Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2025): rspb20240844, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38889781

RESUMO

Biological invasions are among the threats to global biodiversity and social sustainability, especially on islands. Identifying the threshold of area at which non-native species begin to increase abruptly is crucial for early prevention strategies. The small-island effect (SIE) was proposed to quantify the nonlinear relationship between native species richness and area but has not yet been applied to non-native species and thus to predict the key breakpoints at which established non-native species start to increase rapidly. Based on an extensive global dataset, including 769 species of non-native birds, mammals, amphibians and reptiles established on 4277 islands across 54 archipelagos, we detected a high prevalence of SIEs across 66.7% of archipelagos. Approximately 50% of islands have reached the threshold area and thus may be undergoing a rapid increase in biological invasions. SIEs were more likely to occur in those archipelagos with more non-native species introduction events, more established historical non-native species, lower habitat diversity and larger archipelago area range. Our findings may have important implications not only for targeted surveillance of biological invasions on global islands but also for predicting the responses of both non-native and native species to ongoing habitat fragmentation under sustained land-use modification and climate change.


Assuntos
Biodiversidade , Espécies Introduzidas , Ilhas , Animais , Conservação dos Recursos Naturais , Ecossistema , Aves/fisiologia , Anfíbios/fisiologia , Mamíferos/fisiologia , Répteis/fisiologia
2.
Biol Reprod ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058647

RESUMO

Antral follicle size is a useful predictive marker of the competency of enclosed oocytes for yielding an embryo following in vitro maturation and fertilization. However, the molecular mechanisms underpinning oocyte developmental potential during bovine antral follicle growth are still unclear. Here, we used a modified single-cell multi-omics approach to analyze the transcriptome, DNA methylome and chromatin accessibility in parallel for oocytes and cumulus cells collected from bovine antral follicles of different sizes. Transcriptome profiling identified three types of oocytes (Small, Medium and Large) that underwent different developmental trajectories, with Large oocytes exhibiting the largest average follicle size and characteristics resembling metaphase-II oocytes. Differential expression analysis and real-time PCR assay showed that most replication-dependent histone genes were highly expressed in Large oocytes. The joint analysis of multi-omics data revealed that the transcription of 20 differentially expressed genes in Large oocytes was associated with both DNA methylation and chromatin accessibility. In addition, oocyte-cumulus interaction analysis showed that inflammation, DNA damage, and p53 signaling pathways were active in Small oocytes, which had the smallest average follicle sizes. We further confirmed that p53 pathway inhibition in in vitro maturation experiments using oocytes obtained from small antral follicles could improve the quality of oocytes and increased the blastocyte rate after in vitro fertilization and culture. Our work provides new insights into the intricate orchestration of bovine oocyte fate determination during antral folliculogenesis, which is instrumental for optimizing in vitro maturation techniques to optimize oocyte quality.

3.
J Exp Bot ; 75(8): 2435-2450, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38243353

RESUMO

WRKY transcription factors play a central role in controlling plant organ senescence; however, it is unclear whether and how they regulate petal senescence in the widely grown ornamental plant tulip (Tulipa gesneriana). In this study, we report that TgWRKY75 promotes petal senescence by enhancing the synthesis of both abscisic acid (ABA) and salicylic acid (SA) in tulip and in transgenic Arabidopsis. The expression level of TgWRKY75 was up-regulated in senescent petals, and exogenous ABA or SA treatment induced its expression. The endogenous contents of ABA and SA significantly increased during petal senescence and in response to TgWRKY75 overexpression. Two SA synthesis-related genes, TgICS1 and TgPAL1, were identified as direct targets of TgWRKY75, which binds to their promoters. In parallel, TgWRKY75 activated the expression of the ABA biosynthesis-related gene TgNCED3 via directly binding to its promoter region. Site mutation of the W-box core motif located in the promoters of TgICS1, TgPAL1, and TgNCED3 eliminated their interactions with TgWRKY75. In summary, our study demonstrates a dual regulation of ABA and SA biosynthesis by TgWRKY75, revealing a synergistic process of tulip petal senescence through feedback regulation between TgWRKY75 and the accumulation of ABA and SA.


Assuntos
Arabidopsis , Tulipa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Tulipa/metabolismo , Ácido Salicílico/metabolismo , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo
4.
BMC Cancer ; 24(1): 936, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090564

RESUMO

PURPOSE: To evaluate the dosimetric characteristics of ZAP-X stereotactic radiosurgery (SRS) for single brain metastasis by comparing with two mature SRS platforms. METHODS: Thirteen patients with single brain metastasis treated with CyberKnife (CK) G4 were selected retrospectively. The prescription dose for the planning target volume (PTV) was 18-24 Gy for 1-3 fractions. The PTV volume ranged from 0.44 to 11.52 cc.Treatment plans of thirteen patients were replanned using the ZAP-X plan system and the Gamma Knife (GK) ICON plan system with the same prescription dose and organs at risk (OARs) constraints. The prescription dose of PTV was normalized to 70% for both ZAP-X and CK, while it was 50% for GK. The dosimetric parameters of three groups included the plan characteristics (CI, GI, GSI, beams, MUs, treatment time), PTV (D2, D95, D98, Dmin, Dmean, Coverage), brain tissue (volume of 100%-10% prescription dose irradiation V100%-V10%, Dmean) and other OARs (Dmax, Dmean),all of these were compared and evaluated. All data were read and analyzed with MIM Maestro. One-way ANOVA or a multisample Friedman rank sum test was performed, where p < 0.05 indicated significant differences. RESULTS: The CI of GK was significantly lower than that of ZAP-X and CK. Regarding the mean value, ZAP-X had a lower GI and higher GSI, but there was no significant difference among the three groups. The MUs of ZAP-X were significantly lower than those of CK, and the mean value of the treatment time of ZAP-X was significantly shorter than that of CK. For PTV, the D95, D98, and target coverage of CK were higher, while the mean of Dmin of GK was significantly lower than that of CK and ZAP-X. For brain tissue, ZAP-X showed a smaller volume from V100% to V20%; the statistical results of V60% and V50% showed a difference between ZAP-X and GK, while the V40% and V30% showed a significant difference between ZAP-X and the other two groups; V10% and Dmean indicated that GK was better. Excluding the Dmax of the brainstem, right optic nerve and optic chiasm, the mean value of all other OARs was less than 1 Gy. For the brainstem, GK and ZAP-X had better protection, especially at the maximum dose. CONCLUSION: For the SRS treating single brain metastasis, all three treatment devices, ZAP-X system, CyberKnife G4 system, and GammaKnife system, could meet clinical treatment requirements. The newly platform ZAP-X could provide a high-quality plan equivalent to or even better than CyberKnife and Gamma Knife, with ZAP-X presenting a certain dose advantage, especially with a more conformal dose distribution and better protection for brain tissue. As the ZAP-X systems get continuous improvements and upgrades, they may become a new SRS platform for the treatment of brain metastasis.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Humanos , Radiocirurgia/métodos , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Masculino , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos Retrospectivos , Feminino , Pessoa de Meia-Idade , Radiometria , Idoso , Adulto , Órgãos em Risco/efeitos da radiação
5.
Theor Appl Genet ; 137(6): 133, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38753199

RESUMO

KEY MESSAGE: This study found that three paralogous R2R3-MYB transcription factors exhibit functional divergence among different subspecies and cultivated types in radish. Cultivated radish taproots exhibit a wide range of color variations due to unique anthocyanin accumulation patterns in various tissues. This study investigated the universal principles of taproot color regulation that developed during domestication of different subspecies and cultivated types. The key candidate genes RsMYB1 and RsMYB2, which control anthocyanin accumulation in radish taproots, were identified using bulked segregant analysis in two genetic populations. We introduced the RsMYB1-RsF3'H-RsMYB1Met genetic model to elucidate the complex and unstable genetic regulation of taproot flesh color in Xinlimei radish. Furthermore, we analyzed the expression patterns of three R2R3-MYB transcription factors in lines with different taproot colors and investigated the relationship between RsMYB haplotypes and anthocyanin accumulation in a natural population of 56 germplasms. The results revealed that three paralogous RsMYBs underwent functional divergence during radish domestication, with RsMYB1 regulating the red flesh of Xinlimei radish, and RsMYB2 and RsMYB3 regulating the red skin of East Asian big long radish (R. sativus var. hortensis) and European small radish (R. sativus var. sativus), respectively. Moreover, RsMYB1-H1, RsMYB2-H10, and RsMYB3-H6 were identified as the primary haplotypes exerting regulatory functions on anthocyanin synthesis. These findings provide an understanding of the genetic mechanisms regulating anthocyanin synthesis in radish and offer a potential strategy for early prediction of color variations in breeding programs.


Assuntos
Pigmentação , Proteínas de Plantas , Raphanus , Fatores de Transcrição , Antocianinas/metabolismo , Antocianinas/biossíntese , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Haplótipos , Fenótipo , Pigmentação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raphanus/genética , Raphanus/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Langmuir ; 40(33): 17430-17443, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39110474

RESUMO

Layered double hydroxides (LDHs) have garnered significant attention from researchers in the field of adsorption due to their unique laminated structures and ion exchange properties. LDHs with various anion intercalation showed different adsorption effects on adsorbing ions, but the corresponding adsorption mechanisms are ambiguous. In this study, three types of NiAl-LDHs were synthesized, utilizing NO3-, CO32-, or Cl- as the interlayer anions. Batch tests were conducted to study their adsorption performances for Br-. Among them, the LDH with a NO3- intercalation layer exhibited the highest adsorption capacity for Br-, reaching up to 1.40 mmol g-1. The adsorption kinetics, mechanism, and renewability of these NiAl-LDHs were systematically compared. As a result, the type of Br- adsorption by all three materials was single molecular layer chemisorption. Moreover, the thermodynamic results of adsorption suggested that the adsorption of Br- was a spontaneous exothermic process. X-ray photoelectron spectroscopy, X-ray diffraction, and point of zero charge analysis collectively indicated that the adsorption of Br- by LDHs primarily occurred through interlayer ion exchange and electrostatic interactions. Structural characterizations of the adsorbents revealed that Br- entered the interlayers of the three LDHs, causing varying degrees of reduction in the interlayer spacing. Density functional theory calculations indicated that the interlayer binding energy of LDH with NO3- intercalation was the lowest, thereby making it more susceptible NO3- to be exchanged with Br-. Finally, the stability of the NiAl-LDHs was studied. The NiAl-LDHs retains a high removal efficiency of Br- even after 5 cycles of adsorption and desorption.

7.
Langmuir ; 40(18): 9688-9701, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38654502

RESUMO

Rubidium (Rb) and cesium (Cs) have important applications in highly technical fields. Salt lakes contain huge reserves of Rb and Cs with industrial significance, which can be utilized after extraction. In this study, a composite magnetic adsorbent (Fe3O4@ZIF-8@AMP, AMP = ammonium phosphomolybdate) was prepared and its adsorption properties for Rb+ and Cs+ were studied in simulated and practical brine. The structure of the adsorbent was characterized by SEM, XRD, N2 adsorption-desorption, FT-IR, and vibrating sample magnetometer (VSM). The adsorbent had good adsorption affinity for Rb+ and Cs+. The Langmuir model and pseudo-second-order dynamics described the adsorbing isotherm and kinetic dates, respectively. The adsorption capacity and adsorption rate of Fe3O4@ZIF-8@AMP were increased by 1.86- and 2.5-fold compared with those of powdered crystal AMP, owing to the large specific surface area and high dispersibility of the adsorbent in the solution. The adsorbent was rapidly separated from the solution within 17 s using an applied magnetic field owing to the good magnetic properties. The composite adsorbent selectively adsorbed Rb+ and Cs+ from the practical brine even in the presence of a large number of coexisting ions. The promising adsorbent can be used to extract Rb+ and Cs+ from aqueous solutions.

8.
Br J Nutr ; 131(8): 1425-1435, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38185814

RESUMO

Few studies have evaluated the joint effect of trace elements on spontaneous preterm birth (SPTB). This study aimed to examine the relationships between the individual or mixed maternal serum concentrations of Fe, Cu, Zn, Se, Sr and Mo during pregnancy, and risk of SPTB. Inductively coupled plasma MS was employed to determine maternal serum concentrations of the six trace elements in 192 cases with SPTB and 282 controls with full-term delivery. Multivariate logistic regression, weighted quantile sum regression (WQSR) and Bayesian kernel machine regression (BKMR) were used to evaluate the individual and joint effects of trace elements on SPTB. The median concentrations of Sr and Mo were significantly higher in controls than in SPTB group (P < 0·05). In multivariate logistic regression analysis, compared with the lowest quartile levels of individual trace elements, the third- and fourth-quartile Sr or Mo concentrations were significantly associated with reduced risk of SPTB with adjusted OR (aOR) of 0·432 (95 CI < 0·05). In multivariate logistic regression analysis, compared with the lowest quartile levels of individual trace elements, the third- and fourth-quartile Sr or Mo concentrations were significantly associated with reduced risk of SPTB with adjusted aOR of 0·432 (95 % CI 0·247, 0·756), 0·386 (95 % CI 0·213, 0·701), 0·512 (95 % CI 0·297, 0·883) and 0·559 (95 % CI 0·321, 0·972), respectively. WQSR revealed the inverse combined effect of the trace elements mixture on SPTB (aOR = 0·368, 95 % CI 0·228, 0·593). BKMR analysis confirmed the overall mixture of the trace elements was inversely associated with the risk of SPTB, and the independent effect of Sr and Mo was significant. Our findings suggest that the risk of SPTB decreased with concentrations of the six trace elements, with Sr and Mo being the major contributors.


Assuntos
Nascimento Prematuro , Oligoelementos , Gravidez , Feminino , Recém-Nascido , Humanos , Estudos de Casos e Controles , Teorema de Bayes , China/epidemiologia
9.
Physiol Plant ; 176(1): e14210, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380683

RESUMO

Perennial ryegrass (Lolium perenne L.) is an outstanding turfgrass and forage cultivated in temperate regions worldwide. However, poor tolerance to extreme cold, heat, or drought limits wide extension and cultivation. DEHYDRATION-RESPONSIVE ELEMENT BINDING FACTOR1s (DREB1s) play a vital role in enhancing plant tolerance to abiotic stress, specifically for low-temperature stress. In this study, a total of 24 LpDREB1 family members were identified from the released genome of perennial ryegrass. Phylogenetic analysis showed that the LpDREB1 genes are divided into 7 groups that have close relationships with rice homologues. Conserved motif analysis revealed that members within the same group have similar conserved motif compositions. All LpDREB1s lack introns, and the promoter sequences of LpDREB1 genes contain multiple cis-acting elements associated with stress response, phytohormone signal transduction and plant growth and development. The majority of LpDREB1 genes were upregulated by drought, submergence, heat and cold stress treatments, including LpDREB1H2. Further investigation showed that LpDREB1H2 is localized in the nucleus. Overexpression of LpDREB1H2 in Arabidopsis induced the expression of cold-responsive (COR) genes, increased the levels of osmotic adjusting substances, and enhanced antioxidant enzyme activities, thus improving the cold tolerance of Arabidopsis. This study lays a foundation for further understanding the function of LpDREB1 genes in perennial ryegrass and provides insights for plant stress tolerance breeding.


Assuntos
Arabidopsis , Lolium , Fatores de Transcrição/metabolismo , Resposta ao Choque Frio/genética , Lolium/genética , Lolium/metabolismo , Arabidopsis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Plantas/metabolismo , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas/genética
10.
J Pediatr Gastroenterol Nutr ; 78(2): 231-240, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38374564

RESUMO

OBJECTIVES: Collagenous gastritis (CG) is a rare cause of refractory dyspepsia and anemia that frequently affects children and young adults and whose histological hallmark is chronic mucosal inflammation with a subepithelial collagen band. The etiology remains obscure, and no established treatments exist. We investigated the pathogenesis of CG by determining the expression profiles of genes related to immunity and inflammation in index biopsies. METHODS: Gastric biopsies from 10 newly diagnosed patients with CG were evaluated using the NanoString nCounter assay. Gastric biopsies from 14 normal individuals served as controls. The gene expression ratios for CG versus controls were determined in pooled samples and confirmed in individual samples by quantitative reverse transcription polymerase chain reaction. The results were compared with previously reported expression data from a cohort of patients with collagenous colitis, a colonic disorder with similar morphology, including subepithelial collagen band. RESULTS: CG biopsies featured enhanced expression of key genes encoding both Th1 (IFNγ, TNF-α, IL-2, IL-10, IL-12A, IL-12B, and IL-18) and Th2 cytokines (IL-3, IL-4, IL-5, IL-6, and IL-13). In contrast, biopsies from patients with CC exhibited upregulated Th1 cytokines only. CONCLUSIONS: We show in this first published gene expression profiling study that CG involves simultaneous upregulation of Th1 and Th2 cytokines. This finding is unique, contrasting with other types of chronic gastritis as well as with collagenous colitis, which shares the presence of a collagen band. Involvement of Th2 immunity in CG would support further investigation of potential dietary, environmental, or allergic factors to guide future therapeutic trials.


Assuntos
Colite Colagenosa , Gastrite , Síndromes de Malabsorção , Criança , Adulto Jovem , Humanos , Colite Colagenosa/genética , Citocinas , Gastrite/diagnóstico , Inflamação/complicações , Colágeno/análise , Síndromes de Malabsorção/complicações , Células Th1/metabolismo , Células Th1/patologia
11.
Future Oncol ; : 1-14, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39072397

RESUMO

Aim: To identify the optimal first-line treatment for patients with extensive-stage small-cell lung cancer (ES-SCLC). Materials & methods: We conducted a network meta-analysis (CRD42023486863) to systematically evaluate the efficacy and safety of eight first-line treatment regimens for ES-SCLC, including 15 clinical trials. Results: Our analysis showed that the PD-1/PD-L1 + etoposide combined with platinum (EP) and PD-L1 + vascular endothelial growth factor (VEGF) + EP regimens significantly enhanced overall survival and progression-free survival, with subgroup analysis revealing that serplulimab ranked as the most promising option for improving overall survival. Integrating anti-angiogenesis drugs into immunochemotherapy presents potential benefits, with an increased incidence of adverse events necessitating further investigation. Conclusion: Our findings offer valuable insights for future research and for developing more effective treatment strategies for ES-SCLC, underscoring the critical need for continued innovation in this therapeutic area.


[Box: see text].

12.
Acta Pharmacol Sin ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902501

RESUMO

The impairment of blood-brain barrier (BBB) integrity is the pathological basis of hemorrhage transformation and vasogenic edema following thrombolysis and endovascular therapy. There is no approved drug in the clinic to reduce BBB damage after acute ischemic stroke (AIS). Glial growth factor 2 (GGF2), a recombinant version of neuregulin-1ß that can stimulates glial cell proliferation and differentiation, has been shown to alleviate free radical release from activated microglial cells. We previously found that activated microglia and proinflammatory factors could disrupt BBB after AIS. In this study we investigated the effects of GGF2 on AIS-induced BBB damage as well as the underlying mechanisms. Mouse middle cerebral artery occlusion model was established: mice received a 90-min ischemia and 22.5 h reperfusion (I/R), and were treated with GGF2 (2.5, 12.5, 50 ng/kg, i.v.) before the reperfusion. We showed that GGF2 treatment dose-dependently decreased I/R-induced BBB damage detected by Evans blue (EB) and immunoglobulin G (IgG) leakage, and tight junction protein occludin degradation. In addition, we found that GGF2 dose-dependently reversed AIS-induced upregulation of vesicular transcytosis increase, caveolin-1 (Cav-1) as well as downregulation of major facilitator superfamily domain containing 2a (Mfsd2a). Moreover, GGF2 decreased I/R-induced upregulation of PDZ and LIM domain protein 5 (Pdlim5), an adaptor protein that played an important role in BBB damage after AIS. In addition, GGF2 significantly alleviated I/R-induced reduction of YAP and TAZ, microglial cell activation and upregulation of inflammatory factors. Together, these results demonstrate that GGF2 treatment alleviates the I/R-compromised integrity of BBB by inhibiting Mfsd2a/Cav-1-mediated transcellular permeability and Pdlim5/YAP/TAZ-mediated paracellular permeability.

13.
BMC Pregnancy Childbirth ; 24(1): 167, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38408952

RESUMO

BACKGROUND: The majority of congenital heart diseases (CHDs) are thought to result from the interactions of genetics and the environment factors. This study aimed to assess the association of maternal non-occupational phthalates exposure, metabolic gene polymorphisms and their interactions with risk of CHDs in offspring. METHODS: A multicenter case-control study of 245 mothers with CHDs infants and 268 control mothers of health infant was conducted from six hospitals. Maternal urinary concentrations of eight phthalate metabolites were measured by ultra-high performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS/MS). Twenty single nucleotide polymorphisms (SNPs) in cytochrome P450 family 2 subfamily C member 9 (CYP2C9) and 19 (CYP2C19), uridine diphosphate (UDP) glucuronosyl transferase family 1 member A7 (UGT1A7), family 2 member B7 (UGT2B7) and B15(UGT2B15) genes were genotyped. The multivariate logistic regressions were used to estimate the association between maternal phthalates exposure or gene polymorphisms and risk of CHDs. Generalized multifactor dimensionality reduction (GMDR) was used to analyze the gene-gene and gene-phthalates exposure interactions. RESULTS: There was no significant difference in phthalate metabolites concentrations between the cases and controls. No significant positive associations were observed between maternal exposure to phthalates and CHDs. The SNPs of UGT1A7 gene at rs4124874 (under three models, log-additive: aOR = 1.74, 95% CI:1.28-2.37; dominant: aOR = 1.86, 95% CI:1.25-2.78; recessive: aOR = 2.50, 95% CI: 1.26-4.94) and rs887829 (under the recessive model: aOR = 13.66, 95% CI: 1.54-121) were significantly associated with an increased risk of CHDs. Furthermore, the associations between rs4124874 (under log-additive and dominant models) of UGT1A7 were statistically significant after the false discovery rate correction. No significant gene-gene or gene-phthalate metabolites interactions were observed. CONCLUSIONS: The polymorphisms of maternal UGT1A7 gene at rs4124874 and rs887829 were significantly associated with an increased risk of CHDs. More large-scale studies or prospective study designs are needed to confirm or refute our findings in the future.


Assuntos
Cardiopatias Congênitas , Exposição Materna , Ácidos Ftálicos , Feminino , Humanos , Exposição Materna/efeitos adversos , Estudos de Casos e Controles , Espectrometria de Massas em Tandem , Estudos Prospectivos , Cardiopatias Congênitas/induzido quimicamente , Cardiopatias Congênitas/genética , Polimorfismo de Nucleotídeo Único , Fatores de Risco
14.
BMC Pregnancy Childbirth ; 24(1): 547, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164614

RESUMO

BACKGROUND: The congenital ventricular outflow tract malformations (CVOTMs) is a major congenital heart diseases (CHDs) subtype, and its pathogenesis is complex and unclear. Lipid metabolic plays a crucial role in embryonic cardiovascular development. However, due to the limited types of detectable metabolites in previous studies, findings on lipid metabolic and CHDs are still inconsistent, and the possible mechanism of CHDs remains unclear. METHODS: The nest case-control study obtained subjects from the multicenter China Teratology Birth Cohort (CTBC), and maternal serum from the pregnant women enrolled during the first trimester was utilized. The subjects were divided into a discovery set and a validation set. The metabolomics of CVOTMs and normal fetuses were analyzed by targeted lipid metabolomics. Differential comparison, random forest and lasso regression were used to screen metabolic biomarkers. RESULTS: The lipid metabolites were distributed differentially between the cases and controls. Setting the selection criteria of P value < 0.05, and fold change (FC) > 1.2 or < 0.833, we screened 70 differential metabolites. Within the prediction model by random forest and lasso regression, DG (14:0_18:0), DG (20:0_18:0), Cer (d18:2/20:0), Cer (d18:1/20:0) and LPC (0:0/18:1) showed good prediction effects in discovery and validation sets. Differential metabolites were mainly concentrated in glycerolipid and glycerophospholipids metabolism, insulin resistance and lipid & atherosclerosis pathways, which may be related to the occurrence and development of CVOTMs. CONCLUSION: Findings in this study provide a new metabolite data source for the research on CHDs. The differential metabolites and involved metabolic pathways may suggest new ideas for further mechanistic exploration of CHDs, and the selected biomarkers may provide some new clues for detection of COVTMs.


Assuntos
Biomarcadores , Cardiopatias Congênitas , Metabolômica , Humanos , Feminino , Gravidez , Estudos de Casos e Controles , Metabolômica/métodos , Biomarcadores/sangue , Adulto , Cardiopatias Congênitas/sangue , China , Lipídeos/sangue , Obstrução do Fluxo Ventricular Externo/sangue , Primeiro Trimestre da Gravidez/sangue , Metabolismo dos Lipídeos
15.
BMC Public Health ; 24(1): 2196, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39138466

RESUMO

PURPOSE OF REVIEW: There are significant differences in the transmission rate and mortality rate of COVID-19 under environmental conditions such as seasons and climates. However, the impact of environmental factors on the role of the COVID-19 pandemic and the transmission mechanism of the SARS-CoV-2 is unclear. Therefore, a comprehensive understanding of the impact of environmental factors on COVID-19 can provide innovative insights for global epidemic prevention and control policies and COVID-19 related research. This review summarizes the evidence of the impact of different natural and social environmental factors on the transmission of COVID-19 through a comprehensive analysis of epidemiology and mechanism research. This will provide innovative inspiration for global epidemic prevention and control policies and provide reference for similar infectious diseases that may emerge in the future. RECENT FINDINGS: Evidence reveals mechanisms by which natural environmental factors influence the transmission of COVID-19, including (i) virus survival and transport, (ii) immune system damage, (iii) inflammation, oxidative stress, and cell death, and (iiii) increasing risk of complications. All of these measures appear to be effective in controlling the spread or mortality of COVID-19: (1) reducing air pollution levels, (2) rational use of ozone disinfection and medical ozone therapy, (3) rational exposure to sunlight, (4) scientific ventilation and maintenance of indoor temperature and humidity, (5) control of population density, and (6) control of population movement. Our review indicates that with the continuous mutation of SARS-CoV-2, high temperature, high humidity, low air pollution levels, and low population density more likely to slow down the spread of the virus.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/prevenção & controle , Humanos , Poluição do Ar/efeitos adversos , Pandemias
16.
BMC Anesthesiol ; 24(1): 123, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561654

RESUMO

BACKGROUND: Glycopyrrolate-neostigmine (G/N) for reversing neuromuscular blockade (NMB) causes fewer changes in heart rate (HR) than atropine-neostigmine (A/N). This advantage may be especially beneficial for elderly patients. Therefore, this study aimed to compare the cardiovascular effects of G/N and A/N for the reversal of NMB in elderly patients. METHODS: Elderly patients aged 65-80 years who were scheduled for elective non-cardiac surgery under general anesthesia were randomly assigned to the glycopyrrolate group (group G) or the atropine group (group A). Following the last administration of muscle relaxants for more than 30 min, group G received 4 ug/kg glycopyrrolate and 20 ug/kg neostigmine, while group A received 10 ug/kg atropine and 20 ug/kg neostigmine. HR, mean arterial pressure (MAP), and ST segment in lead II (ST-II) were measured 1 min before administration and 1-15 min after administration. RESULTS: HR was significantly lower in group G compared to group A at 2-8 min after administration (P < 0.05). MAP was significantly lower in group G compared to group A at 1-4 min after administration (P < 0.05). ST-II was significantly depressed in group A compared to group G at 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, and 15 min after administration (P < 0.05). CONCLUSIONS: In comparison to A/N, G/N for reversing residual NMB in the elderly has a more stable HR, MAP, and ST-II within 15 min after administration.


Assuntos
Sistema Cardiovascular , Recuperação Demorada da Anestesia , Bloqueio Neuromuscular , Idoso , Humanos , Neostigmina/farmacologia , Glicopirrolato , Atropina/farmacologia
17.
Mikrochim Acta ; 191(9): 528, 2024 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-39120734

RESUMO

A dual-template molecularly imprinted electrochemical sensor was developed for the simultaneous detection of serotonin (5-HT) and glutamate (Glu). First, amino-functionalized reduced graphene oxide (NRGO) was used as the modification material of a GCE to increase its electrical conductivity and specific surface area, using Glu and 5-HT as dual-template molecules and o-phenylenediamine (OPD) with self-polymerization ability as functional monomers. Through self-assembly and electropolymerization, dual-template molecularly imprinted polymers were formed on the electrode. After removing the templates, the specific recognition binding sites were exposed. The amount of NRGO, polymerization parameters, and elution parameters were further optimized to construct a dual-template molecularly imprinted electrochemical sensor, which can specifically recognize double-target molecules Glu and 5-HT. The differential pulse voltammetry (DPV) technique was used to achieve simultaneous detection of Glu and 5-HT based on their distinct electrochemical activities under specific conditions. The sensor showed a good linear relationship for Glu and 5-HT in the range 1 ~ 100 µM, and the detection limits were 0.067 µM and 0.047 µM (S/N = 3), respectively. The sensor has good reproducibility, repeatability, and selectivity. It was successfully utilized to simultaneously detect Glu and 5-HT in mouse serum, offering a more dependable foundation for objectively diagnosing and early warning of depression. Additionally, the double signal sensing strategy also provides a new approach for the simultaneous detection of both electroactive and non-electroactive substances.


Assuntos
Técnicas Eletroquímicas , Ácido Glutâmico , Grafite , Limite de Detecção , Impressão Molecular , Fenilenodiaminas , Serotonina , Serotonina/sangue , Serotonina/análise , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Animais , Ácido Glutâmico/análise , Ácido Glutâmico/sangue , Ácido Glutâmico/química , Grafite/química , Camundongos , Fenilenodiaminas/química , Depressão/diagnóstico , Depressão/sangue , Eletrodos , Biomarcadores/sangue , Biomarcadores/análise , Reprodutibilidade dos Testes
18.
Arch Pharm (Weinheim) ; : e2400137, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963324

RESUMO

In our previous study, we reported a series of N-(9,10-anthraquinone-2-carbonyl) amino acid derivatives as novel inhibitors of xanthine oxidase (XO). Recognizing the suboptimal drug-like properties associated with the anthraquinone moiety, we embarked on a nonanthraquinone medicinal chemistry exploration in the current investigation. Through systematic structure-activity relationship (SAR) studies, we identified a series of 4-(isopentyloxy)-3-nitrobenzamide derivatives exhibiting excellent in vitro potency against XO. The optimized compound, 4-isopentyloxy-N-(1H-pyrazol-3-yl)-3-nitrobenzamide (6k), demonstrated exceptional in vitro potency with an IC50 value of 0.13 µM. Compound 6k showed favorable drug-like characteristics with ligand efficiency (LE) and lipophilic ligand efficiency (LLE) values of 0.41 and 3.73, respectively. In comparison to the initial compound 1d, 6k exhibited a substantial 24-fold improvement in IC50, along with a 1.6-fold enhancement in LE and a 3.7-fold increase in LLE. Molecular modeling studies provided insights into the strong interactions of 6k with critical amino acid residues within the active site. Furthermore, in vivo hypouricemic investigations convincingly demonstrated that 6k significantly reduced serum uric acid levels in rats. The MTT results revealed that compound 6k is nontoxic to healthy cells. The gastric and intestinal stability assay demonstrated that compound 6k exhibits good stability in the gastric and intestinal environments. In conclusion, compound 6k emerges as a promising lead compound, showcasing both exceptional in vitro potency and favorable drug-like characteristics, thereby warranting further exploration.

19.
Phytochem Anal ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38764207

RESUMO

INTRODUCTION: Codonopsis Radix is a beneficial traditional Chinese medicine, and triterpenoid are the major bioactive constituents. Codonopsis pilosula var. modesta (Nannf.) L.T.Shen (CPM) is a precious variety of Codonopsis Radix, which is distributed at high mountain areas. The environment plays an important role in the synthesis and metabolism of active ingredients in medicinal plants, but there is no report elaborating on the effect of altitude on terpenoid metabolites accumulation in CPM. OBJECTIVES: This study aims to analyse the effects of altitude on triterpenoid biosynthetic pathways and secondary metabolite accumulation in CPM. MATERIAL AND METHODS: The untargeted metabolomics based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) and 10 triterpenoids based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) method were analysed at the low-altitude (1480 m) and high-altitude (2300 m) CPM fresh roots. The transcriptome based on high-throughput sequencing technology were combined to analyse the different altitude CPM triterpenoid biosynthetic pathways. RESULTS: A total of 17,351 differentially expressed genes (DEGs) and 55 differentially accumulated metabolites (DAMs) were detected from the different altitude CPM, and there are significant differences in the content of the 10 triterpenoids. The results of transcriptome study showed that CPM could significantly up-regulate the gene expression levels of seven key enzymes in the triterpenoid biosynthetic pathway. CONCLUSIONS: The CPM at high altitude is more likely to accumulate triterpenes than those at low altitude, which was related to the up-regulation of the gene expression levels of seven key enzymes. These results expand our understanding of how altitude affects plant metabolite biosynthesis.

20.
Sensors (Basel) ; 24(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38610441

RESUMO

This paper introduces an innovative differential sampling technique for calibrating AC waveforms, leveraging a commercially available 16-bit digital-to-analog converter (DAC) as the reference standard. The novelty of this approach lies in its enhanced stability over traditional direct sampling methods, especially as the frequency of the AC waveform increases. Notably, this technique provides a cost-effective sampler alternative to the differential sampling methods that rely on a programmable Josephson voltage standard (PJVS). A critical aspect of this methodology is the precise measurement of the DAC's output voltage, for which a static measurement strategy is adopted to utilize the exceptional linearity and transfer accuracy of the Keysight 3458A (Santa Rosa, CA, USA) in its standard DCV mode. The differential sampling method has demonstrated good accuracy, achieving a near 1 µV/V agreement with a pulse-driven AC Josephson voltage standard (ACJVS) across a 40 Hz to 200 Hz frequency range. The method attained an expanded uncertainty (k = 2) of 1 part in 106 while measuring a 0.707107 VRMS sine wave at 50 Hz, showcasing its efficacy in precise AC waveform calibration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA