in social bot detection in heterogeneous data scenarios. Compared to baseline methods, our approach achieves a nearly 3-10% improvement in detection accuracy when the data heterogeneity is larger. Additionally, our method achieves the specified accuracy with minimal communication rounds.
RESUMO
This study delves into driving forces behind the formation of a hetero ternary cluster consisting of volatile organic compounds from industrial or combustion sources, specifically cyclopentene, alongside greenhouse gases like carbon dioxide, and water vapor. While substantial progress has been made in understanding binary complexes, the structural intricacies of hetero ternary clusters remain largely uncharted. Our research characterized the cyclopentene-CO2-H2O hetero ternary cluster utilizing Fourier transform microwave spectroscopy. The observed isomer in the pulsed jet has CO2 and H2O aligning above the cyclopentene ring, with water undergoing an internal rotation approximately about its C2 symmetry axis. Theoretical analyses support these observations, identifying an O-Hâ â â π hydrogen bond and a secondary Câ â â O tetrel bond within this cluster. This study marks a critical step towards comprehending the molecular dynamics and interactions of VOCs, greenhouse gases, and water in the atmosphere, paving the way for further investigations into their roles in climate dynamics and air quality.
RESUMO
BACKGROUND AIMS: Several studies have reported that mesenchymal stromal cells (MSCs) may improve neurological functions in patients with spinal cord injury (SCI). In this study, we conducted a systematic review and meta-analysis to summarize the effects of MSC treatment on different degrees of severity of SCI. METHODS: Systematic searching of studies reporting outcomes of MSCs on specific injury severities of patients with SCI was performed in The National Library of Medicine (MEDLINE), Embase and Cochrane for published articles up to the 6 July 2022. Two investigators independently reviewed the included studies and extracted the relevant data. The standardized mean differences of American Spinal Injury Association (ASIA) motor score, ASIA light touch scores, ASIA pinprick scores and the Barthel index between baseline and follow-ups were pooled. RESULTS: A total of eight studies were included. A large majority focused on patients with ASIA grade A classification. The pooled mean differences of ASIA motor scores, ASIA light touch scores, ASIA pinprick scores and the Barthel index were -2.78 (95% confidence interval [CI] -5.12 to -0.43, P = 0.02), -18.26 (95% CI -26.09 to -10.43, P < 0.01), -17.08 (95% CI -24.10 to -10.07, P < 0.01) and -4.37 (95% CI -10.96 to 2.22, P = 0.19), respectively. CONCLUSIONS: MSC transplantation was a significantly effective therapy for patients with SCI with ASIA grade A. In the future, further studies are warranted to confirm the potential beneficial effects of MSC therapy.
Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/terapia , Medula EspinalRESUMO
INTRODUCTION: Immune thrombocytopenia (ITP) is an autoimmune disease characterized by thrombocytopenia. Herein, we sought to identify potential immune-related therapeutic targets in ITP. METHODS: The differentially expressed genes (DEGs) between ITP patients and controls in GSE43177 and PRJNA299534 were analyzed. The intersections of the two DEG groups were screened as common genes, and enrichment analysis was performed. Additionally, differential analysis of immune cell levels between ITP and controls was performed. Changes in the proportions of T follicular helper (Tfh) and follicular regulatory T (Tfr) cells in peripheral blood samples from ITP patients, ITP patients responding to therapy, and healthy controls were identified. The expression changes in B-cell lymphoma (Bcl)-6 and interleukin (IL)-21 were further evaluated. RESULTS: A total of 76 common genes were identified, and enrichment analysis found that these genes were mainly associated with neutrophil-mediated immunity, the MAPK signaling pathway, and the FOXO signaling pathway. Furthermore, we found different levels of Tfh cells in patients with ITP and controls. The level of Tfh cells in the peripheral blood is significantly increased in ITP patients and declines after responding to therapy. The Tfr/Tfh ratio was reduced in ITP patients and increased after responding to therapy. IL-21 and Bcl-6 were more highly expressed in ITP patients than in controls. CONCLUSION: We identified abnormally expressed genes in ITP related to immune-related biological functions. We further identified the changes in Tfh and Tfr cells during ITP treatment. This provides a rationale for immunotherapy in ITP patients.
Assuntos
Púrpura Trombocitopênica Idiopática , Trombocitopenia , Humanos , Células T Auxiliares Foliculares , Linfócitos T Reguladores , Linfócitos T Auxiliares-Indutores , Trombocitopenia/patologiaRESUMO
The rotational spectra of maleic anhydride-(H2O)1-3 have been investigated for the first time by using pulsed jet Fourier transform microwave spectroscopy with complementary computational analyses. The experimental evidence points out that water tends to self-aggregate with hydrogen bonds and form homodromic cycles. Differences in bond lengths and charge distribution between the two carbonyl sites have been observed upon stepwise hydrations, which might further introduce a selectivity on the nucleophilic attack sites of hydrolysis. This study provides an important insight into the incipient solvation process (microsolvation) of maleic anhydride in water by understanding the cooperation and rearrangement of intermolecular hydrogen bonds in its stepwise hydrates.
RESUMO
Rotational spectra of the 4-fluoroacetophenone monomer and its monohydrate were investigated by Fourier transform microwave spectroscopy complemented with quantum chemical calculations. One conformer of 4-fluoroacetophenone and two isomers of 4-fluoroacetophenone-H2O have been observed in the pulsed jets. The observation of all mono-substituted 13C isotopologues in natural abundance allows an accurate structural determination of the 4-fluoroacetophenone monomer. Both detected isomers of 4-fluoroacetophenone-H2O are stabilized by a dominant O-Hâ¯O and a secondary C-Hâ¯O hydrogen bond. The fluorination effects on the geometries, intermolecular non-covalent interactions and V3 barrier of the methyl internal rotation were analysed. The relative population ratio of the two observed isomers for 4-fluoroacetophenone-H2O was also estimated to be NI/NII ≈ 7/1.
RESUMO
Rotational spectroscopy represents an invaluable tool for several applications: from the identification of new molecules in interstellar objects to the characterization of van der Waals complexes, but also for the determination of very accurate molecular structures and for conformational analyses. In this work, we used high-resolution rotational spectroscopic techniques in combination with high-level quantum-chemical calculations to address all these aspects for two isomers of cyanofuran, namely 2-furonitrile and 3-furonitrile. In particular, we have recorded and analyzed the rotational spectra of both of them from 6 to 320 GHz; rotational transitions belonging to several singly-substituted isotopologues have been identified as well. The rotational constants derived in this way have been used in conjunction with computed rotation-vibration interaction constants in order to derive a semi-experimental equilibrium structure for both isomers. Moreover, we observed the rotational spectra of four different intermolecular adducts formed by furonitrile and water, whose identification has been supported by a conformational analysis and a theoretical spectroscopic characterization. A semi-experimental determination of the intermolecular parameters has been achieved for all of them and the results have been compared with those obtained for the analogous system formed by benzonitrile and water.
RESUMO
BACKGROUND: ABO incompatibility is not a contraindication but would affect the prognosis of allogeneic hematopoietic stem cell transplantation (allo-HSCT). The dynamic change of blood phenotype is not only related to the patient's status, but also the basis for the implementation of compatible blood transfusion. The criteria for judging a complete transformation to donor-type and the principle of blood transfusion at relapse need to be unified. We aimed to illustrate the significance of blood group monitoring after allo-HSCT. MATERIAL AND METHODS: We collected 263 patients underwent ABO incompatible allo-HSCT from January 2010 to December 2019, and monitored blood type regularly according to the frequency of the patient's return visits till complete conversion or death. Non-parametric test was used to find differences among incompatible groups. We analyzed factors potentially influence blood type conversion by Binary Logistic model. Cox regression model was used to illustrate the relationship between blood-type conversion and prognosis. RESULTS: The median days of conversion were 107, 91 and 108 in major-, minor- and bidirectional groups respectively. Blood type conversion correlated with HLA compatibility (P = 0.012, OR=2.69) and acute graft-versus-host-disease (P = 0.001, OR=0.06). Patients with incomplete blood type conversion had a higher death rate than those with complete blood type conversion(P = 0.003, OR=3.703). DISCUSSION: Blood type monitoring can help to evaluate the prognosis of transplantation and assess the risk of death. It is recommended to monitor the changes of blood group antigens and antibodies, especially within a year after transplantation, to predict the risk of adverse events (such as GVHD, recurrence, death, etc.).
Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Humanos , Sistema ABO de Grupos Sanguíneos , Transplante Homólogo , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Incompatibilidade de Grupos Sanguíneos , Prognóstico , Doença Enxerto-Hospedeiro/etiologiaRESUMO
A porous magnetic covalent organic framework, Fe3O4@TPBD-TPA (terephthalaldehyde (TPA) , N, N, N', N'-tetrakis(p-aminophenyl)-p-phenylenediamine (TPBD)), was synthesized using the Schiff base reaction under mild reaction conditions. This adsorbent exhibited excellent adsorption performance for aflatoxins. The adsorption capacity of Fe3O4@TPBD-TPA for aflatoxins ranged from 64.4 to 84.4 mg/g. A magnetic solid-phase extraction combined with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method based on Fe3O4@TPBD-TPA was developed for the efficient determination of four types of aflatoxins in food samples (maize, maize oil, peanut, and peanut oil). The determination coefficients (R2) were ≥0.9972. The method exhibited detection limits ranging from 0.01 to 0.06 µg/kg and spiked recoveries of 80.0 to 113.1%. The intra-day and inter-day precision were less than 6.77%, indicating good repeatability. The adsorbent showed promising prospects for the efficient enrichment of trace amounts of aflatoxins in complex food matrices.
Assuntos
Aflatoxinas , Estruturas Metalorgânicas , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem , Fenômenos MagnéticosRESUMO
OBJECTIVES: Genetic factors play an important role in the etiology of schizophrenia (SZ). Catenin Delta 2 (CTNND2) is one of the genes regulating neuronal development in the brain. It is unclear whether CTNND2 is involved in SZ. With the hypothesis that CTNND2 may be a risk gene for SZ, we performed a case-control association analysis to investigate if CTNND2 gene single nucleotide polymorphisms (SNPs) are implicated in SZ in a Han Chinese population. MATERIALS AND METHODS: We recruited subjects from 2010 to 2022 from the Han population of northern Henan and divided them into two case-control samples, including a discovery sample (SZ = 528 and controls = 528) and replication sample (SZ = 2458 and controls = 6914). Twenty-one SNPs were genotyped on the Illumina BeadStation 500G platform using GoldenGate technology and analyzed by PLINK. The Positive and Negative Syndrome Scale (PANSS) was used to assess clinical symptoms. RESULTS: Rs16901943, rs7733427, and rs2168878 SNPs were associated with SZ (Chi2 = 7.484, 11.576, and 5.391, respectively, df = 1; p = 0.006, 0.00067, and 0.02, respectively) in the two samples. Rs10058868 was associated with SZ in male patients in the discovery sample (Chi2 = 6.264, df = 1, p = .044). Only the relationship with rs7733427 survived Bonferroni correction. Linkage disequilibrium block three haplotypes were associated with SZ in the discovery and total sample. PANSS analysis of the four SNPs implicated rs10058868 and rs2168878 in symptoms of depression and excitement, respectively, in the patients with SZ. CONCLUSION: Four SNPs of the CTNND2 gene were identified as being correlated with SZ. This gene may be involved in susceptibility to SZ.
Assuntos
Predisposição Genética para Doença , Esquizofrenia , Humanos , Masculino , Estudos de Casos e Controles , delta Catenina , Estudos de Associação Genética , Esquizofrenia/genética , População do Leste Asiático , Genótipo , Polimorfismo de Nucleotídeo Único , Frequência do GeneRESUMO
Functional data indicate that specific histone modification enzymes can be key to longevity in Caenorhabditis elegans, but the molecular basis of how chromatin structure modulates longevity is not well understood. In this study, we profiled the genome-wide pattern of trimethylation of Lys36 on histone 3 (H3K36me3) in the somatic cells of young and old Caenorhabditis elegans. We revealed a new role of H3K36me3 in maintaining gene expression stability through aging with important consequences on longevity. We found that genes with dramatic expression change during aging are marked with low or even undetectable levels of H3K36me3 in their gene bodies irrespective of their corresponding mRNA abundance. Interestingly, 3' untranslated region (UTR) length strongly correlates with H3K36me3 levels and age-dependent mRNA expression stability. A similar negative correlation between H3K36me3 marking and mRNA expression change during aging was also observed in Drosophila melanogaster, suggesting a conserved mechanism for H3K36me3 in suppressing age-dependent mRNA expression change. Importantly, inactivation of the methyltransferase met-1 resulted in a decrease in global H3K36me3 marks, an increase in mRNA expression change with age, and a shortened life span, suggesting a causative role of the H3K36me3 marking in modulating age-dependent gene expression stability and longevity.
Assuntos
Envelhecimento/genética , Caenorhabditis elegans/fisiologia , Regulação da Expressão Gênica/genética , Histonas/metabolismo , Longevidade/genética , Animais , Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Drosophila melanogaster/fisiologia , Histonas/genética , Lisina/genética , Lisina/metabolismo , MetilaçãoRESUMO
As a biological macromolecule, the superantigen staphylococcal enterotoxin C2 (SEC2) is one of the most potent known T-cell activators, and it induces massive cytotoxic granule production. With this property, SEC2 and its mutants are widely regarded as immunomodulating agents for cancer therapy. In a previous study, we constructed an MHC-II-independent mutant of SEC2, named ST-4, which exhibits enhanced immunocyte stimulation and antitumor activity. However, tumor cells have different degrees of sensitivity to SEC2/ST-4. The mechanisms of immune resistance to SEs in cancer cells have not been investigated. Herein, we show that ST-4 could activate more powerful human lymphocyte granule-based cytotoxicity than SEC2. The results of RNA-seq and atomic force microscopy (AFM) analysis showed that, compared with SKOV3 cells, the softer ES-2 cells could escape from SEC2/ST-4-induced cytotoxic T-cell-mediated apoptosis by regulating cell softness through the CDC42/MLC2 pathway. Conversely, after enhancing the stiffness of cancer cells by a nonmuscle myosin-II-specific inhibitor, SEC2/ST-4 exhibited a significant antitumor effect against ES-2 cells by promoting perforin-dependent apoptosis and the S-phase arrest. Taken together, these data suggest that cell stiffness could be a key factor of resistance to SEs in ovarian cancer, and our findings may provide new insight for SE-based tumor immunotherapy.