Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 27(3): 806-22, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25794934

RESUMO

Rhizobia preferentially enter legume root hairs via infection threads, after which root hairs undergo tip swelling, branching, and curling. However, the mechanisms underlying such root hair deformation are poorly understood. Here, we showed that a type II small GTPase, ROP10, of Medicago truncatula is localized at the plasma membrane (PM) of root hair tips to regulate root hair tip growth. Overexpression of ROP10 and a constitutively active mutant (ROP10CA) generated depolarized growth of root hairs, whereas a dominant negative mutant (ROP10DN) inhibited root hair elongation. Inoculated with Sinorhizobium meliloti, the depolarized swollen and ballooning root hairs exhibited extensive root hair deformation and aberrant infection symptoms. Upon treatment with rhizobia-secreted nodulation factors (NFs), ROP10 was transiently upregulated in root hairs, and ROP10 fused to green fluorescent protein was ectopically localized at the PM of NF-induced outgrowths and curls around rhizobia. ROP10 interacted with the kinase domain of the NF receptor NFP in a GTP-dependent manner. Moreover, NF-induced expression of the early nodulin gene ENOD11 was enhanced by the overexpression of ROP10 and ROP10CA. These data suggest that NFs spatiotemporally regulate ROP10 localization and activity at the PM of root hair tips and that interactions between ROP10 and NF receptors are required for root hair deformation and continuous curling during rhizobial infection.


Assuntos
Medicago truncatula/metabolismo , Medicago truncatula/microbiologia , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Polaridade Celular , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/metabolismo , Meristema/microbiologia , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Doenças das Plantas/microbiologia , Epiderme Vegetal/citologia , Nodulação , Estrutura Terciária de Proteína , Transdução de Sinais , Sinorhizobium meliloti/fisiologia , Frações Subcelulares/metabolismo , Nicotiana/citologia , Transformação Genética , Regulação para Cima
2.
Fungal Genet Biol ; 91: 32-42, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27037138

RESUMO

Superoxide dismutases (SODs) are scavengers of superoxide radicals, one of the main reactive oxygen species (ROS) in the cell. SOD-based ROS scavenging system constitutes the frontline defense against intra- and extracellular ROS, but the roles of SODs in the important cereal pathogen Fusarium graminearum are not very clear. There are five SOD genes in F. graminearum genome, encoding cytoplasmic Cu-Zn SOD1 and MnSOD3, mitochondrial MnSOD2 and FeSOD4, and extracellular CuSOD5. Previous studies reported that the expression of SOD1 increased during infection of wheat coleoptiles and florets. In this work we showed that the recombinant SOD1 protein had the superoxide dismutase activity in vitro, and that the SOD1-mRFP fusion protein localized in the cytoplasm of F. graminearum. The Δsod1 mutants had slightly reduced hyphal growth and markedly increased sensitivity to the intracellular ROS generator menadione. The conidial germination under extracellular oxidative stress was significantly delayed in the mutants. Wheat floret infection assay showed that the Δsod1 mutants had a reduced pathogenicity. Furthermore, the Δsod1 mutants had a significant reduction in production of deoxynivalenol mycotoxin. Our results indicate that the cytoplasmic Cu-Zn SOD1 affects fungal growth probably depending on detoxification of intracellular superoxide radicals, and that SOD1-mediated deoxynivalenol production contributes to the virulence of F. graminearum in wheat head infection.


Assuntos
Fusarium/genética , Mitocôndrias/genética , Estresse Oxidativo/genética , Superóxido Dismutase-1/genética , Citoplasma/enzimologia , Fusarium/enzimologia , Fusarium/patogenicidade , Hifas/genética , Hifas/crescimento & desenvolvimento , Mitocôndrias/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase-1/metabolismo , Superóxidos/metabolismo , Triticum/microbiologia
3.
Cell Rep ; 41(13): 111877, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36577386

RESUMO

The fungus Fusarium graminearum causes a devastating disease Gibberella stalk rot of maize. Our knowledge of molecular interactions between F. graminearum effectors and maize immunity factors is lacking. Here, we show that a group of cysteine-rich common in fungal extracellular membrane (CFEM) domain proteins of F. graminearum are required for full virulence in maize stalk infection and that they interact with two secreted maize proteins, ZmLRR5 and ZmWAK17ET. ZmWAK17ET is an alternative splicing isoform of a wall-associated kinase ZmWAK17. Both ZmLRR5 and ZmWAK17ET interact with the extracellular domain of ZmWAK17. Transgenic maize overexpressing ZmWAK17 shows increased resistance to F. graminearum, while ZmWAK17 mutants exhibit enhanced susceptibility to F. graminearum. Transient expression of ZmWAK17 in Nicotiana benthamiana triggers hypersensitive cell death, whereas co-expression of CFEMs with ZmWAK17ET or ZmLRR5 suppresses the ZmWAK17-triggered cell death. Our results show that ZmWAK17 mediates stalk rot resistance and that F. graminearum delivers apoplastic CFEMs to compromise ZmWAK17-mediated resistance.


Assuntos
Gibberella , Zea mays , Zea mays/genética , Zea mays/metabolismo , Gibberella/metabolismo , Doenças das Plantas/microbiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
4.
J Integr Plant Biol ; 52(7): 639-52, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20590994

RESUMO

ROPs (Rho-related GTPases of plants) are small GTPases that are plant-specific signaling proteins. They act as molecular switches in a variety of developmental processes. In this study, seven cDNA clones coding for ROP GTPases have been isolated in Medicago truncatula, and conserved and divergent domains are identified in these predicted MtROP proteins. Phylogenetic analysis has indicated that MtROPs are distributed into groups II, III, IV but group I. MtROP genes are expressed in various tissues at different levels. A quantitative reverse transcription PCR analysis indicated that these MtROP genes have different expression profiles in the roots in response to infection with rhizobia. The expression of MtROP3, MtROP5 and MtROP6 are increased, as the expression of Nod factor or rhizobial-induced marker genes--NFP, Rip1 and Enod11; MtROP10 has showed enhanced expression at a certain post-inoculation time point. No significant changes in MtROP7 and MtROP9 expression have been detected and MtROP8 expression is dramatically decreased by about 80%-90%. Additionally, ROP promoter-GUS analysis has showed that MtROP3, MtROP5 and MtROP6 have elevated expression in transgenic root hairs after rhizobial inoculation. These results might suggest a role for some ROP GTPases in the regulation of early stages during rhizobial infection in symbiosis.


Assuntos
Proteínas de Ligação ao GTP/fisiologia , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Medicago truncatula/microbiologia , Proteínas de Plantas/fisiologia , Simbiose/fisiologia , Sequência de Aminoácidos , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rhizobium/genética , Homologia de Sequência de Aminoácidos , Sinorhizobium meliloti/crescimento & desenvolvimento , Sinorhizobium meliloti/fisiologia , Simbiose/genética
5.
Genomics ; 92(2): 115-21, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18550327

RESUMO

In nonplant species, many heat-shock transcription factors (HSFs) undergo spatiotemporal-specific alternative splicing. However, little is known about the spatiotemporal-specific splicing of HSFs in plants. Previously, we reported that the alfalfa HSF gene MsHSF1 undergoes multiple alternative splicing events in various tissues. Here, we identified another spliced transcript isoform, MsHSF1c, containing a 177-base tandem repeat, and showed that the low-abundance MsHSF1c is a nodule-specific transcript of MsHSF1. We also found that MsHSF1 presents multiple alleles with single-base variations and the expression of MsHSF1 alleles has allele-specific differences in alfalfa nodules. Because single-base variations at position 1006 change the AT of MsHSF1b to GT in MsHSF1b-3, creating a pair of donor/acceptor sites with the AG of MsHSF1b/1b-1 at position 827-828 for pre-mRNA splicing, we suggest that MsHSF1c may be generated by trans-splicing between alleles MsHSF1b-3 and MsHSF1b or MsHSF1b-1. These results provide new insight into the role of tissue-specific contribution in the transcription of plant HSF genes.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/genética , Medicago sativa/genética , Proteínas de Plantas/genética , Trans-Splicing , Fatores de Transcrição/genética , Transcrição Gênica , Alelos , Sequência de Aminoácidos , Sequência de Bases , Variação Genética , Fatores de Transcrição de Choque Térmico , Dados de Sequência Molecular , Isoformas de Proteínas/genética , Análise de Sequência de DNA , Sequências de Repetição em Tandem
6.
J Microbiol ; 46(2): 137-45, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18545962

RESUMO

GntR-type transcriptional regulators are involved in the regulation of various biological processes in bacteria, but little is known about their functions in Sinorhizobium meliloti. Here, we identified two GntR-type transcriptional regulator genes, gtrA and gtrB, from S. meliloti strain 1021. Both the gtrA1 mutant and the gtrB1 mutant had lower growth rates and maximal cell yields on rich and minimal media, as well as lower cell motility on swimming plates, than did the wild-type strain. Both mutants were also symbiotically deficient. Alfalfa plants inoculated with wild-type strain 1021 formed pink elongated nodules on primary roots. In contrast, the plants inoculated with the gtrA1 and gtrB1 mutants formed relatively smaller, round, light pink nodules mainly on lateral roots. During the first 3 approximately 4 weeks post-inoculation, the plants inoculated with the gtrA1 and gtrB1 mutants were apparently stunted, with lower levels of nitrogenase activity, but there was a remarkable increase in the number of nodules compared to those inoculated with the wild-type strain. Moreover, the gtrA1 and gtrB1 mutants not only showed delayed nodulation, but also showed markedly reduced nodulation competition. These results demonstrated that both GtrA and GtrB affect cell growth and effective symbiosis of S. meliloti. Our work provides new insight into the functions of GntR-like transcriptional regulators.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Repressoras/metabolismo , Sinorhizobium meliloti/citologia , Sinorhizobium meliloti/crescimento & desenvolvimento , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proliferação de Células , Medicago sativa/microbiologia , Mutação , Fenótipo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Alinhamento de Sequência , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/fisiologia , Simbiose
7.
Biochem Biophys Res Commun ; 364(4): 1056-61, 2007 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-17976370

RESUMO

Plant heat shock transcription factors (HSF) are highly complex. In this study, we identified an alfalfa HSF gene MsHSF1 that is composed of four exons and three introns in the encoding region. The intron1-exon2-intron2-exon3-intron3 as an intervening sequence was inserted at the conserved position that separates the coding region for the DNA-binding domain by single intron in other known plant HSF genes. Alternative splicing of MsHSF1 has generated five transcript isoforms. Spliced transcript MsHSF1b consisted of exon1 and exon4, encodes a class A1 HSF protein that can specifically bind to the heat shock elements in vitro. Other four spliced transcripts (MsHSF1a-1 to 4) consist of exon1, part of the intervening sequence and exon4. These transcripts carry the premature termination codon and are low-abundant. Apparently these transcripts are the targets of nonsense-mediated mRNA decay (NMD). These results provide new insight into roles in the expression regulation of plant HSF genes.


Assuntos
Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Choque Térmico/genética , Medicago sativa/genética , Proteínas de Plantas/genética , Sítios de Splice de RNA/genética , Fatores de Transcrição/genética , Sequência de Bases , Fatores de Transcrição de Choque Térmico , Dados de Sequência Molecular
9.
Res Microbiol ; 161(7): 556-64, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20594941

RESUMO

Sinorhizobium meliloti can live as a saprophyte in soil or as a nitrogen-fixing symbiont inside the root nodule cells of alfalfa and related legumes by utilizing different organic compounds as its carbon source. Here we have identified the matPQMAB operon in S. meliloti 1021. Within this operon, matP, matQ and the M region of the fused gene matMA encode an extracytoplasmic solute receptor, a small transmembrane protein and a large transmembrane protein, consisting of three components of the tripartite ATP-independent periplasmic (TRAP) transporter for malonate transport. The A region of the fused gene matMA and matB encode malonate-metabolizing enzymes, malonyl-CoA decarboxylase and malonyl-CoA synthetase. The null mutant of each matPQMAB gene is unable to grow on M9 minimal medium containing malonate as the sole carbon source. However, these mutants can induce the formation of efficient nitrogen-fixing root nodules on alfalfa. The matPQMAB operon is expressed in free-living bacterial cells and symbiotic bacterial cells from infection threads and root nodules. The GntR family transcriptional regulator, GtrA, specifically binds the promoter of the matPQMAB operon, positively regulating its expression. Moreover, the matPQMAB can be transcriptionally induced by malonate. These results suggested that a C(3)-dicarboxylic acid TRAP transporter is responsible for malonate transport in S. meliloti.


Assuntos
Transportadores de Ácidos Dicarboxílicos/genética , Regulação Bacteriana da Expressão Gênica , Malonatos/metabolismo , Óperon , Sinorhizobium meliloti/metabolismo , Fatores de Transcrição/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Transportadores de Ácidos Dicarboxílicos/metabolismo , Genes Bacterianos , Transporte de Íons , Medicago sativa/microbiologia , Fixação de Nitrogênio/genética , Plasmídeos , Reação em Cadeia da Polimerase , RNA Bacteriano , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/crescimento & desenvolvimento , Simbiose/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA