Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 187, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635081

RESUMO

Idiopathic pulmonary fibrosis (IPF) poses significant challenges due to limited treatment options despite its complex pathogenesis involving cellular and molecular mechanisms. This study investigated the role of transient receptor potential ankyrin 1 (TRPA1) channels in regulating M2 macrophage polarization in IPF progression, potentially offering novel therapeutic targets. Using a bleomycin-induced pulmonary fibrosis model in C57BL/6J mice, we assessed the therapeutic potential of the TRPA1 inhibitor HC-030031. TRPA1 upregulation was observed in fibrotic lungs, correlating with worsened lung function and reduced survival. TRPA1 inhibition mitigated fibrosis severity, evidenced by decreased collagen deposition and restored lung tissue stiffness. Furthermore, TRPA1 blockade reversed aberrant M2 macrophage polarization induced by bleomycin, associated with reduced Smad2 phosphorylation in the TGF-ß1-Smad2 pathway. In vitro studies with THP-1 cells treated with bleomycin and HC-030031 corroborated these findings, highlighting TRPA1's involvement in fibrotic modulation and macrophage polarization control. Overall, targeting TRPA1 channels presents promising therapeutic potential in managing pulmonary fibrosis by reducing pro-fibrotic marker expression, inhibiting M2 macrophage polarization, and diminishing collagen deposition. This study sheds light on a novel avenue for therapeutic intervention in IPF, addressing a critical need in the management of this challenging disease.


Assuntos
Fibrose Pulmonar Idiopática , Macrófagos , Canal de Cátion TRPA1 , Animais , Camundongos , Acetanilidas , Bleomicina , Colágeno , Proteínas do Citoesqueleto , Camundongos Endogâmicos C57BL , Purinas , Canal de Cátion TRPA1/metabolismo
2.
J Transl Med ; 22(1): 771, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148053

RESUMO

BACKGROUND: Stroke is a globally dangerous disease capable of causing irreversible neuronal damage with limited therapeutic options. Meldonium, an inhibitor of carnitine-dependent metabolism, is considered an anti-ischemic drug. However, the mechanisms through which meldonium improves ischemic injury and its potential to protect neurons remain largely unknown. METHODS: A rat model with middle cerebral artery occlusion (MCAO) was used to investigate meldonium's neuroprotective efficacy in vivo. Infarct volume, neurological deficit score, histopathology, neuronal apoptosis, motor function, morphological alteration and antioxidant capacity were explored via 2,3,5-Triphenyltetrazolium chloride staining, Longa scoring method, hematoxylin and eosin staining, terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling assay, rotarod test, transmission electron microscopy and Oxidative stress index related kit. A primary rat hippocampal neuron model subjected to oxygen-glucose deprivation reperfusion was used to study meldonium's protective ability in vitro. Neuronal viability, mitochondrial membrane potential, mitochondrial morphology, respiratory function, ATP production, and its potential mechanism were assayed by MTT cell proliferation and cytotoxicity assay kit, cell-permeant MitoTracker® probes, mitochondrial stress, real-time ATP rate and western blotting. RESULTS: Meldonium markedly reduced the infarct size, improved neurological function and motor ability, and inhibited neuronal apoptosis in vivo. Meldonium enhanced the morphology, antioxidant capacity, and ATP production of mitochondria and inhibited the opening of the mitochondrial permeability transition pore in the cerebral cortex and hippocampus during cerebral ischemia-reperfusion injury (CIRI) in rats. Additionally, meldonium improved the damaged fusion process and respiratory function of neuronal mitochondria in vitro. Further investigation revealed that meldonium activated the Akt/GSK-3ß signaling pathway to inhibit mitochondria-dependent neuronal apoptosis. CONCLUSION: Our study demonstrated that meldonium shows a neuroprotective function during CIRI by preserving the mitochondrial function, thus prevented neurons from apoptosis.


Assuntos
Apoptose , Sobrevivência Celular , Metilidrazinas , Mitocôndrias , Neurônios , Fármacos Neuroprotetores , Ratos Sprague-Dawley , Traumatismo por Reperfusão , Animais , Fármacos Neuroprotetores/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/tratamento farmacológico , Masculino , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Metilidrazinas/farmacologia , Metilidrazinas/uso terapêutico , Isquemia Encefálica/patologia , Isquemia Encefálica/tratamento farmacológico , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos
3.
Cell Commun Signal ; 22(1): 383, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075489

RESUMO

BACKGROUND: Acute hypobaric hypoxia-induced brain injury has been a challenge in the health management of mountaineers; therefore, new neuroprotective agents are urgently required. Meldonium, a well-known cardioprotective drug, has been reported to have neuroprotective effects. However, the relevant mechanisms have not been elucidated. We hypothesized that meldonium may play a potentially novel role in hypobaric hypoxia cerebral injury. METHODS: We initially evaluated the neuroprotection efficacy of meldonium against acute hypoxia in mice and primary hippocampal neurons. The potential molecular targets of meldonium were screened using drug-target binding Huprot™ microarray chip and mass spectrometry analyses after which they were validated with surface plasmon resonance (SPR), molecular docking, and pull-down assay. The functional effects of such binding were explored through gene knockdown and overexpression. RESULTS: The study clearly shows that pretreatment with meldonium rapidly attenuates neuronal pathological damage, cerebral blood flow changes, and mitochondrial damage and its cascade response to oxidative stress injury, thereby improving survival rates in mice brain and primary hippocampal neurons, revealing the remarkable pharmacological efficacy of meldonium in acute high-altitude brain injury. On the one hand, we confirmed that meldonium directly interacts with phosphoglycerate kinase 1 (PGK1) to promote its activity, which improved glycolysis and pyruvate metabolism to promote ATP production. On the other hand, meldonium also ameliorates mitochondrial damage by PGK1 translocating to mitochondria under acute hypoxia to regulate the activity of TNF receptor-associated protein 1 (TRAP1) molecular chaperones. CONCLUSION: These results further explain the mechanism of meldonium as an energy optimizer and provide a strategy for preventing acute hypobaric hypoxia brain injury at high altitudes.


Assuntos
Lesões Encefálicas , Fosfoglicerato Quinase , Animais , Fosfoglicerato Quinase/metabolismo , Fosfoglicerato Quinase/genética , Camundongos , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Masculino , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/metabolismo , Hipóxia/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
4.
ACS Synth Biol ; 13(1): 54-60, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38117980

RESUMO

Transcriptional regulation is of great significance for cells to maintain homeostasis and, meanwhile, represents an innovative but less explored means to control biological processes in synthetic biology and bioengineering. Herein we devised a T7 RNA polymerase (T7RNAP) variant through replacing an essential lysine located in the catalytic core (K631) with Nε-acetyl-l-lysine (AcK) via genetic code expansion. This T7RNAP variant requires the deacetylase activity of NAD-dependent sirtuins to recover its enzymatic activities and thereby sustains sirtuin-dependent transcription of the gene of interest in live cells including bacteria and mammalian cells as well as in in vitro systems. This T7RNAP variant could link gene transcription to sirtuin expression and NAD availability, thus holding promise to support some relevant research.


Assuntos
Sirtuínas , Animais , Sirtuínas/genética , Sirtuínas/metabolismo , NAD/metabolismo , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Proteínas Virais/genética , Mamíferos/metabolismo
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 123998, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38340448

RESUMO

As2O3 has shown significant anti-gastric cancer effects, but the mechanism is still unclear. Thus, biomacromolecular changes induced by As2O3 were investigated by using human gastric cancer AGS cells as the model. Flow cytometry results confirmed that As2O3 induced AGS cells apoptosis. Fourier transform infrared (FTIR) microspectroscopy detected biomacromolecular changes during As2O3-induced AGS cells apoptosis sensitively: IR spectra showed significant changes in the lipids content and the proteins and DNA structure. Peak-area ratios indicated obvious changes in the lipids and DNA content and the proteins structure, while also showing a relatively good linear relationship between A1733/A969 and the apoptosis rate. PCA exhibited significant alteration in nucleic acids while curve fitting further revealed the changes in nucleic acids and proteins. On the whole, our study explored As2O3-induced gastric cancer cells apoptosis in depth on the basis of analyzing biomacromolecular changes, in addition, it also suggested FTIR microspectroscopy to be possibly useful in the research of apoptosis.


Assuntos
Antineoplásicos , Arsenicais , Neoplasias Gástricas , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise de Fourier , Apoptose , DNA/química , Linhagem Celular Tumoral , Proteínas , Lipídeos/farmacologia , Óxidos/farmacologia , Antineoplásicos/farmacologia
6.
Heliyon ; 10(1): e23299, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163126

RESUMO

Background: Shedding of glycocalyx is relevant to worse prognosis in surgical patients, and elevated levels of serum matrix metalloproteinase-9 (MMP-9) are associated with this phenomenon. This study aimed to investigate the dynamic alterations of serum glycocalyx components and MMP-9 during cardiopulmonary bypass (CPB), and evaluate their predictive capacities for prolonged intensive care unit (ICU) stay, as well as their correlation with coagulation dysfunction. Methods: This retrospective study analyzed serum levels of syndecan-1, heparan sulfate (HS), and MMP-9 at different time points during CPB, and assessed their association with prolonged ICU stay and coagulation dysfunction. Results: Syndecan-1, HS, and MMP-9 exhibited divergent changes during CPB. Serum levels of syndecan-1 (AUC = 78.0 %) and MMP-9 (AUC = 78.4 %) were validated as reliable predictors for prolonged ICU stay, surpassing the predictive value of creatinine (AUC = 70.0 %). Syndecan-1 (rho = 0.566, P < 0.01 at T1 and rho = 0.526, P < 0.01 at T2) and HS (rho = 0.403, P < 0.05 at T4) exhibited correlations with activated partial thromboplastin time (APTT) ratio beyond the normal range. Conclusions: Our findings advocate the potential efficacy of serum glycocalyx components and MMP-9 as early predictive indicators for extended ICU stay following cardiac surgery with CPB. Additionally, we observed a correlation between glycocalyx disruption during CPB and coagulation dysfunction. Further studies with expansive cohorts are warranted to consolidate our findings and explore the predictive potential of other glycocalyx components.

7.
Chemosphere ; 359: 142299, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761826

RESUMO

Sulfur mustard (SM, dichlorodiethyl sulfide) is a potent erosive chemical poison that can cause pulmonary lung, skin and eye disease complications in humans. Currently, there is no designated remedy for SM, and its operation's toxicological process remains unidentified. This work employed zebrafish as a model organism to investigate the toxic manifestations and mechanisms of exposure to SM, aiming to offer novel insights for preventing and treating this condition. The results showed that SM caused a decrease in the survival rate of the zebrafish larvae (LC50 = 2.47 mg/L), a reduction in the hatching rate, an increase in the pericardial area, and small head syndrome. However, T-5224 (a selective inhibitor of c-Fos/activator protein) attenuated the reduction in mortality (LC50 = 2.79 mg/L), the reduction in hatching rate, and the worsening of morphological changes. We discovered that SM causes cartilage developmental disorders in zebrafish larvae. The reverse transcription-quantitative polymerase chain reaction found that SM increased the expression of inflammation-related genes (IL-1ß, IL-6, and TNF-α) and significantly increased cartilage development-related gene expression (fosab, mmp9, and atf3). However, the expression of sox9a, sox9b, and Col2a1a was reduced. The protein level detection also found an increase in c-fos protein expression and a significant decrease in COL2A1 expression. However, T-5224,also and mitigated the changes in gene expression, and protein levels caused by SM exposure. The results of this study indicate that SM-induced cartilage development disorders are closely related to the c-Fos/AP-1 pathway in zebrafish.


Assuntos
Condrogênese , Larva , Gás de Mostarda , Proteínas Proto-Oncogênicas c-fos , Fator de Transcrição AP-1 , Peixe-Zebra , Animais , Gás de Mostarda/toxicidade , Larva/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Condrogênese/efeitos dos fármacos , Fator de Transcrição AP-1/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
8.
Acta Pharm Sin B ; 14(4): 1827-1844, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38572103

RESUMO

In the treatment of central nervous system disease, the blood-brain barrier (BBB) is a major obstruction to drug delivery that must be overcome. In this study, we propose a brain-targeted delivery strategy based on selective opening of the BBB. This strategy allows some simple bare nanoparticles to enter the brain when mixed with special opening material; however, the BBB still maintains the ability to completely block molecules from passing through. Based on the screening of BBB opening and matrix delivery materials, we determined that phospholipase A2-catalyzed 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine liposomes can efficiently carry drugs into the brain immediately. At an effective dose, this delivery system is safe, especially with its effect on the BBB being reversible. This mix & act delivery system has a simple structure and rapid preparation, making it a strong potential candidate for drug delivery across the BBB.

9.
CNS Neurosci Ther ; 30(5): e14716, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38698533

RESUMO

BACKGROUND: Sevoflurane is a superior agent for maintaining anesthesia during surgical procedures. However, the neurotoxic mechanisms of clinical concentration remain poorly understood. Sevoflurane can interfere with the normal function of neurons and synapses and impair cognitive function by acting on α5-GABAAR. METHODS: Using MWM test, we evaluated cognitive abilities in mice following 1 h of anesthesia with 2.7%-3% sevoflurane. Based on hippocampal transcriptome analysis, we analyzed the differential genes and IL-6 24 h post-anesthesia. Western blot and RT-PCR were performed to measure the levels of α5-GABAAR, Radixin, P-ERM, P-Radixin, Gephyrin, IL-6, and ROCK. The spatial distribution and expression of α5-GABAAR on neuronal somata were analyzed using histological and three-dimensional imaging techniques. RESULTS: MWM test indicated that partial long-term learning and memory impairment. Combining molecular biology and histological analysis, our studies have demonstrated that sevoflurane induces immunosuppression, characterized by reduced IL-6 expression levels, and that enhanced Radixin dephosphorylation undermines the microstructural stability of α5-GABAAR, leading to its dissociation from synaptic exterior and resulting in a disordered distribution in α5-GABAAR expression within neuronal cell bodies. On the synaptic cleft, the expression level of α5-GABAAR remained unchanged, the spatial distribution became more compact, with an increased fluorescence intensity per voxel. On the extra-synaptic space, the expression level of α5-GABAAR decreased within unchanged spatial distribution, accompanied by an increased fluorescence intensity per voxel. CONCLUSION: Dysregulated α5-GABAAR expression and distribution contributes to sevoflurane-induced partial long-term learning and memory impairment, which lays the foundation for elucidating the underlying mechanisms in future studies.


Assuntos
Anestésicos Inalatórios , Hipocampo , Transtornos da Memória , Receptores de GABA-A , Sevoflurano , Sevoflurano/toxicidade , Animais , Camundongos , Masculino , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Anestésicos Inalatórios/toxicidade , Receptores de GABA-A/metabolismo , Receptores de GABA-A/biossíntese , Receptores de GABA-A/genética , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia
10.
Aging Cell ; : e14209, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825816

RESUMO

Perioperative neurocognitive disorder (PND) is a serious neurologic complication in aged patients and might be associated with sevoflurane exposure. However, the specific pathogenesis is still unclear. The distribution of α5-GABAAR, a γ-aminobutyric acid type A receptor (GABAAR) subtype, at extrasynaptic sites is influenced by the anchor protein radixin, whose phosphorylation is regulated via the RhoA/ROCK2 signaling pathway and plays a crucial role in cognition. However, whether sevoflurane affects the ability of radixin phosphorylation to alter extrasynaptic receptor expression is unknown. Aged mice were exposed to sevoflurane to induce cognitive impairment. Both total proteins and membrane proteins were extracted for analysis. Cognitive function was evaluated using the Morris water maze and fear conditioning test. Western blotting was used to determine the expression of ROCK2 and the phosphorylation of radixin. Furthermore, the colocalization of p-radixin and α5-GABAAR was observed. To inhibit ROCK2 activity, either an adeno-associated virus (AAV) or fasudil hydrochloride was administered. Aged mice treated with sevoflurane exhibited significant cognitive impairment accompanied by increased membrane expression of α5-GABAAR. Moreover, the colocalization of α5-GABAAR and p-radixin increased after treatment with sevoflurane, and this change was accompanied by an increase in ROCK2 expression and radixin phosphorylation. Notably, inhibiting the RhoA/ROCK2 pathway significantly decreased the distribution of extrasynaptic α5-GABAAR and improved cognitive function. Sevoflurane activates the RhoA/ROCK2 pathway and increases the phosphorylation of radixin. Excess α5-GABAAR is anchored to extrasynaptic sites and impairs cognitive ability in aged mice. Fasudil hydrochloride administration improves cognitive function.

11.
Reprod Toxicol ; 127: 108603, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38759877

RESUMO

Hypobaric Hypoxia (HH) negatively affects the cardiovascular and respiratory systems as well as gonadal development and the therefore next generation. This study investigated the effects of HH on zebrafish and SD rats, by exposing them to a low-pressure environment at 6000 m elevation for 30 days to simulate high-altitude conditions. It was indicated that parental zebrafish reared amh under HH had increased embryo mortality, reduced hatchability, and abnormal cartilage development in the offspring. Furthermore, the HH-exposed SD rats had fewer reproductive cells and smaller litters. Moreover, the transcriptome analysis revealed the down-regulation of steroid hormone biosynthesis pathways. The expression of the gonad-associated genes (amh, pde8a, man2a2 and lhcgr), as well as the gonad and cartilage-related gene bmpr1a, were also down-regulated. In addition, Western blot analysis validated reduced bmpr1a protein expression in the ovaries of HH-treated rats. In summary, these data indicate the negative impact of HH on reproductive organs and offspring development, emphasizing the need for further research and precautions to protect future generations' health.


Assuntos
Fertilidade , Hipóxia , Ratos Sprague-Dawley , Peixe-Zebra , Animais , Feminino , Masculino , Desenvolvimento Ósseo , Embrião não Mamífero , Ratos
12.
Geohealth ; 8(4): e2023GH000888, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38638206

RESUMO

The Multi-Threat Medical Countermeasure (MTMC) technique is crucial for developing common biochemical signaling pathways, molecular mediators, and cellular processes. This study revealed that the Nod-like receptor 3 (NLRP3) inflammasome pathway may be a significant contributor to the cytotoxicity induced by various organophosphorus pesticides (OPPs). The study demonstrated that exposure to six different types of OPPs (paraoxon, dichlorvos, fenthion, dipterex, dibrom, and dimethoate) led to significant cytotoxicity in BV2 cells, which was accompanied by increased expression of NLRP3 inflammasome complexes (NLRP3, ASC, Caspase-1) and downstream inflammatory cytokines (IL-1ß, IL-18), in which the order of cytotoxicity was dichlorvos > dipterex > dibrom > paraoxon > fenthion > dimethoate, based on the IC50 values of 274, 410, 551, 585, 2,158, and 1,527,566 µM, respectively. The findings suggest that targeting the NLRP3 inflammasome pathway could be a potential approach for developing broad-spectrum antitoxic drugs to combat multi-OPPs-induced toxicity. Moreover, inhibition of NLRP3 efficiently protected the cells against cytotoxicity induced by these six OPPs, and the expression of NLRP3, ASC, Caspase-1, IL-1ß, and IL-18 decreased accordingly. The order of NLRP3 affinity for OPPs was dimethoate > paraoxon > dichlorvos > dibrom > (fenthion and dipterex) based on K D values of 89.8, 325, 1,460, and 2,690 µM, respectively. Furthermore, the common molecular mechanism of NLRP3-OPPs was clarified by the presence of toxicity effector groups (benzene ring, nitrogen/oxygen-containing functional group); =O, -O-, or =S (active) groups; and combination residues (Gly271, Asp272). This finding provided valuable insights into exploring the common mechanisms of multiple threats and developing effective therapeutic strategies to prevent OPPs poisoning.

13.
Pharmaceutics ; 16(1)2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38258056

RESUMO

Local chemotherapy is an alternative therapeutic strategy that involves direct delivery of drugs to the tumor site. This approach avoids adverse reactions caused by the systemic distribution of drugs and enhances the tumor-suppressing effect by concentrating the drugs at the tumor site. Drug-loaded microspheres are injectable sustained-release drug carriers that are highly suitable for local chemotherapy. However, a complex preparation process is one of the main technical difficulties limiting the development of microsphere formulations. In this study, core-shell structured microspheres loaded with paclitaxel (PTX; with a core-shell structure, calcium alginate outer layer, and a poly (lactic acid-co-glycolic acid) copolymer inner layer, denoted as PTX-CA/PLGA-MS) were prepared using coaxial electrostatic spray technology and evaluated in vitro and in vivo. PTX-CA/PLGA-MS exhibited a two-stage drug release profile and enhanced anti-tumor effect in animal tumor models. Importantly, the preparation method reported in this study is simple and reduces the amount of organic solvent(s) used substantially.

14.
Animals (Basel) ; 13(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38136802

RESUMO

The first millennium BC saw the expansion of the Western Zhou dynasty in its northwestern frontier, alongside the rise and development of the Qin State in the Longshan Mountain region of northern China. Exploring the subsistence practices of these communities is crucial to gaining a better understanding of the social, cultural, and political landscape in this region at the time. While much of the research to date has focused on the Qin people, the subsistence practices of the Zhou people remain poorly understood. In this study, we analyzed animal remains from Yucun, a large settlement site associated with the Zhou people, located to the east of the Longshan Mountain. These animal remains were recovered in the excavation seasons of 2018-2020. Our results show that pigs, dogs, cattle, caprines, and horses, which were the major domestic animals at Yucun, accounted for over 90.8% of the animal remains examined in terms of the number of identified specimens (NISP) and 72.8% in terms of the minimum number of individuals (MNI), with cattle and caprines playing dominant roles. In terms of the taxonomic composition and the mortality profiles of pigs, caprines, and cattle, Yucun shared similarities with Maojiaping and Xishan, two contemporaneous Qin cultural sites located to the west of the Longshan Mountain, and differ from other farming societies in the middle and lower reaches of the Yellow River valley. Considering the cultural attributes and topographic conditions of these various sites, these findings imply that environmental conditions may have played a more significant role than cultural factors in shaping the animal-related subsistence practices in northern China during the first millennium BC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA