RESUMO
BACKGROUND: Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer mortality worldwide. Immune checkpoint inhibitors (ICIs) have emerged as a crucial treatment option for patients with advanced NSCLC. However, only a subset of patients experience clinical benefit from ICIs. Therefore, identifying biomarkers that can predict response to ICIs is imperative for optimising patient selection. METHODS: Hematoxylin and eosin (H&E) images of NSCLC patients were obtained from the local cohort (n = 106) and The Cancer Genome Atlas (TCGA) (n = 899). We developed an ICI-related pathological prognostic signature (ir-PPS) based on H&E stained histopathology images to predict prognosis in NSCLC patients treated with ICIs using deep learning. To accomplish this, we employed a modified ResNet model (ResNet18-PG), a widely-used deep learning architecture well-known for its effectiveness in handling complex image recognition tasks. Our modifications include a progressive growing strategy to improve the stability of model training and the use of the AdamW optimiser, which enhances the optimisation process by adjusting the learning rate based on training dynamics. RESULTS: The deep learning model, ResNet18-PG, achieved an area under the receiver operating characteristic curve (AUC) of 0.918 and a recall of 0.995 on the local cohort. The ir-PPS effectively risk-stratified NSCLC patients. Patients in the low-risk group (n = 40) had significantly improved progression-free survival (PFS) after ICI treatment compared to those in the high-risk group (n = 66, log-rank P = 0.004, hazard ratio (HR) = 3.65, 95%CI: 1.75-7.60). The ir-PPS demonstrated good discriminatory power for predicting 6-month PFS (AUC = 0.750), 12-month PFS (AUC = 0.677), and 18-month PFS (AUC = 0.662). The low-risk group exhibited increased expression of immune checkpoint molecules, cytotoxicity-related genes, an elevated abundance of tumour-infiltrating lymphocytes, and enhanced activity in immune stimulatory pathways. CONCLUSIONS: The ir-PPS signature derived from H&E images using deep learning could predict ICIs prognosis in NSCLC patients. The ir-PPS provides a novel imaging biomarker that may help select optimal candidates for ICIs therapy in NSCLC.
RESUMO
BACKGROUND: Many survivors of a first primary cancer (FPCs) are at risk of developing a second primary cancer (SPC), with effects on patient prognosis. Primary cancers have different frequencies of specific SPC development and the development of SPCs may be closely related to the FPC. The aim of this study was to explore possible correlations between SPCs and FPCs. METHODS: Relevant literature on SPCs was retrospectively searched and screened from four databases, namely, PubMed, EMBASE, Web of Science, and PMC. Data on the number of patients with SPC in 28 different organ sites were also collected from The Surveillance, Epidemiology, and End Results (SEER) 8 Registry and NHANES database. RESULTS: A total of 9 617 643 patients with an FPC and 677 430 patients with an SPC were included in the meta-analysis. Patients with a first primary gynaecological cancer and thyroid cancer frequently developed a second primary breast cancer and colorectal cancer. Moreover, those with a first primary head and neck cancer, anal cancer and oesophageal cancer developed a second primary lung cancer more frequently. A second primary lung cancer and prostate cancer was also common among patients with first primary bladder cancer and penile cancer. Patients with second primary bladder cancer accounted for 56% of first primary ureteral cancer patients with SPCs. CONCLUSIONS: This study recommends close clinical follow-up, monitoring and appropriate interventions in patients with relevant FPCs for better screening and early diagnosis of SPCs.
Assuntos
Neoplasias Pulmonares , Segunda Neoplasia Primária , Neoplasias da Próstata , Neoplasias da Bexiga Urinária , Humanos , Incidência , Segunda Neoplasia Primária/epidemiologia , Inquéritos Nutricionais , Neoplasias da Próstata/epidemiologia , Estudos Retrospectivos , Fatores de RiscoRESUMO
Peach soft rot caused by Gilbertella persicaria is an economically important disease. Here, we report a high-quality complete and annotated genome sequence of G. persicaria strain TFLB-J, isolated from peach fruit in Yuanyang county of Henan Province, China. The assembly consists of 91 scaffolds with an estimated genome size of 33.59 Mb and N50 length of 0.92 Mb, encoding 13,296 predicted protein-coding genes. The whole-genome sequence could provide gene resources for further study of pathogenic effectors and comparative genomics of peach soft rot pathogens.
Assuntos
Mucorales , Prunus persica , Prunus persica/genética , Genômica , ChinaRESUMO
BACKGROUND: Fibroproliferative repair starts early in the inflammatory phase of acute respiratory distress syndrome (ARDS) and indicates a poor prognosis. Lumican, a small leucine-rich proteoglycan, is implicated in homeostasis and fibrogenesis, but its role in ARDS is unclear. METHODS: Bronchoalveolar lavage fluid (BALF) samples were obtained from ARDS patients (n = 55) enrolled within 24 h of diagnosis and mechanically ventilated (n = 20) and spontaneously breathing (n = 29) control subjects. Lipopolysaccharide (LPS)-induced acute lung injury (ALI) mouse models were intratracheally administered an adeno-associated virus (AAV) vector expressing lumican shRNA. Primary human lung fibroblasts (HLF) and small airway epithelial cells (SAECs) were cultured with tumour necrosis factor (TNF)-α or lumican. Luminex/ELISA, histochemistry/immunohistochemistry, immunofluorescence microscopy, quantitative real-time PCR, and western blotting were performed. RESULTS: Lumican levels were significantly higher in the BALF of ARDS patients than in that of ventilated or spontaneously breathing controls (both p < 0.0001); they were correlated with the PaO2/FiO2 ratio and levels of proinflammatory cytokines (interleukin-6, interleukin-8, and TNF-α) and profibrotic factors (fibronectin, alpha-1 type I collagen [COL1A1], and alpha-1 type III collagen [COL3A1]). Lumican expression was enhanced in the alveolar walls and airway epithelium in the ALI mouse model. Murine lumican levels were also linked to proinflammatory and profibrotic cytokine levels in the BALF. In vitro, TNF-α induced the synthesis and secretion of lumican in HLF. In turn, lumican increased the expression of alpha-smooth muscle actin (α-SMA), COL1A1, and COL3A1 in HLF, upregulated α-SMA and COL3A1, downregulated E-cadherin, and caused spindle-shaped morphological changes in SAECs. Moreover, increased ERK phosphorylation and Slug were noted in both HLF and SAECs treated with lumican. In vivo, AAV-mediated knockdown of lumican inhibited the pulmonary production of fibronectin and COL3A1 and alleviated lung fibrotic lesions in LPS-challenged mice. CONCLUSIONS: Pulmonary lumican levels were increased early in human and experimental ARDS and linked to disease severity and inflammatory fibrotic processes. Lumican triggers the transdifferentiation of lung fibroblasts into myofibroblasts and epithelial-mesenchymal transition in SAECs, possibly via the ERK/Slug pathway. Knockdown of pulmonary lumican attenuated extracellular matrix deposition in ALI mice. Overall, lumican promotes fibrotic responses in the early phase of ARDS, suggesting its potential as a therapeutic target.
Assuntos
Lesão Pulmonar Aguda , Lumicana/metabolismo , Síndrome do Desconforto Respiratório , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Líquido da Lavagem Broncoalveolar , Citocinas/metabolismo , Modelos Animais de Doenças , Fibronectinas , Fibrose , Humanos , Lipopolissacarídeos/metabolismo , Pulmão/patologia , Camundongos , Síndrome do Desconforto Respiratório/patologia , Fator de Necrose Tumoral alfa/metabolismoRESUMO
BACKGROUND: Lung adenocarcinoma (LUAD) results in a majority of cancer burden worldwide. TP53 is the most commonly mutated in LUAD. This study aimed to reveal the relation between TP53 and tumor microenvironment (TME) for improving LUAD treatment. METHODS: Differentially expressed genes (DEGs) related to immunity were analyzed between TP53-WT and TP53-MUT groups. Least absolute shrinkage and selection operator (LASSO) Cox regression was applied to screen prognostic DEGs. Two independent datasets were included to evaluate the robustness of the prognostic model. RESULTS: An 8-gene prognostic model containing ANLN, CCNB1, DLGAP5, FAM83A, GJB2, NAPSA, SFTPB, and SLC2A1 was established based on DEGs. LUAD samples were classified into high- and low-risk groups with differential overall survival in the two datasets. M0 macrophages, M1 macrophages, and activated memory CD4 T cells were more enriched in high-risk group. Immune checkpoints of PDCD1, LAG3, and CD274 were also high-expressed in high-risk group. CONCLUSION: The study improved the understanding of the role of TP53 in the TME modulation. The 8-gene model had robust performance to predict LUAD prognosis in clinical practice. In addition, the eight prognostic genes may also serve as potential targets for designing therapeutic drugs for LUAD patients.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Proteína Supressora de Tumor p53 , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Proteínas de Neoplasias/genética , Prognóstico , Microambiente Tumoral/genética , Proteína Supressora de Tumor p53/genéticaRESUMO
BACKGROUND: LncRNA WT1-AS inhibits gastric cancer, while its role in other cancers is unknown. We investigated the role of WT1-AS in non-small cell lung cancer (NSCLC). METHODS: Sixty-six NSCLC patients (40 males and 26 females; 36 to 68 years old; mean age 52.7 ± 6.4 years old) were selected from the 178 NSCLC patients operated on for lung cancer between 2010 and 2013. RT-qPCR was used to analyze the expression of lncRNA. Overexpression experiments were performed to assess interactions between lncRNAs. CCK-8 assay was carried to evaluate the roles of WT1-AS and UCA1 in regulating cell proliferation. Cell invasion and migration assays were performed to assess the roles of WT1-AS and UCA1 in regulating cell invasion and migration. Western-blot was performed to illustrate the effect of WT1-AS and UCA1 in EMT. RESULTS: WT1-AS was downregulated in NSCLC and was correlated with poor survival. The expression of WT1-AS in NSCLC was not correlated with clinical stages. LncRNA UCA1 was upregulated in cancer tissues and inversely correlated with WT1-AS. Overexpression of UCA1 did not affect WT1-AS, while overexpression of WT1-AS led to inhibited expression of UCA1. Overexpression of UCA1 resulted in increased proliferation, EMT, migration and invasion of NSCLC cells, while overexpression of WT1-AS showed opposite effects. In addition, overexpression of UCA1 inhibited the role of overexpression of WT1-AS. CONCLUSIONS: Therefore, overexpression of WT1-AS may inhibit the cell proliferation and EMT to decrease cell migration and invasion of NSCLC cells by downregulating UCA1.
Assuntos
Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/mortalidade , RNA Longo não Codificante/genética , Adulto , Idoso , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Movimento Celular , Proliferação de Células , Feminino , Seguimentos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Transdução de Sinais , Taxa de Sobrevida , Células Tumorais CultivadasRESUMO
BACKGROUND: This article focuses on the roles and mechanism of lncRNA CRNDE on the progression of HCC. METHODS: We used qRT-PCR to detect the expression of lncRNA CRNDE in HCC cells, normal cells and clinical tissues. MTT assay, FCM analysis, Transwell migration and invasion assay were used to detect the effects of lncRNA CRNDE on cell viability, apoptosis, migration and invasion of HCC cells. The expression of apoptosis-related proteins Bcl-2, Bax, Cleaved Caspase 3, Cleaved Caspase 9, EMT epithelial marker E-cadherin and mesothelial marker Vimentin were analyzed by Western blot. Online prediction software was used to predict the binding sites between lncRNA CRNDE and miR-539-5p, or miR-539-5p and POU2F1 3'UTR. Dual luciferase reporter assay, qRT-PCR and RNA pulldown were used to detect target-relationship between lncRNA CRNDE and miR-539-5p. Dual luciferase reporter assay, qRT-PCR, Western blot and Immunofluorescence were used to detect target-relationship between miR-539-5p and POU2F1. qRT-PCR was used to detect the expression of miR-539-5p and POU2F1 in clinical tissues. Rescue experiments was used to evaluate the association among lncRNA CRNDE, miR-539-5p and POU2F1. Finally, we used Western blot to detect the effects of lncRNA CRNDE, miR-539-5p and POU2F1 on NF-κB and AKT pathway. RESULTS: lncRNA CRNDE was highly expressed in HCC cells and HCC tissues compared with normal cells and the corresponding adjacent normal tissues. lncRNA CRNDE promoted the cell viability, migration and invasion of HCC cells, while inhibited the apoptosis and promoted the EMT process of HCC cells. lncRNA CRNDE adsorbed miR-539-5p acts as a competitive endogenous RNA to regulate POU2F1 expression indirectly. In HCC clinical tissues, miR-539-5p expression decreased and POU2F1 increased compared with the corresponding adjacent normal tissues. lncRNA CRNDE/miR-539-5p/POU2-F1 participated the NF-κB and AKT pathway in HCC. CONCLUSION: lncRNA CRNDE promotes the expression of POU2F1 by adsorbing miR-539-5p, thus promoting the progression of HCC.
Assuntos
Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/patologia , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/secundário , MicroRNAs/genética , Fator 1 de Transcrição de Octâmero/metabolismo , RNA Longo não Codificante/genética , Animais , Apoptose , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Subunidade p50 de NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
To assure faithful chromosome segregation, cells make use of the spindle assembly checkpoint, which can be activated in aneuploid cancer cells. In this study, the efficacies of inhibiting polo-like kinase 1 (PLK1) on the radiosensitization of non-small-cell lung cancer (NSCLC) cells were studied. Clonogenic survival assay was performed to identify the effects of the PLK1 inhibitor on radiosensitivity within NSCLC cells. Mitotic catastrophe assessment was used to measure the cell death and histone H2AX protein (γH2AX) foci were utilized to assess the DNA double-strand breaks (DSB). The transcriptome was analyzed via unbiased profiling of microarray expression. The results showed that the postradiation mitotic catastrophe induction and the DSB repair were induced by PLK1 inhibitor BI-6727, leading to an increase in the radiosensitivity of NSCLC cells. BI-6727 in combination with radiation significantly induced the delayed tumor growth. PLK1-silenced NSCLC cells showed an altered mRNA and protein expression related to DNA damaging, replication, and repairing, including the DNA-dependent protein kinase (DNAPK) and topoisomerase II alpha (TOPO2A). Furthermore, inhibition of PLK1 blocked 2 important DNA repair pathways. To summarize, our study showed PLK1 kinase as an option in the therapy of NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proteínas de Ciclo Celular/antagonistas & inibidores , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Segregação de Cromossomos/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Pteridinas/farmacologia , Quinase 1 Polo-LikeRESUMO
It has been reported that miR-376a is involved in the formation and progression of several types of cancer. However, the expression and function of miR-376a is still unknown in non-small cell lung carcinomas (NSCLC). In this study, the expression of miR-376a in NSCLC tissues and cell lines were examined by real-time PCR, the effects of miR-376a on cell proliferation, apoptosis and invasion were evaluated in vitro. Luciferase reporter assay was performed to identify the targets of miR-376a. The results showed that miR-376a was significantly downregulated in NSCLC tissues and cell lines. Restoration of miR-376a in NSCLC cell line A549 significantly inhibited cell proliferation, increased cell apoptosis and suppressed cell invasion, compared with control-transfected A549 cells. Luciferase reporter assay showed that c-Myc, an oncogene that regulating cell survival, angiogenesis and metastasis, was a direct target of miR-376a. Over-expression of miR-376a decreased the mRNA and protein levels of c-Myc in A549 cells. In addition, upregulation of c-Myc inhibited miR-376a-induced inhibition of cell proliferation and invasion in A549 cells. Therefore, our results indicate a tumor suppressor role of miR-376a in NSCLC by targeting c-Myc. miR-376a may be a promising therapeutic target for NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Genes myc , Neoplasias Pulmonares/genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-myc/genética , Células A549 , Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , MicroRNAs/biossíntese , MicroRNAs/metabolismo , Metástase Neoplásica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transcriptoma , TransfecçãoRESUMO
AIB1 was involved in the development and progression of breast cancer. Although it was found that AIB1 could be phosphorylated by some kinases including PI3K, the function of AIB1 and AKT interaction in breast cancer is not well defined. MCF-7 cells were transfected with pERE-Luc AKT and/or AIB1 plasmids, and then ERE luciferase activity in presence or absence of estrogen (E2) were measured. Plasmids containing PTEN and an PI3K inhibitor LY294002 were transfected into or treated cells to identify the interaction of PI3K/AKT and activation of AIB1, and examine their roles in cell cycle regulation. The AKT phosphorylation activity was evaluated by kinase assay using H2B as a substrate. The association between A1B1 and pS2 promoter was detected by the Chromatin Immunoprecipitation (ChIP) assay. AIB1 and AKT in the same complex were detected by Pull-down assay. IGF-1 can increase AIB1 recruitment to PS2 and enhance the ER-dependent transcription activity through the PI3K/AKT pathway. AIB1 associate with AKT to regulate cell cycle. The special relations concerning the AIB1 and AKT may arouse some new viewpoints for potential therapeutic targets in breast cancer.
Assuntos
Neoplasias da Mama/patologia , Estradiol/farmacologia , Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/fisiologia , Neoplasias Hormônio-Dependentes/patologia , Coativador 3 de Receptor Nuclear/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Transdução de Sinais/fisiologia , Animais , Ciclo Celular/fisiologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Imunoprecipitação , Fator de Crescimento Insulin-Like I/farmacologia , Células MCF-7 , Camundongos , Proteínas de Neoplasias/genética , Coativador 3 de Receptor Nuclear/genética , Fosforilação , Presenilina-2/biossíntese , Presenilina-2/genética , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-akt/genética , Receptores de Estrogênio/efeitos dos fármacos , Receptores de Estrogênio/fisiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , TransfecçãoRESUMO
Background: The persistence of inflammatory stimulus has a tight relationship with the development of age-related diseases, ultimately resulting in a gradual escalation in the prevalence of tumors, but this phenomenon is rare in young cancer patients. Breast cancer arising in young women is characterized by larger tumor diameters and more aggressive subtypes, so neoadjuvant chemotherapy (NACT) can be especially appropriate for this population. Immune inflammatory biomarkers have been reportedly linked to the prognosis of some malignant tumor types, with varying results. In this study, we investigated the possible predictive value of blood-based markers in young breast cancer patients undergoing NACT, in addition to the association between the clinicopathological features and prognosis. Methods: From December 2011 to October 2018, a total of 215 young breast cancer patients referred to Harbin Medical University Cancer Hospital received NACT and surgery were registered in this retrospective study. The pretreatment complete blood counts were used to calculate the neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), monocyte-to-lymphocyte ratio (MLR), and pan-immune-inflammation value (PIV). Results: NLR, PLR, MLR, and PIV optimal cut-off values were 1.55, 130.66, 0.24, and 243.19, as determined by receiver operating characteristic analysis. Multivariate analysis revealed that PIV, HR status, HER-2 status, and Ki-67 index were all independent predictive factors for pathological complete response. Subgroup analysis revealed that young breast cancer patients in the population characterized by low PIV and HR negative group were more likely to get pCR (P=0.001). The five-year overall survival (OS) rate was 87.9%, and Cox regression models identified PIV as independently related to OS. Conclusion: In the present study, the pretreatment PIV was found to be a useful prognostic indicator for pCR and long-term survival in young breast cancer patients undergoing NACT. High immune and inflammation levels, MLR and PIV were connected to poor clinical prognosis in young breast cancer patients. PIV is a promising biomarker to guide strategic decisions in treating young breast cancer.
RESUMO
Background: Notwithstanding the rapid developments in precision medicine in recent years, lung cancer still has a low survival rate, especially lung squamous cell cancer (LUSC). The tumor microenvironment (TME) plays an important role in the progression of lung cancer, in which high neutrophil levels are correlated with poor prognosis, potentially due to their interactions with tumor cells via pro-inflammatory cytokines and chemokines. However, the precise mechanisms of how neutrophils influence lung cancer remain unclear. This study aims to explore these mechanisms and develop a prognosis predictive model in LUSC, addressing the knowledge gap in neutrophil-related cancer pathogenesis. Methods: LUSC datasets from the Xena Hub and Gene Expression Omnibus (GEO) databases were used, comprising 473 tumor samples and 195 tumor samples, respectively. Neutrophil contents in these samples were estimated using CIBERSORT, xCell, and microenvironment cell populations (MCP) counter tools. Differentially expressed genes (DEGs) were identified using DEseq2, and a weighted gene co-expression network analysis (WGCNA) was performed to identify neutrophil-related genes. A least absolute shrinkage and selection operator (LASSO) Cox regression model was constructed for prognosis prediction, and the model's accuracy was validated using Kaplan-Meier survival curves and time-dependent receiver operating characteristic (ROC) curves. Additionally, genomic changes, immune correlations, drug sensitivity, and immunotherapy response were analyzed to further validate the model's predictive power. Results: Neutrophil content was significantly higher in adjacent normal tissue compared to LUSC tissue (P<0.001). High neutrophil content was associated with worse overall survival (OS) (P=0.02), disease-free survival (DFS) (P=0.02), and progression-free survival (PFS) (P=0.03) using different software estimates. Nine gene modules were identified, with blue and yellow modules showing strong correlations with neutrophil prognosis (P<0.001). Eight genes were selected for the prognostic model, which accurately predicted 1-, 3-, and 5-year survival in both the training set [area under the curve (AUC) value =0.60, 0.63, 0.66, respectively] and validation set (AUC value =0.58, 0.58, 0.59, respectively), with significant prognosis differences between high- and low-risk groups (P<0.001). The model's independent prognostic factors included risk group, pathologic M stage, and tumor stage (P<0.05). A further molecular mechanism analysis revealed differences between risk groups were revealed in immune checkpoint and human leukocyte antigen (HLA) gene expression, hallmark pathways, drug sensitivity, and immunotherapy responses. Conclusions: This study established a risk-score model that effectively predicts the prognosis of LUSC patients and sheds light on the molecular mechanisms involved. The findings enhance the understanding of neutrophil-tumor interactions, offering potential targets for personalized treatments. However, further experimental validation and clinical studies are required to confirm these findings and address study limitations, including reliance on public databases and focus on a specific lung cancer subtype.
RESUMO
PURPOSE: The status of hormone receptors (HR) is an independent factor affecting survival and chemotherapy sensitivity in breast cancer (BC) patients, with estrogen receptor (ER) and progesterone receptor (PR) having the most significant effects. The ER-/PR + phenotype has been controversial in BC, and experts will face many challenges in determining treatment strategies. Herein, we systematically analyzed the clinicopathological characteristics of the ER-/PR + phenotype in BC patients and the response to chemotherapy. PATIENTS AND METHODS: We included two cohorts. The first cohort counted the relationship between clinicopathologic data and survival outcomes for 72,666 female patients in the Surveillance, Epidemiology, and End Results (SEER) database. The second cohort analyzed the relationship between clinicopathological data and pathologic complete response (pCR) rate in 879 patients at the Harbin Medical University Cancer Hospital. The classification data were compared by the chi-square test and Fister's exact test of the Logistic regression model, and predictor variables with P < 0.05 in the univariate analysis were included in the multivariate regression analysis. The Kaplan-Meier method evaluated breast cancer-specific survival (BCSS) and overall survival (OS) to investigate the relationship between different HR typing and survival and pCR. RESULTS: In the two cohorts, 704 (0.9%) and 11 (1.3%) patients had the ER-/PR + phenotype, respectively. The clinicopathologic features of patients with the ER-/PR + phenotype are more similar to those of the ER-/PR- phenotype. The ER-/PR + phenotype is more common in younger and premenopausal women, and most ER-/PR + phenotypes exhibit higher histological grades. Survival analysis showed that there were significant differences in OS and BCSS among patients with different HR states (P < 0.001). The survival results of patients with the ER + /PR + phenotype were the best. The prognosis of the ER-/PR + phenotype was similar to that of the ER-/PR- phenotype. On the other hand, we found that HR status was also an independent predictor of post-NAC pCR rate in BC patients. The ER + /PR- and ER-/PR- phenotypes were more sensitive to chemotherapy than the ER + /PR + phenotypes. CONCLUSION: HR status is the main factor affecting BC's survival outcome and pCR rate. Patients with the ER-/PR + phenotype possess more aggressive biological factors and can benefit significantly from chemotherapy. We need to pay more attention to this group and achieve individualized treatment, which will help us treat BC better and provide new targets and blueprints for our clinical treatment.
Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/patologia , Receptores de Progesterona , Resposta Patológica Completa , Terapia Neoadjuvante , Prognóstico , Receptores de Estrogênio/análise , Receptor ErbB-2/análiseRESUMO
Although numerous genetic, chemical, and physical strategies have been developed to remodel the cell surface landscape for basic research and the development of live cell-based therapeutics, new chemical modification strategies capable of decorating cells with various genetically/non-genetically encodable molecules are still urgently needed. Herein, we describe a remarkably simple and robust chemical strategy for cell surface modifications by revisiting the classical thiazolidine formation chemistry. Cell surfaces harbouring aldehydes can be chemoselectively conjugated with molecules containing a 1,2-aminothiol moiety at physiological pH without the need to use any toxic catalysts and complicated chemical synthesis. Through the combined use of thiazolidine formation and the SpyCatcher-SpyTag system, we have further developed a SpyCatcher-SpyTag Chemistry Assisted Cell Surface Engineering (SpyCASE) platform, providing a modular approach for the construction of large protein-cell conjugates (PCCs) in their native state. Thiazolidine-bridged molecules can also be detached from the surface again through a biocompatible Pd-catalyzed bond scission reaction, enabling reversible modification of living cell surfaces. In addition, this approach allows us to modulate specific cell-cell interactions and generate NK cell-based PCCs to selectively target/kill several EGFR-positive cancer cells in vitro. Overall, this study provides an underappreciated but useful chemical tool to decorate cells with tailor-made functionalities.
RESUMO
RATIONALE: Using an electronic visualized double-lumen endobronchial tube (E-visual DLT) allows for excellent surgical visualization during one-lung ventilation. Situs inversus totalis (SIT) is a rare autosomal recessive genetic condition wherein the bronchial and pulmonary lobar structures on the left and right sides of individuals are reversed compared to those of the general population. In the case of SIT, placing a left-sided E-visual DLT into the right bronchus might offer more advantageous one-lung ventilation. However, there have been no reported instances of using E-visual DLT single-lung ventilation anesthesia techniques for SIT. PATIENTS CONCERNS: We present a case report detailing the effective implementation of a visualized single-lung ventilation technique under general anesthesia in a 36-year-old male diagnosed with SIT. The patient had a mediastinal mass and underwent thoracoscopic resection of the mediastinal mass using a left-sided approach. DIAGNOSES: Based on the findings from the contrast-enhanced chest computed tomography (CT) results, the patient was diagnosed with SIT along with a mediastinal mass. Surgical intervention was proposed to alleviate the cardiac compression caused by the mass. Nevertheless, the administration and handling of anesthesia posed a notable challenge since clinical anesthesiologists encounter contradictory data and a limited number of evidence-based guidelines. INTERVENTIONS: Convened a multidisciplinary meeting prior to the initiation of anesthesia to formulate a comprehensive strategy. Throughout the anesthetic management, our team ensured meticulous monitoring, delivered sufficient oxygenation, and established hemodynamic equilibrium. The anesthesia team deliberated and devised a plan to employ a left-sided E-visual DLT placement through the right bronchus for right-sided one-lung ventilation in the patient with SIT. The process of anesthesia induction was subjected to repeated simulations to guarantee patient safety. OUTCOMES: Due to the meticulous and effective administration and supervision of anesthesia, the surgery was completed as planned. Subsequently, the removal of the E-visual DLT was executed without any complications. LESSONS: Data and literature about SIT are scarce, necessitating thorough pre-planning and preparation.
Assuntos
Dextrocardia , Situs Inversus , Masculino , Humanos , Adulto , Intubação Intratraqueal/métodos , Brônquios , Pulmão , Anestesia Geral , Situs Inversus/complicaçõesRESUMO
Background: Lung cancer is the most prevalent cancer diagnosis and the leading cause of cancer death worldwide. Therapeutic failure in lung cancer (LUAD) is heavily influenced by drug resistance. This challenge stems from the diverse cell populations within the tumor, each having unique genetic, epigenetic, and phenotypic profiles. Such variations lead to varied therapeutic responses, thereby contributing to tumor relapse and disease progression. Methods: The Genomics of Drug Sensitivity in Cancer (GDSC) database was used in this investigation to obtain the mRNA expression dataset, genomic mutation profile, and drug sensitivity information of NSCLS. Machine Learning (ML) methods, including Random Forest (RF), Artificial Neurol Network (ANN), and Support Vector Machine (SVM), were used to predict the response status of each compound based on the mRNA and mutation characteristics determined using statistical methods. The most suitable method for each drug was proposed by comparing the prediction accuracy of different ML methods, and the selected mRNA and mutation characteristics were identified as molecular features for the drug-responsive cancer subtype. Finally, the prognostic influence of molecular features on the mutational subtype of LUAD in publicly available datasets. Results: Our analyses yielded 1,564 gene features and 45 mutational features for 46 drugs. Applying the ML approach to predict the drug response for each medication revealed an upstanding performance for SVM in predicting Afuresertib drug response (area under the curve [AUC] 0.875) using CIT, GAS2L3, STAG3L3, ATP2B4-mut, and IL15RA-mut as molecular features. Furthermore, the ANN algorithm using 9 mRNA characteristics demonstrated the highest prediction performance (AUC 0.780) in Gefitinib with CCL23-mut. Conclusion: This work extensively investigated the mRNA and mutation signatures associated with drug response in LUAD using a machine-learning approach and proposed a priority algorithm to predict drug response for different drugs.
Assuntos
Neoplasias Pulmonares , Recidiva Local de Neoplasia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Aprendizado de Máquina , Mutação , RNA MensageiroRESUMO
Protein-protein interactions (PPIs) play critical roles in almost all cellular signal transduction events. Characterization of PPIs without interfering with the functions of intact cells is very important for basic biology study and drug developments. However, the ability to profile PPIs especially those weak/transient interactions in their native states remains quite challenging. To this end, many endeavors are being made in developing new methods with high efficiency and strong operability. By coupling with advanced fluorescent microscopy and mass spectroscopy techniques, these strategies not only allow us to visualize the subcellular locations and monitor the functions of protein of interest (POI) in real time, but also enable the profiling and identification of potential unknown interacting partners in high-throughput manner, which greatly facilitates the elucidation of molecular mechanisms underlying numerous pathophysiological processes. In this review, we will summarize the typical methods for PPIs identification in living cells and their principles, advantages and limitations will also be discussed in detail.
Assuntos
Mapeamento de Interação de Proteínas , Proteínas , Mapeamento de Interação de Proteínas/métodos , Proteínas/químicaRESUMO
Purpose: The primary objective is to optimize the population eligible for Mammotome Minimally Invasive Surgery (MIS) by refining selection criteria. This involves maximizing procedure benefits, minimizing malignancy risk, and reducing the rate of malignant outcomes. Patients and methods: A total of 1158 female patients who came to our hospital from November 2016 to August 2021 for the Mammotome MIS were analyzed retrospectively. Following χ2 tests to screen for risk variables, binary logistic regression analysis was used to determine the independent predictors of malignant lesions. In addition, the correlation between age and lesion diameter was investigated for BI-RADS ultrasound (US) category 4a lesions in order to better understand the relationship between these variables. Results: The malignancy rates of BI-RADS US category 3, category 4a and category 4b patients who underwent the Mammotome MIS were 0.6% (9/1562), 6.4% (37/578) and 8.3% (2/24) respectively. Malignant lesions were more common in patients over the age of 40, have visible blood supply, and BI-RADS category 4 of mammography. In BI-RADS US category 4a lesions, the diameter of malignant tumor was highly correlated with age, and this correlation was strengthened in patients over the age of 40 and with BI-RADS category 4 of mammography. Conclusion: The results of this study demonstrate that the clinical data and imaging results, particularly age, blood supply, and mammography classification, offer valuable insights to optimize patients' surgical options and decrease the incidence of malignant outcomes.
RESUMO
PURPOSE: Breast cancer (BC) is currently the leading cause of death in women worldwide. Studies have confirmed that pregnancy is an independent factor affecting the survival of BC patients. BC found during pregnancy, lactation, or shortly after delivery is what we used to think of as pregnancy-associated breast cancer (PABC). The current expert definition of this concept is not uniform; however, there is growing evidence that postpartum breast cancer (PPBC) differs from other types of BC in terms of both biological features and prognosis, with a slightly different focus on diagnosis and treatment. With the increase of female reproductive age population and changes in fertility policies in China, patients with PPBC are receiving increasing attention. Here, we systematically analyzed the clinicopathological characteristics and chemotherapeutic response of patients with PPBC. We retrospectively analyzed the clinicopathological data, molecular subtypes, chemotherapy regimens, and pathological complete remission (pCR) rates of 1343 patients with non-metastatic BC at Harbin Medical University Cancer Hospital from January 1, 2012 to May 31, 2023. The categorical data were compared by chi-square test and Fisher exact test using logistic regression model. Predictor variables with P < 0.05 in the univariate analysis were included in the multivariate regression analysis to investigate the relationship between different age groups and pCR. RESULTS: A total of 714 patients were eligible for analysis in this study, and 667 patients had a history of pregnancy, 40 (5.6%) of whom were PPBC patients. When diagnosed with BC, patients with PPBC were younger, more likely to undergo breast-conserving surgery (BCS), and more likely to achieve pCR (P < 0.05). In molecular typing, human epidermal growth factor receptor 2 (HER-2)-positive and triple-negative breast cancer (TNBC) were more frequent. In the entire cohort, HER-2 expression and delivery status were independent predictors of pCR rates in BC patients after neoadjuvant chemotherapy (NAC). CONCLUSION: Our findings suggest that postpartum status is an independent predictor of pCR attainment in BC patients. PPBC is more sensitive to chemotherapy than other patients.We need to pay more attention to this group and achieve individualized treatment, which will help us treat BC better and provide new targets and blueprints for our clinical therapy.
RESUMO
BACKGROUND: Adding radiotherapy (RT) to systemic therapy improves progression-free survival (PFS) and overall survival (OS) in oligometastatic non-small cell lung cancer (NSCLC). Whether these findings translate to epidermal growth factor receptor (EGFR)-mutated NSCLC remains unknown. The SINDAS trial (NCT02893332) evaluated first-line tyrosine kinase inhibitor (TKI) therapy for EGFR-mutated synchronous oligometastatic NSCLC and randomized to upfront RT vs no RT; we now report the prespecified interim analysis at 68% accrual. METHODS: Inclusion criteria were biopsy-proven EGFR-mutated adenocarcinoma (per amplification refractory mutation system or next generation sequencing), with synchronous (newly diagnosed, treatment naïve) oligometastatic (≤5 metastases; ≤2 lesions in any one organ) NSCLC without brain metastases. All patients received a first-generation TKI (gefitinib, erlotinib, or icotinib), and randomization was between no RT vs RT (25-40 Gy in 5 fractions depending on tumor size and location) to all metastases and the primary tumor/involved regional lymphatics. The primary endpoint (intention to treat) was PFS. Secondary endpoints included OS and toxicities. All statistical tests were 2-sided. RESULTS: A total of 133 patients (n = 65 TKI only, n = 68 TKI with RT) were enrolled (2016-2019). The median follow-up was 23.6 months. The respective median PFS was 12.5 months vs 20.2 months (P < .001), and the median OS was 17.4 months vs 25.5 months (P < .001) for TKI only vs TKI with RT. Treatment yielded no grade 5 events and a 6% rate of symptomatic grade 3-4 pneumonitis in the TKI with RT arm. Based on the efficacy results of this prespecified interim analysis, the ethics committee recommended premature cessation of this trial. CONCLUSIONS: As compared with a first-line TKI alone, addition of upfront local therapy using RT statistically significantly improved PFS and OS for EGFR-mutated NSCLC.