Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 828
Filtrar
1.
Cell ; 187(9): 2305-2323.e33, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38614099

RESUMO

Cancer immunotherapy has transformed treatment possibilities, but its effectiveness differs significantly among patients, indicating the presence of alternative pathways for immune evasion. Here, we show that ITPRIPL1 functions as an inhibitory ligand of CD3ε, and its expression inhibits T cells in the tumor microenvironment. The binding of ITPRIPL1 extracellular domain to CD3ε on T cells significantly decreased calcium influx and ZAP70 phosphorylation, impeding initial T cell activation. Treatment with a neutralizing antibody against ITPRIPL1 restrained tumor growth and promoted T cell infiltration in mouse models across various solid tumor types. The antibody targeting canine ITPRIPL1 exhibited notable therapeutic efficacy against naturally occurring tumors in pet clinics. These findings highlight the role of ITPRIPL1 (or CD3L1, CD3ε ligand 1) in impeding T cell activation during the critical "signal one" phase. This discovery positions ITPRIPL1 as a promising therapeutic target against multiple tumor types.


Assuntos
Complexo CD3 , Ativação Linfocitária , Linfócitos T , Evasão Tumoral , Microambiente Tumoral , Animais , Complexo CD3/metabolismo , Complexo CD3/imunologia , Humanos , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Microambiente Tumoral/imunologia , Cães , Neoplasias/imunologia , Linhagem Celular Tumoral , Feminino , Ligação Proteica , Proteína-Tirosina Quinase ZAP-70/metabolismo , Anticorpos Neutralizantes/imunologia , Camundongos Endogâmicos C57BL
2.
Nature ; 629(8010): 86-91, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38658763

RESUMO

Replacement of liquid electrolytes with polymer gel electrolytes is recognized as a general and effective way of solving safety problems and achieving high flexibility in wearable batteries1-6. However, the poor interface between polymer gel electrolyte and electrode, caused by insufficient wetting, produces much poorer electrochemical properties, especially during the deformation of the battery7-9. Here we report a strategy for designing channel structures in electrodes to incorporate polymer gel electrolytes and to form intimate and stable interfaces for high-performance wearable batteries. As a demonstration, multiple electrode fibres were rotated together to form aligned channels, while the surface of each electrode fibre was designed with networked channels. The monomer solution was effectively infiltrated first along the aligned channels and then into the networked channels. The monomers were then polymerized to produce a gel electrolyte and form intimate and stable interfaces with the electrodes. The resulting fibre lithium-ion battery (FLB) showed high electrochemical performances (for example, an energy density of about 128 Wh kg-1). This strategy also enabled the production of FLBs with a high rate of 3,600 m h-1 per winding unit. The continuous FLBs were woven into a 50 cm × 30 cm textile to provide an output capacity of 2,975 mAh. The FLB textiles worked safely under extreme conditions, such as temperatures of -40 °C and 80 °C and a vacuum of -0.08 MPa. The FLBs show promise for applications in firefighting and space exploration.

3.
Nature ; 626(7998): 313-318, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326591

RESUMO

Calcium-oxygen (Ca-O2) batteries can theoretically afford high capacity by the reduction of O2 to calcium oxide compounds (CaOx) at low cost1-5. Yet, a rechargeable Ca-O2 battery that operates at room temperature has not been achieved because the CaOx/O2 chemistry typically involves inert discharge products and few electrolytes can accommodate both a highly reductive Ca metal anode and O2. Here we report a Ca-O2 battery that is rechargeable for 700 cycles at room temperature. Our battery relies on a highly reversible two-electron redox to form chemically reactive calcium peroxide (CaO2) as the discharge product. Using a durable ionic liquid-based electrolyte, this two-electron reaction is enabled by the facilitated Ca plating-stripping in the Ca metal anode at room temperature and improved CaO2/O2 redox in the air cathode. We show the proposed Ca-O2 battery is stable in air and can be made into flexible fibres that are weaved into textile batteries for next-generation wearable systems.

4.
Nature ; 597(7874): 57-63, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34471277

RESUMO

Fibre lithium-ion batteries are attractive as flexible power solutions because they can be woven into textiles, offering a convenient way to power future wearable electronics1-4. However, they are difficult to produce in lengths of more than a few centimetres, and longer fibres were thought to have higher internal resistances3,5 that compromised electrochemical performance6,7. Here we show that the internal resistance of such fibres has a hyperbolic cotangent function relationship with fibre length, where it first decreases before levelling off as length increases. Systematic studies confirm that this unexpected result is true for different fibre batteries. We are able to produce metres of high-performing fibre lithium-ion batteries through an optimized scalable industrial process. Our mass-produced fibre batteries have an energy density of 85.69 watt hour per kilogram (typical values8 are less than 1 watt hour per kilogram), based on the total weight of a lithium cobalt oxide/graphite full battery, including packaging. Its capacity retention reaches 90.5% after 500 charge-discharge cycles and 93% at 1C rate (compared with 0.1C rate capacity), which is comparable to commercial batteries such as pouch cells. Over 80 per cent capacity can be maintained after bending the fibre for 100,000 cycles. We show that fibre lithium-ion batteries woven into safe and washable textiles by industrial rapier loom can wirelessly charge a cell phone or power a health management jacket integrated with fibre sensors and a textile display.


Assuntos
Cobalto/química , Fontes de Energia Elétrica , Eletrônica , Lítio/química , Óxidos/química , Têxteis , Dispositivos Eletrônicos Vestíveis , Grafite/química , Humanos , Íons , Masculino , Tecnologia sem Fio
5.
Acc Chem Res ; 57(10): 1550-1563, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38723018

RESUMO

ConspectusLithium ion batteries (LIBs) with inorganic intercalation compounds as electrode active materials have become an indispensable part of human life. However, the rapid increase in their annual production raises concerns about limited mineral reserves and related environmental issues. Therefore, organic electrode materials (OEMs) for rechargeable batteries have once again come into the focus of researchers because of their design flexibility, sustainability, and environmental compatibility. Compared with conventional inorganic cathode materials for Li ion batteries, OEMs possess some unique characteristics including flexible molecular structure, weak intermolecular interaction, being highly soluble in electrolytes, and moderate electrochemical potentials. These unique characteristics make OEMs suitable for applications in multivalent ion batteries, low-temperature batteries, redox flow batteries, and decoupled water electrolysis. Specifically, the flexible molecular structure and weak intermolecular interaction of OEMs make multivalent ions easily accessible to the redox sites of OEMs and facilitate the desolvation process on the redox site, thus improving the low-temperature performance, while the highly soluble nature enables OEMs as redox couples for aqueous redox flow batteries. Finally, the moderate electrochemical potential and reversible proton storage and release of OEMs make them suitable as redox mediators for water electrolysis. Over the past ten years, although various new OEMs have been developed for Li-organic batteries, Na-organic batteries, Zn-organic batteries, and other battery systems, batteries with OEMs still face many challenges, such as poor cycle stability, inferior energy density, and limited rate capability. Therefore, previous reviews of OEMs mainly focused on organic molecular design for organic batteries or strategies to improve the electrochemical performance of OEMs. A comprehensive review to explore the characteristics of OEMs and establish the correlation between these characteristics and their specific application in energy storage and conversion is still lacking.In this Account, we initially provide an overview of the sustainability and environmental friendliness of OEMs for energy storage and conversion. Subsequently, we summarize the charge storage mechanisms of the different types of OEMs. Thereafter, we explore the characteristics of OEMs in comparison with conventional inorganic intercalation compounds including their structural flexibility, high solubility in the electrolyte, and appropriate electrochemical potential in order to establish the correlations between their characteristics and potential applications. Unlike previous reviews that mainly introduce the electrochemical performance progress of different organic batteries, this Account specifically focuses on some exceptional applications of OEMs corresponding to the characteristics of organic electrode materials in energy storage and conversion, as previously published by our groups. These applications include monovalent ion batteries, multivalent ion batteries, low-temperature batteries, redox flow batteries with soluble OEMs, and decoupled water electrolysis employing organic electrodes as redox mediators. We hope that this Account will make an invaluable contribution to the development of organic electrode materials for next-generation batteries and help to unlock a world of potential energy storage applications.

6.
J Am Chem Soc ; 146(13): 9455-9464, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38512342

RESUMO

Owing to the high H2O activity, the aqueous electrolyte in the Zn battery exhibits a narrow electrochemical window and inevitable hydrogen evolution reaction, limiting the anode utilization ratio and performance at high voltage. Carbonate ester, the well-developed electrolyte solvent in Li-ion batteries, exhibits aprotic properties and high anodic stability. However, its use in Zn metal batteries is limited due to the low solubility of Zn salts in carbonate esters. Herein, we propose a carbonate ester-based electrolyte (EC:DMC:EMC = 1:1:1 wt %), which contains a new Zn salt (Zn(BHFip)2) characterized by low cost, easy synthesis, and excellent aprotic solvent solubility. The BHFip- anion assists in forming Zn2+ conductive SEI on the anode and decomposes at high voltage to generate a protective CEI layer on the cathode. The Zn//Zn symmetric cell using such electrolyte achieves a remarkable Zn utilization ratio of 91% for 125 h, which has rarely been reported before. Furthermore, the Zn//LiMn2O4 full cell with an average operation voltage of 1.7 V demonstrates reliable cycling for 135 cycles with an N/P ratio of 1:1. In addition, the Zn//LiNi0.5Mn1.5O4 full cell exhibits a high discharge median voltage exceeding 2.2 V for 280 cycles, with the high voltage plateau (above 2 V) constituting 82% of the total capacity.

7.
J Am Chem Soc ; 146(14): 9688-9696, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38427795

RESUMO

Nearly a decade has passed since the discovery of superconductivity in CrAs, but until now, the discovered structure types of chromium-based superconductors are still scanty. It is urgent to expand this family to decipher the interplay between magnetism and superconductivity penetratingly. Here, we report the observation of superconductivity in ferromagnet CrSbSe3 with a quasi-one-dimensional structure under high pressure. Under compression, CrSbSe3 undergoes an insulator-to-metal transition and sequential isostructural phase transitions accompanied by volume collapse. Superconductivity emerges at 32.8 GPa concomitant with metallization in CrSbSe3. A maximum superconducting transition temperature Tc of 7.7 K is achieved at 57.9 GPa benefiting from both the phonon softening and the enhanced p-d hybridization between Se and Cr in CrSbSe3. The discovery of superconductivity in CrSbSe3 expands the existing chromium-based superconductor family and sheds light on the search for concealed superconductivity in low-dimensional van der Waals materials.

8.
J Am Chem Soc ; 146(22): 15496-15505, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38785353

RESUMO

The practical application of aqueous zinc-ion batteries (AZIBs) is greatly challenged by rampant dendrites and pestilent side reactions resulting from an unstable Zn-electrolyte interphase. Herein, we report the construction of a reliable superstructured solid electrolyte interphase for stable Zn anodes by using mesoporous polydopamine (2D-mPDA) platelets as building blocks. The interphase shows a biomimetic nacre's "brick-and-mortar" structure and artificial transmembrane channels of hexagonally ordered mesopores in the plane, overcoming the mechanical robustness and ionic conductivity trade-off. Experimental results and simulations reveal that the -OH and -NH groups on the surface of artificial ion channels can promote rapid desolvation kinetics and serve as an ion sieve to homogenize the Zn2+ flux, thus inhibiting side reactions and ensuring uniform Zn deposition without dendrites. The 2D-mPDA@Zn electrode achieves an ultralow nucleation potential of 35 mV and maintains a Coulombic efficiency of 99.8% over 1500 cycles at 5 mA cm-2. Moreover, the symmetric battery exhibits a prolonged lifespan of over 580 h at a high current density of 20 mA cm-2. This biomimetic superstructured interphase also demonstrates the high feasibility in Zn//VO2 full cells and paves a new route for rechargeable aqueous metal-ion batteries.

9.
Dev Neurosci ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38583418

RESUMO

INTRODUCTION: Transcription factor EB (TFEB), a key regulator of autophagy and lysosomal biogenesis, has diverse roles in various physiological processes. Enhancing lysosomal function by TFEB activation has recently been implicated in restoring neural stem cells (NSCs) function. Overexpression of TFEB can inhibit the cell cycle of newborn cortical NSCs. It has also been found that TFEB regulates the pluripotency transcriptional network in mouse embryonic stem cells independent of autophagy lysosomal biogenesis. This study aims to explore the effects of TFEB activation on neurogenesis in vivo through transgenic mice. METHODS: We developed a GFAP-driven TFEB overexpression mouse model (TFEB GoE) by crossing the floxed TFEB overexpression mice and hGFAP-cre mice. We performed immunohistochemical and fluorescence staining on brain tissue from newborn mice to assess neurogenesis changes, employing markers such as GFAP, Nestin, Ki67, DCX, Tbr1 and Neun to trace different stages of neural development and cell proliferation. RESULTS: TFEB GoE mice exhibited premature mortality, dying at 10-20 days after birth. Immunohistochemical analysis revealed significant abnormalities, including disrupted hippocampal structure and cortical layering. Compared to control mice, TFEB GoE mice showed a marked increase in radial glial cells (RGCs) in the hippocampus and cortex, with Ki67 staining indicating these cells were predominantly in a quiescent state. This suggests that TFEB overexpression suppresses RGCs proliferation. Additionally, abnormal distributions of migrating neurons and mature neurons were observed, highlighted by DCX, Tbr1 and Neun staining, indicating a disruption in normal neurogenesis. CONCLUSION: This study, using transgenic animals in vivo, revealed that GFAP-driven TFEB overexpression leads to abnormal neural layering in the hippocampus and cortex by dysregulating neurogenesis. Our study is the first to discover the detrimental impact of TFEB overexpression on neurogenesis during embryonic development, which has important reference significance in future TFEB overexpression interventions in NSCs for treatment.

10.
Small ; : e2310518, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429235

RESUMO

Due to their significant capacity and reliable reversibility, transition metal sulphides (TMSs) have received attention as potential anode materials for sodium-ion batteries (SIBs). Nonetheless, a prevalent challenge with TMSs lies in their significant volume expansion and sluggish kinetics, impeding their capacity for rapid and enduring Na+ storage. Herein, a Cu1.96 S@NC nanodisc material enriched with copper vacancies is synthesised via a hydrothermal and annealing procedure. Density functional theory (DFT) calculations reveal that the incorporation of copper vacancies significantly boosts electrical conductivity by reducing the energy barrier for ion diffusion, thereby promoting efficient electron/ion transport. Moreover, the presence of copper vacancies creates ample active sites for the integration of sodium ions, streamlines charge transfer, boosts electronic conductivity, and, ultimately, significantly enhances the overall performance of SIBs. This novel anode material, Cu1.96 S@NC, demonstrates a reversible capacity of 339 mAh g-1 after 2000 cycles at a rate of 5 A g-1 . In addition, it maintains a noteworthy reversible capacity of 314 mAh g-1 with an exceptional capacity retention of 96% even after 2000 cycles at 20 A g-1 . The results demonstrate that creating cationic vacancies is a highly effective strategy for engineering anode materials with high capacity and rapid reactivity.

11.
Small ; : e2311578, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363013

RESUMO

Charging LiCoO2 to high voltages yields alluring specific capacities, yet the deleterious phase-transitions lead to significant capacity degradation. Herein, this study demonstrates a novel strategy to stabilize LiCoO2 at 4.6 V by doping with Er and Mg at the Li-site and Co-site, respectively, which is different from the traditional method of doping foreign elements solely at the Co-site. Theoretical calculations and experiments jointly reveal that the inclusion of Mg2+ -dopants at the Co-site curbs the hexagonal-monoclinic phase transitions ≈4.2 V. However, this unintentionally compromises the stability of lattice oxygen in LiCoO2 , exacerbating the undesired phase transition (O3 to H1-3) above 4.45 V. Fascinatingly, the introduction of Er3+ -dopants into Li-sites enhances the stability of lattice oxygen in LiCoO2 , effectively mitigating phase transitions above 4.45 V. Therefore, the Er, Mg co-doped LiCoO2 exhibits high stability over 500 cycles when tested in a half-cell with a cut-off voltage of 4.6 V. Furthermore, the Er, Mg-doped LiCoO2 //graphite pouch-type full cell demonstrates a high energy density of 310.8 Wh kg-1 , preserving 91.3% of its energy over 100 cycles.

12.
Small ; : e2311197, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593375

RESUMO

Biomass-derived porous carbon materials are meaningful to employ as a hard carbon precursor for anode materials of sodium-ion batteries (SIBs) from a sustainability perspective. Here, a straightforward approach is proposed to develop rich closed pores in pinenut-derived carbon, with the aim of improving Na+ plateau storage by adjusting the pyrolysis temperature. The optimized sample, namely the pinenut-derived carbon at 1300 °C, demonstrates remarkable reversible specific capacity of 278 mAh g-1, along with a high initial Coulomb efficiency of 85% and robust cycling stability (with a capacity retention of 89% after 800 cycles at 0.2 A g-1). In situ and ex situ analyses unveil that the developed closed pores play a significant role in enhancing the plateau capacity, providing compelling evidence for the "adsorption-filling" mechanism. Moreover, the corresponding full-cell achieves a high energy density of 245.7 Wh kg-1 (based on the total weight of both electrode active materials) and exhibits outstanding rate capability (191.4 mAh g-1 at 3 A g-1).

13.
Small ; 20(9): e2306758, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37852946

RESUMO

Polymorphic phase transition is an essential phenomenon in condensed matter that the physical properties of materials may undergo significant changes due to the structural transformation. Phase transition has thus become an important means and dimension for regulating material properties. Herein, this study demonstrates the pressure-induced multi-transition of both structure and physical properties in violet phosphorus, a novel phosphorus allotrope. Under compression, violet phosphorus undergoes sequential polymorphic phase transitions. Concomitant with the first phase transition, violet phosphorus exhibits emergent insulator-metal transition, superconductivity, and dramatic switching from positive to negative photoconductivity. Remarkably, the resistance of violet phosphorus shows a sudden drop of around 107 along with the phase transition. In addition, piezochromism from translucent red to opaque black and suppression of photoluminescence are observed upon compression. Of particular interest is that the sample irreversibly transforms into black phosphorus with a pronounced discrepancy in physical properties from the pristine violet phosphorus after decompression. The abundant polymorphic transitions and property changes in violet phosphorus have significant implications for designing novel pressure-responsive electronic/optoelectronic devices and exploring concealed polymorphic transition materials.

14.
Mol Ecol ; 33(5): e17273, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38265168

RESUMO

The growing threat of global warming on coral reefs underscores the urgency of identifying heat-tolerant corals and discovering their adaptation mechanisms to high temperatures. Corals growing in intertidal rock pools that vary markedly in daily temperature may have improved heat tolerance. In this study, heat stress experiments were performed on scleractinian coral Porites lutea from subtidal habitat and intertidal rock pool of Weizhou Island in the northern South China Sea. Thermotolerance differences in corals from the two habitats and their mechanisms were explored through phenotype, physiological indicators, ITS2, 16S rRNA, and RNA sequencing. At the extremely high temperature of 34°C, rock pool P. lutea had a stronger heat tolerance than those in the subtidal habitat. The strong antioxidant capacity of the coral host and its microbial partners was important in the resistance of rock pool corals to high temperatures. The host of rock pool corals at 34°C had stronger immune and apoptotic regulation, downregulated host metabolism and disease-infection-related pathways compared to the subtidal habitat. P. lutea, in this habitat, upregulated Cladocopium C15 (Symbiodiniaceae) photosynthetic efficiency and photoprotection, and significantly increased bacterial diversity and coral probiotics, including ABY1, Ruegeria, and Alteromonas. These findings indicate that rock pool corals can tolerate high temperatures through the integrated response of coral holobionts. These corals may be 'touchstones' for future warming. Our research provides new insights into the complex mechanisms by which corals resist global warming and the theoretical basis for coral reef ecosystem restoration and selection of stress-resistant coral populations.


Assuntos
Antozoários , Rhodobacteraceae , Animais , Antozoários/fisiologia , Ecossistema , RNA Ribossômico 16S/genética , Recifes de Corais , Rhodobacteraceae/genética , Simbiose
15.
FASEB J ; 37(2): e22743, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36645109

RESUMO

Thrombospondin-2 (Tsp2), a glycoprotein in the extracellular matrix, plays a critical role in the maintenance of vascular homeostasis. However, its role in the pathogenesis of cardiovascular disorders such as intimal hyperplasia is not fully elucidated. This study, therefore, aims to explore the effect of Tsp2 on intimal hyperplasia and its associated underlying mechanisms. Intimal hyperplasia (IH) was established using a modified wire-mediated femoral artery injury model. Immunofluorescence and qPCR identified upregulated Tsp2 expression in the injured femoral artery compared with the uninjured femoral artery. Similarly, TSP2 expression was also increased in human samples from the atherosclerotic femoral artery and colocalized with vascular smooth muscle cells (VSMCs). Compared with the wild-type littermates, Tsp2 knockout mice displayed a mitigated IH in the injured femoral artery, as demonstrated by a decreased neointimal area and intimal/median ratio. Primary mouse VSMCs were cultured to explore the mechanism by which Tsp2 influenced IH in vitro. PDGF-stimulated VSMCs presented an elevated Tsp2 expression and enhanced migration and proliferation. However, Tsp2 knockdown by siRNA blocked the increased migration and proliferation of VSMCs. Further analysis identified an association between Notch3 and IH when the intracellular domain of Notch3 (Nicd3) was upregulated in PDGF-stimulated VSMCs and femoral arteries with IH in human tissues. Along with the overexpression and downregulation of Tsp2, the Nicd3 expression was also up and downregulated accordingly. Tsp2 was associated with IH and may serve as a therapeutic target for IH. Downregulation of Tsp2 could mitigate the progression of IH by modulating the proliferation and migration of VSMCs.


Assuntos
Músculo Liso Vascular , Neointima , Trombospondinas , Animais , Humanos , Camundongos , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Hiperplasia/metabolismo , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Neointima/metabolismo , Trombospondinas/genética , Trombospondinas/metabolismo
16.
Support Care Cancer ; 32(7): 415, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847977

RESUMO

PURPOSE: Anemia is relatively common in cancer patients, and is associated with poor survival in patients with various malignancies. However, how anemia would affect prognosis and response to neoadjuvant chemotherapy (NAC) in osteosarcoma (OS) is still without substantial evidence. METHODS: We retrospectively analysed 242 patients with stage II OS around the knee joint in our institute. Changed hemoglobin (Hb) levels (before and after NAC) were recorded to assess the prognostic value in DFS (disease-free survival) and tumor response to NAC. Univariate and multivariate analyses were conducted to identify prognostic factors related with outcome in OS patients. RESULTS: The mean Hb level significantly decreased after NAC (134.5 ± 15.3 g/L vs. 117.4 ± 16.3 g/L). The percentage of mild (21%), moderate (4.2%) and severe (0%) anemia patients markedly increased after NAC: 41%, 24% and 4.1% respectively. There was higher percentage of ≥ 5% Hb decline in patients with tumor necrosis rate < 90% (141 out of 161), compared with those with tumor necrosis rate ≥ 90% (59 out of 81). Further univariate and survival analysis demonstrated that Hb decline had a significant role in prediction survival in OS patients. Patients with ≥ 5% Hb decline after NAC had an inferior DFS compared with those with < 5% Hb decline. CONCLUSION: In osteosarcoma, patients with greater Hb decrease during neoadjuvant treatment were shown to have worse DFS and a poorer response to NAC than those without. Attempts to correct anemia and their effects on outcomes for osteosarcoma patients should be explored in future studies.


Assuntos
Anemia , Neoplasias Ósseas , Hemoglobinas , Articulação do Joelho , Terapia Neoadjuvante , Osteossarcoma , Humanos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/mortalidade , Estudos Retrospectivos , Masculino , Feminino , Terapia Neoadjuvante/métodos , Hemoglobinas/análise , Adulto , Prognóstico , Anemia/etiologia , Adolescente , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/mortalidade , Adulto Jovem , Criança , Articulação do Joelho/patologia , Intervalo Livre de Doença , Pessoa de Meia-Idade , Análise Multivariada , Quimioterapia Adjuvante/métodos , Índice de Gravidade de Doença
17.
Appl Opt ; 63(8): 1947-1951, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38568633

RESUMO

Three samples whose growth temperatures were 450°C, 500°C, and 560°C for S E S A M 1, S E S A M 2, and S E S A M 3, respectively, were tested by femto-second time-resolved transient absorption spectroscopy. The results indicate that the carrier dynamics of excited state absorption were dominant, and the lifetimes of carriers trapped by defect levels were about tens of pico-seconds. To further study the influence of carrier dynamics and recovery time of samples by ion-implantation, B + ions of 80 and 130 KeV were implanted into the samples with dose of 1014/c m 2. The modified samples showed a dominance of ultra-fast carrier dynamics of ground-state bleaching and direct recombination, which lasted for hundreds of femto-seconds, over excited state absorption. Additionally, carrier fast trapping was observed to be competitive with the excited state absorption process. After ion-implantation, the carrier dynamics of carrier trapping were enhanced, which contributed to forming an ultra-short laser, while the carrier dynamics of absorption of the excited state were suppressed. The conclusion that defect levels were partially eliminated by B + ion-implantation can be drawn.

18.
BMC Pediatr ; 24(1): 92, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308211

RESUMO

BACKGROUND: The application of evoked potentials (EPs) to the diagnosis of acute disseminated encephalomyelitis (ADEM ) has not been investigated in detail. The aim of this study, therefore, was to analyze the value of multimodal EPs in the early diagnosis of pediatric ADEM. METHODS: This was a retrospective study in which we enrolled pediatric ADEM patients and controls (Cs) from neurology units between 2017 and 2021. We measured indices in patients using brainstem auditory evoked potentials (BAEPs), visual evoked potentials (VEPs) and somatosensory evoked potentials (SEPs), and then we analyzed their early diagnostic value in ADEM patients. RESULTS: The mean age of the ADEM group was 6.15 ± 3.28 years (range,1-12 years) and the male/female ratio was 2.1:1 The mean age of the Cs was 5.97 ± 3.40 years (range,1-12 years) and the male/female ratio was 1.3:1. As we used magnetic resonance imaging (MRI) as the diagnostic criterion, the sensitivity, specificity, and accuracy (κ was 0.88) of multimodal EPs were highly consistent with those of MRI; and the validity could be ranked in the following order with respect to the diagnosis of ADEM: multimodal Eps > single SEP > single VEP > single BAEP. Of 34 patients with ADEM, abnormalities in multimodal EPs were 94.12%, while abnormalities in single VEPs, BAEPs and SEPs were 70.59%,64.71%and 85.3%, respectively. We noted significant differences between single VEP/BAEPs and multimodal EPs (χ2 = 6.476/8.995,P = 0.011/0.003). CONCLUSIONS: The combined application of multimodal EPs was superior to BAEPs, VEPs, or SEPs alone in detecting the existence of central nerve demyelination, and we hypothesize that these modalities will be applicable in the early diagnosis of ADEM.


Assuntos
Encefalomielite Aguda Disseminada , Potenciais Evocados Visuais , Humanos , Criança , Feminino , Masculino , Lactente , Pré-Escolar , Encefalomielite Aguda Disseminada/diagnóstico , Estudos Retrospectivos , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Potenciais Somatossensoriais Evocados/fisiologia
19.
Vascular ; : 17085381241262575, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885967

RESUMO

OBJECTIVE: This study used unsupervised machine learning (UML) cluster analysis to explore clinical phenotypes of endovascular aortic repair (EVAR) for abdominal aortic aneurysm (AAA) patients based on radiomics. METHOD: We retrospectively reviewed 1785 patients with infra-renal AAA who underwent elective EVAR procedures between January 2010 and December 2020. Pyradiomics was used to extract the radiomics features. Statistical analysis was applied to determine the radiomics features that related to severe adverse events (SAEs) after EVAR. The selected features were used for UML cluster analysis in training set and validation in test set. Comparison of basic characteristics and radiomics features of different clusters. The Kaplan-Meier analysis was conducted to generate the cumulative incidence of freedom from SAEs rate. RESULT: A total of 1180 patients were enrolled. During the follow-up, 353 patients experienced EVAR-related SAEs. In total, 1223 radiomics features were extracted from each patient, of which 23 radiomics features were finally preserved to identify different clinical phenotypes. 944 patients were allocated to the training set. Three clusters were identified in training set, in which patients had identical clinical characteristics and morphological features, while varied considerably of selected radiomics features. This encouraging performance was further approved in the test set. In addition, each cluster was well differentiated from other clusters and Kaplan-Meier analysis showed significant differences of freedom from SAEs rate between different clusters both in the training (p = .0216) and test sets (p = .0253). CONCLUSION: Based on radiomics, UML cluster analysis can identify clinical phenotypes in EVAR patients with distinct long-term outcomes.

20.
Sensors (Basel) ; 24(7)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38610551

RESUMO

As an indispensable component of coal-fired power plants, boilers play a crucial role in converting water into high-pressure steam. The oxygen content in the flue gas is a crucial indicator, which indicates the state of combustion within the boiler. The oxygen content not only affects the thermal efficiency of the boiler and the energy utilization of the generator unit, but also has adverse impacts on the environment. Therefore, accurate measurement of the flue gas's oxygen content is of paramount importance in enhancing the energy utilization efficiency of coal-fired power plants and reducing the emissions of waste gas and pollutants. This study proposes a prediction model for the oxygen content in the flue gas that combines the whale optimization algorithm (WOA) and long short-term memory (LSTM) networks. Among them, the whale optimization algorithm (WOA) was used to optimize the learning rate, the number of hidden layers, and the regularization coefficients of the long short-term memory (LSTM). The data used in this study were obtained from a 350 MW power generation unit in a coal-fired power plant to validate the practicality and effectiveness of the proposed hybrid model. The simulation results demonstrated that the whale optimization algorithm-long short-term memory (WOA-LSTM) model achieved an MAE of 0.16493, an RMSE of 0.12712, an MAPE of 2.2254%, and an R2 value of 0.98664. The whale optimization algorithm-long short-term memory (WOA-LSTM) model demonstrated enhancements in accuracy compared with the least squares support vector machine (LSSVM), long short-term memory (LSTM), particle swarm optimization-least squares support vector machine (PSO-LSSVM), and particle swarm optimization-long short-term memory (PSO-LSTM), with improvements of 4.93%, 4.03%, 1.35%, and 0.49%, respectively. These results indicated that the proposed soft sensor model exhibited more accurate performance, which can meet practical requirements of coal-fired power plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA