Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(5): 4702-4715, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38251937

RESUMO

To identify superalkali-alkaline earthide ion pairs, it's theoretically shown that, as a novel class of excess electron superalkali compounds, both chair and boat forms of (AM-HMHC)-AM' (AM = Li, Na, and K; AM' = Be, Mg, and Ca; HMHC = 1,4,7,10,13,16-hexamethyl-1,4,7,10,13,16-hexaazacyclooctadecane) are good candidates. An attractive superalkali-alkaline earthide ion pair in δ+(AM-HMHC)-AM'δ- is firstly exhibited, which possesses alkaline-earthide characteristics and nonlinear optical response superior to similar M+(calix[4]pyrrole)M'- (M = Li, Na, and K; M' = Be, Mg, and Ca) with high stability. The electronic and vibrational second order hyperpolarizabilities and the frequency-dependent first hyperpolarizabilities of δ+(AM-HMHC)-AM'δ- are presented. For each pair of (AM-HMHC)-AM', the boat conformation is preferred to its chair one in the case of Hyper-Rayleigh scattering response (ßHRS). These alkaline earthides suggest prominently high ßHRS up to 2.59 × 104 a.u. (boat forms of δ+(Na-HMHC)-Caδ-). We expect that this work will inspire the preparation and characterization of these new alkaline earthides as high-performance NLO materials.

2.
Curr Microbiol ; 81(9): 292, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090417

RESUMO

The taxonomic relationship between Streptomyces violarus and Streptomyces violaceus was reevaluated using a polyphasic taxonomic approach in this work. Phylogenetic analysis based on 16S rRNA gene sequences indicated that Streptomyces violarus JCM 4534 T was closely related to Streptomyces arenae ISP 5293 T. However, phylogenetic analysis based on five house-keeping gene (atpD, gyrB, recA, rpoB and trpB) showed that the evolutionary neighbor of Streptomyces violarus JCM 4534 T was Streptomyces violaceus CGMCC 4.1456 T, suggesting that there was a close genetic relationship between these two strains. The average nucleotide identity and digital DNA-DNA hybridization values between them were 97.0 and 72.9%, respectively, greater than the 96.7 and 70% cut-off points recommended for delineating a Streptomyces species. This result indicated that they belonged to the same genomic species which was also verified by a comprehensive comparison of phenotypic and chemotaxonomic characteristics between Streptomyces violarus JCM 4534 T and Streptomyces violaceus CGMCC 4.1456 T. According to all these data and the rule of priority in nomenclature, it is proposed the Streptomyces violarus (Artamonova and Krassilnikov 1960) Pridham 1970 is a later heterotypic synonym of Streptomyces violaceus (Rossi Doria 1891) Waksman 1953. In addition, based on dDDH, Streptomyces violaceus and Streptomyces violarus are simultaneously designated as two different subspecies, i.e., Streptomyces violaceus subsp. violaceus and Streptomyces violaceus subsp. violarus.


Assuntos
DNA Bacteriano , Filogenia , RNA Ribossômico 16S , Streptomyces , Streptomyces/genética , Streptomyces/classificação , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Hibridização de Ácido Nucleico , Proteínas de Bactérias/genética
3.
Angew Chem Int Ed Engl ; 63(34): e202407791, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-38860734

RESUMO

Light-driven photoredox catalysis presents a promising approach for the activation and conversion of methane (CH4) into high value-added chemicals under ambient conditions. However, the high C-H bond dissociation energy of CH4 and the absence of well-defined C-H activation sites on catalysts significantly limit the highly efficient conversion of CH4 toward multicarbon (C2+) hydrocarbons, particularly ethylene (C2H4). Herein, we demonstrate a bimetallic design of Ag nanoparticles (NPs) and Pd single atoms (SAs) on ZnO for the cascade conversion of CH4 into C2H4 with the highest production rate compared with previous works. Mechanistic studies reveal that the synergistic effect of Ag NPs and Pd SAs, upon effecting key bond-breaking and -forming events, lowers the overall energy barrier of the activation process of both CH4 and the resulting C2H6, constituting a truly synergistic catalytic system to facilitate the C2H4 generation. This work offers a novel perspective on the advancement of photocatalytic directional CH4 conversion toward high value-added C2+ hydrocarbons through the subtle design of bimetallic cascade catalyst strategy.

4.
Angew Chem Int Ed Engl ; : e202412707, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136931

RESUMO

Photo-driven cross-coupling of o-arylenediamines and alcohols has emerged as an alternative for the synthesis of bio-active benzimidazoles. However, tackling the key problem related to efficient adsorption and activation of both coupling partners over photocatalysts towards activity enhancement remains a challenge. Here, we demonstrate an efficient interface synergy strategy by coupling exposed oxygen vacancies (VO) and Pd Lewis acid sites for benzimidazole and hydrogen (H2) coproduction over Pd-loaded TiO2 nanospheres with the highest photoredox activity compared to previous works so far. The results show that the introduction of VO optimizes the energy band structure and supplies coordinatively unsaturated sites for adsorbing and activating ethanol molecules, affording acetaldehyde active intermediates. Pd acts as a Lewis acid site, enhancing the adsorption of alkaline amine moleculesvia Lewis acid-base pair interactions and driving the condensation process. Furthermore, VO and Pd synergistically promote interfacial charge transfer and separation. This work offers new insightful guidance for the rational design of semiconductor-based photocatalysts with interface synergy at the molecular level towards the high-performance coproduction of renewable fuels and value-added feedstocks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA