Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 659
Filtrar
1.
Nat Immunol ; 21(10): 1205-1218, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32839608

RESUMO

Immune-modulating therapies have revolutionized the treatment of chronic diseases, particularly cancer. However, their success is restricted and there is a need to identify new therapeutic targets. Here, we show that natural killer cell granule protein 7 (NKG7) is a regulator of lymphocyte granule exocytosis and downstream inflammation in a broad range of diseases. NKG7 expressed by CD4+ and CD8+ T cells played key roles in promoting inflammation during visceral leishmaniasis and malaria-two important parasitic diseases. Additionally, NKG7 expressed by natural killer cells was critical for controlling cancer initiation, growth and metastasis. NKG7 function in natural killer and CD8+ T cells was linked with their ability to regulate the translocation of CD107a to the cell surface and kill cellular targets, while NKG7 also had a major impact on CD4+ T cell activation following infection. Thus, we report a novel therapeutic target expressed on a range of immune cells with functions in different immune responses.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Inflamação/imunologia , Células Matadoras Naturais/imunologia , Leishmania donovani/fisiologia , Leishmaniose Visceral/imunologia , Malária/imunologia , Proteínas de Membrana/metabolismo , Plasmodium/fisiologia , Animais , Células Cultivadas , Citotoxicidade Imunológica , Modelos Animais de Doenças , Exocitose , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Vesículas Secretórias/metabolismo
3.
Nano Lett ; 24(18): 5403-5412, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38669639

RESUMO

The efficacy of electrical stimulation facilitating peripheral nerve regeneration is evidenced extensively, while the associated secondary damage resulting from repeated electrode invasion and indiscriminate stimulation is inevitable. Here, we present an optogenetics strategy that utilizes upconversion nanoparticles (UCNPs) to convert deeply penetrating near-infrared excitation into blue emission, which activates an adeno-associated virus-encoding ChR2 photoresponsive ion channel on cell membranes. The induced Ca2+ flux, similar to the ion flux in the electrical stimulation approach, efficiently regulates viability and proliferation, secretion of nerve growth factor, and neural function of RSC96 cells. Furthermore, deep near-infrared excitation is harnessed to stimulate autologous Schwann cells in situ via a UCNP-composited scaffold, which enhances nerve sprouting and myelination, consequently promoting functional recovery, electrophysiological restoration, and reinnervation of damaged nerves. This developed postoperatively noninvasive optogenetics strategy presents a novel, minimally traumatic, and enduring therapeutic stimulus to effectively promote peripheral nerve repair.


Assuntos
Nanopartículas , Regeneração Nervosa , Optogenética , Células de Schwann , Nervo Isquiático , Animais , Optogenética/métodos , Nanopartículas/química , Ratos , Dependovirus/genética , Linhagem Celular , Traumatismos dos Nervos Periféricos/terapia
4.
J Proteome Res ; 23(1): 277-288, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38085828

RESUMO

Given the pressing clinical problem of making a decision in diagnosis for subjects with pulmonary nodules, we aimed to discover novel plasma protein biomarkers for lung adenocarcinoma (LUAD) and benign pulmonary nodules (BPNs) and then develop an integrative multianalytical model to guide the clinical management of LUAD and BPN patients. Through label-free quantitative plasma proteomic analysis (data are available via ProteomeXchange with identifier PXD046731), 12 differentially expressed proteins (DEPs) in LUAD and BPN were screened. The diagnostic abilities of DEPs were validated in two independent validation cohorts. The results showed that the levels of three candidate proteins (PRDX2, PON1, and APOC3) were lower in the plasma of LUAD than in BPN. The three candidate proteins were combined with three promising computed tomography indicators (spiculation, vascular notch sign, and lobulation) and three traditional markers (CEA, CA125, and CYFRA21-1) to construct an integrative multianalytical model, which was effective in distinguishing LUAD from BPN, with an AUC of 0.904, a sensitivity of 81.44%, and a specificity of 90.14%. Moreover, the model possessed impressive diagnostic performance between early LUADs and BPNs, with the AUC, sensitivity, specificity, and accuracy of 0.868, 65.63%, 90.14%, and 82.52%, respectively. This model may be a useful auxiliary diagnostic tool for LUAD and BPN by achieving a better balance of sensitivity and specificity.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Humanos , Neoplasias Pulmonares/patologia , Proteômica , Adenocarcinoma de Pulmão/diagnóstico , Nódulos Pulmonares Múltiplos/diagnóstico , Nódulos Pulmonares Múltiplos/patologia , Biomarcadores , Proteínas Sanguíneas , Biomarcadores Tumorais , Arildialquilfosfatase
5.
Neuroimage ; 290: 120574, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38467346

RESUMO

Obesity has a profound impact on metabolic health thereby adversely affecting brain structure and function. However, the majority of previous studies used a single structural index to investigate the link between brain structure and body mass index (BMI), which hinders our understanding of structural covariance between regions in obesity. This study aimed to examine the relationship between macroscale cortical organization and BMI using novel morphometric similarity networks (MSNs). The individual MSNs were first constructed from individual eight multimodal cortical morphometric features between brain regions. Then the relationship between BMI and MSNs within the discovery sample of 434 participants was assessed. The key findings were further validated in an independent sample of 192 participants. We observed that the lateral non-reward orbitofrontal cortex (lOFC) exhibited decoupling (i.e., reduction in integration) in obesity, which was mainly manifested by its decoupling with the cognitive systems (i.e., DMN and FPN) while the medial reward orbitofrontal cortex (mOFC) showed de-differentiation (i.e., decrease in distinctiveness) in obesity, which was mainly represented by its de-differentiation with the cognitive and attention systems (i.e., DMN and VAN). Additionally, the lOFC showed de-differentiation with the visual system in obesity, while the mOFC showed decoupling with the visual system and hyper-coupling with the sensory-motor system in obesity. As an important first step in revealing the role of underlying structural covariance in body mass variability, the present study presents a novel mechanism that underlies the reward-control interaction imbalance in obesity, thus can inform future weight-management approaches.


Assuntos
Córtex Pré-Frontal , Recompensa , Humanos , Córtex Pré-Frontal/diagnóstico por imagem , Lobo Frontal/diagnóstico por imagem , Encéfalo , Obesidade
6.
J Cell Biochem ; 125(5): e30563, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591551

RESUMO

High glucose (HG)-induced endothelial cell (EC) and smooth muscle cell (SMC) dysfunction is critical in diabetes-associated atherosclerosis. However, the roles of heme oxygenase-1 (HO-1), a stress-response protein, in hemodynamic force-generated shear stress and HG-induced metabolic stress remain unclear. This investigation examined the cellular effects and mechanisms of HO-1 under physiologically high shear stress (HSS) in HG-treated ECs and adjacent SMCs. We found that exposure of human aortic ECs to HSS significantly increased HO-1 expression; however, this upregulation appeared to be independent of adenosine monophosphate-activated protein kinase, a regulator of HO-1. Furthermore, HSS inhibited the expression of HG-induced intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and reactive oxygen species (ROS) production in ECs. In an EC/SMC co-culture, compared with static conditions, subjecting ECs close to SMCs to HSS and HG significantly suppressed SMC proliferation while increasing the expression of physiological contractile phenotype markers, such as α-smooth muscle actin and serum response factor. Moreover, HSS and HG decreased the expression of vimentin, an atherogenic synthetic phenotypic marker, in SMCs. Transfecting ECs with HO-1-specific small interfering (si)RNA reversed HSS inhibition on HG-induced inflammation and ROS production in ECs. Similarly, reversed HSS inhibition on HG-induced proliferation and synthetic phenotype formation were observed in co-cultured SMCs. Our findings provide insights into the mechanisms underlying EC-SMC interplay during HG-induced metabolic stress. Strategies to promote HSS in the vessel wall, such as continuous exercise, or the development of HO-1 analogs and mimics of the HSS effect, could provide an effective approach for preventing and treating diabetes-related atherosclerotic vascular complications.


Assuntos
Células Endoteliais , Glucose , Heme Oxigenase-1 , Miócitos de Músculo Liso , Espécies Reativas de Oxigênio , Estresse Mecânico , Humanos , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Glucose/metabolismo , Glucose/farmacologia , Miócitos de Músculo Liso/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Endoteliais/metabolismo , Células Cultivadas , Proliferação de Células , Técnicas de Cocultura , Ativação Enzimática , Molécula 1 de Adesão de Célula Vascular/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/citologia , Molécula 1 de Adesão Intercelular/metabolismo
7.
Mol Med ; 30(1): 81, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862942

RESUMO

BACKGROUND: Studies have highlighted a possible crosstalk between the pathogeneses of COVID-19 and systemic lupus erythematosus (SLE); however, the interactive mechanisms remain unclear. We aimed to elucidate the impact of COVID-19 on SLE using clinical information and the underlying mechanisms of both diseases. METHODS: RNA-seq datasets were used to identify shared hub gene signatures between COVID-19 and SLE, while genome-wide association study datasets were used to delineate the interaction mechanisms of the key signaling pathways. Finally, single-cell RNA-seq datasets were used to determine the primary target cells expressing the shared hub genes and key signaling pathways. RESULTS: COVID-19 may affect patients with SLE through hematologic involvement and exacerbated inflammatory responses. We identified 14 shared hub genes between COVID-19 and SLE that were significantly associated with interferon (IFN)-I/II. We also screened and obtained four core transcription factors related to these hub genes, confirming the regulatory role of the IFN-I/II-mediated Janus kinase/signal transducers and activators of transcription (JAK-STAT) signaling pathway on these hub genes. Further, SLE and COVID-19 can interact via IFN-I/II and IFN-I/II receptors, promoting the levels of monokines, including interleukin (IL)-6/10, tumor necrosis factor-α, and IFN-γ, and elevating the incidence rate and risk of cytokine release syndrome. Therefore, in SLE and COVID-19, both hub genes and core TFs are enriched within monocytes/macrophages. CONCLUSIONS: The interaction between SLE and COVID-19 promotes the activation of the IFN-I/II-triggered JAK-STAT signaling pathway in monocytes/macrophages. These findings provide a new direction and rationale for diagnosing and treating patients with SLE-COVID-19 comorbidity.


Assuntos
COVID-19 , Estudo de Associação Genômica Ampla , Lúpus Eritematoso Sistêmico , SARS-CoV-2 , Transdução de Sinais , Humanos , COVID-19/genética , Lúpus Eritematoso Sistêmico/genética , SARS-CoV-2/fisiologia , Feminino , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Fatores de Transcrição STAT/genética , Masculino , Transcriptoma , Perfilação da Expressão Gênica , Multiômica
8.
Genes Cells ; 28(5): 348-363, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36811212

RESUMO

Colorectal cancer (CRC) is one of the leading malignant cancers. DNA damage response (DDR), referring to the molecular process of DNA damage, is emerging as a promising field in targeted cancer therapy. However, the engagement of DDR in the remodeling of the tumor microenvironment is rarely studied. In this study, by sequential nonnegative matrix factorization (NMF) algorithm, pseudotime analysis, cell-cell interaction analysis, and SCENIC analysis, we have shown that DDR genes demonstrate various patterns among different cell types in CRC TME (tumor microenvironment), especially in epithelial cells, cancer-associated fibroblasts, CD8+ T cells, tumor-associated macrophages, which enhance the intensity of intercellular communication and transcription factor activation. Furthermore, based on the newly identified DDR-related TME signatures, cell subtypes including MNAT+CD8+T_cells-C5, POLR2E+Mac-C10, HMGB2+Epi-C4, HMGB1+Mac-C11, PER1+Mac-C5, PER1+CD8+T_cells-C1, POLR2A+Mac-C1, TDG+Epi-C5, TDG+CD8+T_cells-C8 are determined as critical prognostic factors for CRC patients and predictors of immune checkpoint blockade (ICB) therapy efficacy in two public CRC cohorts, TCGA-COAD and GSE39582. Our novel and systematic analysis on the level of the single-cell analysis has revealed the unique role of DDR in remodeling CRC TME for the first time, facilitating the prediction of prognosis and guidance of personalized ICB regimens in CRC.


Assuntos
Neoplasias Colorretais , Microambiente Tumoral , Humanos , Microambiente Tumoral/genética , Imunoterapia , Algoritmos , Dano ao DNA/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia
9.
Opt Express ; 32(4): 6776-6790, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38439375

RESUMO

Independently tunable biaxial color pixels, composed of isolated nanosquare dimers, are demonstrated in this study. These pixels are capable of displaying a full range of colors under a linear-polarization dependent reflection mode. The metasurface is constructed by arranging LiNbO3 nanodimers on a PDMS substrate. By exciting a strong magnetic dipole (MD) resonance and effectively suppressing other multipolar resonances using surface lattice resonances, the researchers achieved a single reflection peak with a bandwidth of less than 9 nm and a reflective efficiency of up to 99%. Additionally, the stretchability of the PDMS substrate allows for active and continuous tuning of the metasurface by up to 40% strain, covering almost 150 nm of the visible light spectrum and enabling changes in reflection color. This metasurface holds potential applications in various fields, such as color displays, data storage, and anti-counterfeiting technologies.

10.
J Vasc Surg ; 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38621637

RESUMO

OBJECTIVE: As it remains unclear whether there are sex-based differences in clinical outcomes after thoracic endovascular aortic repair (TEVAR), this meta-analysis aimed to evaluate differences in early outcomes and overall survival between female and male patients who underwent TEVAR. METHODS: The PubMed, Embase, Web of Science, and Cochrane Central databases were searched for eligible studies published through June 10, 2023, that reported sex-based differences in clinical outcomes after TEVAR. The primary outcome was operative mortality; second outcomes included stroke, spinal cord ischemia, acute kidney injury, hospital length of stay, and overall survival. Patient characteristics, operative data, and early outcomes were aggregated using the random-effects model, presenting pooled risk ratio (RR) or standardized mean difference along with their corresponding 95% confidence intervals (CIs). Overall survival was assessed by reconstructing individual patient data to generate sex-specific pooled Kaplan-Meier curves. This study was registered in PROSPERO (CRD42023426069). RESULTS: Of the 1785 studies retrieved, 14 studies met all eligibility criteria, encompassing a total of 17,374 patients, comprising 5026 female and 12,348 male patients. Female patients were older, had a smaller maximum aortic diameter, had lower rates of smoking and coronary artery disease, and had higher rates of anemia. Intraoperatively, female patients were more likely to use iliac conduits and require blood transfusions. There were no sex-based differences in operative mortality (RR: 1.12, 95% CI: 0.90-1.40; P = .309), stroke (RR: 1.14, 95% CI: 0.95-1.38; P = .165), spinal cord ischemia (RR: 1.33, 95% CI: 0.83-2.14; P = .234), acute kidney injury (RR: 0.78, 95% CI: 0.52-1.17; P = .228), and hospital length of stay (standardized mean difference: 0.09, 95% CI: -0.03 to 0.20; P = .141). Pooled Kaplan-Meier estimates showed a worse overall survival in female patients compared with male patients (87.2% vs 89.8% at 2 years, log-rank P = .001). CONCLUSIONS: Among patients treated by TEVAR, female sex was not associated with increased risk of operative mortality or major morbidity. However, female patients exhibited a lower overall survival after TEVAR compared with male patients.

11.
BMC Cancer ; 24(1): 283, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431566

RESUMO

BACKGROUND: This study aims to investigate the expression of UBQLN1 in lung cancer (LC) tissue and the diagnostic capability of autoantibody to UBQLN1 (anti-UBQLN1) in the detection of LC and the discrimination of pulmonary nodules (PNs). METHODS: Sera from 798 participants were used to discover and validate the level of autoantibodies via HuProt microarray and Enzyme-linked immunosorbent assay (ELISA). Logistic regression analysis was applied to establish model. Receiver operating characteristic curve (ROC) analysis was performed to evaluate the diagnostic potential. Immunohistochemistry was performed to detect UBQLN1 expression in 88 LC tissues and 88 para-tumor tissues. qRT-PCR and western blotting were performed to detect the expression of UBQLN1 at the mRNA and protein levels, respectively. Trans-well assay and cell counting kit-8 (CCK-8) was used to investigate the function of UBQLN1. RESULTS: Anti-UBQLN1 was identified with the highest fold change by protein microarray. The level of anti-UBQLN1 in LC patients was obviously higher than that in NC or patients with benign lung disease of validation cohort 1 (P<0.05). The area under the curve (AUC) of anti-UBQLN1 was 0.610 (95%CI: 0.508-0.713) while reached at 0.822 (95%CI: 0.784-0.897) when combining anti-UBQLN1 with CEA, CYFRA21-1, CA125 and three CT indicators (vascular notch sign, lobulation sign and mediastinal lymph node enlargement) in the discrimination of PNs. UBQLN1 protein was overexpressed in lung adenocarcinoma (LUAD) tissues compared to para-tumor tissues. UBQLN1 knockdown remarkably inhibited the migration, invasion and proliferation of LUAD cell lines. CONCLUSIONS: Anti-UBQLN1 might be a potential biomarker for the diagnosis of LC and the discrimination of PNs.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Humanos , Neoplasias Pulmonares/diagnóstico , Imunidade Humoral , Antígenos de Neoplasias , Queratina-19 , Biomarcadores Tumorais , Proteínas Relacionadas à Autofagia/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
12.
Langmuir ; 40(20): 10486-10491, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38728233

RESUMO

In view of the excellent prospects of gene therapy and the potential safety and immunogenicity issues challenged by viral vectors, it is of great significance to develop a nonviral vector with low toxicity and low cost. In this work, we report a chitosan nanoparticle (CSNP) to be used as a gene vector prepared through a facile solvent-exchange strategy. Chitosan is first dissolved in ionic liquid 1-ethyl-3-methylimidazolium acetate (EMIM Ac), and then, the solvent is exchanged with water/phosphate-buffered saline (PBS) to remove ionic liquid, forming a final CSNP dispersion after ultrasonication. The prepared CSNP shows a positive surface charge and can condense green fluorescent protein-encoding plasmid (pGFP) at weight ratios (CSNP/pGFP) of 5/1 or higher. Dynamic light scattering size and ζ-potential characterization and gel retardation results confirm the formation of CSNP/pGFP complexes. Compared with plain pGFP, efficient cellular internalization and significantly enhanced green fluorescent protein (GFP) expression are observed by using CSNP as a plasmid vector. Benefitting from the intrinsic biocompatibility, low cost, low immunogenicity, and abundant sources of chitosan, as well as the facile preparation and the efficient gene transfection capacity of CSNP, it is believed that this CSNP could be used as a nonviral gene vector with great clinical translational potentials.


Assuntos
Quitosana , Proteínas de Fluorescência Verde , Nanopartículas , Plasmídeos , Solventes , Quitosana/química , Nanopartículas/química , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Humanos , Solventes/química , Plasmídeos/química , Plasmídeos/genética , Técnicas de Transferência de Genes , Transfecção/métodos , Tamanho da Partícula , Células HeLa
13.
Pharmacol Res ; 206: 107280, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38914382

RESUMO

Digestive tract cancers are among the most common malignancies worldwide and have high incidence and mortality rates. Thus, the discovery of more effective diagnostic and therapeutic targets is urgently required. The development of technologies to accurately detect RNA modification has led to the identification of numerous RNA chemical modifications in humans (epitranscriptomics) that are involved in the occurrence and development of digestive tract cancers. RNA modifications can cooperatively regulate gene expression to facilitate normal physiological functions of the digestive system. However, the dysfunction of relevant RNA-modifying enzymes ("writers," "erasers," and "readers") can lead to the development of digestive tract cancers. Consequently, targeting dysregulated enzyme activity could represent a potent therapeutic strategy for the treatment of digestive tract cancers. In this review, we summarize the most widely studied roles and mechanisms of RNA modifications (m6A, m1A, m5C, m7G, A-to-I editing, pseudouridine [Ψ]) in relation to digestive tract cancers, highlight the crosstalk between RNA modifications, and discuss their roles in the interactions between the digestive system and microbiota during carcinogenesis. The clinical significance of novel therapeutic methods based on RNA-modifying enzymes is also discussed. This review will help guide future research into digestive tract cancers that are resistant to current therapeutics.

14.
Inorg Chem ; 63(26): 12377-12384, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38902911

RESUMO

Pathogenic bacteria have consistently posed a formidable challenge to human health, creating the critical need for effective antibacterial solutions. In response, enzyme-metal-organic framework (MOF) composites have emerged as a promising class of antibacterial agents. This study focuses on the development of an enzyme-MOF composite based on HZIF-8, incorporating the advantages of simple synthesis, ZIF-8 antibacterial properties, lysozyme hydrolysis, and high biological safety. Through a one-pot method, core-shell nanoparticles (HZIF-8) were synthesized. This structure enables efficient immobilization of lysozyme and lactoferrin within the HZIF-8, resulting in the formation of the lysozyme-lactoferrin@HZIF-8 (LYZ-LF@HZIF-8) composite. Upon exposure to light irradiation, HZIF-8 itself possessed antibacterial properties. Lysozyme initiated the degradation of bacterial peptidoglycan and lactoferrin synergistically enhanced the antibacterial effect of lysozyme. All of the above ultimately contributed to comprehensive antibacterial activity. Antibacterial assessments demonstrated the efficacy of the LYZ-LF@HZIF-8 composite, effectively eradicating Staphylococcus aureus at a cell density of 1.5 × 106 CFU/mL with a low dosage of 200 µg/mL and completely inactivating Escherichia coli at 400 µg/mL with the same cell density. The enzyme-MOF composite exhibited significant and durable antibacterial efficacy, with no apparent cytotoxicity in vitro, thereby unveiling expansive prospects for applications in the medical and food industries.


Assuntos
Antibacterianos , Escherichia coli , Lactoferrina , Estruturas Metalorgânicas , Testes de Sensibilidade Microbiana , Muramidase , Staphylococcus aureus , Zeolitas , Muramidase/farmacologia , Muramidase/química , Muramidase/metabolismo , Lactoferrina/química , Lactoferrina/farmacologia , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Estruturas Metalorgânicas/síntese química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Zeolitas/química , Zeolitas/farmacologia , Imidazóis/química , Imidazóis/farmacologia , Imidazóis/síntese química , Porosidade , Propriedades de Superfície , Tamanho da Partícula , Enzimas Imobilizadas/química , Enzimas Imobilizadas/farmacologia
15.
Brain Topogr ; 37(3): 388-396, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-36892651

RESUMO

Previous research revealed various aspects of resting-state EEG for depression and insomnia. However, the EEG characteristics of depressed subjects with insomnia are rarely studied, especially EEG microstates that capture the dynamic activities of the large-scale brain network. To fill these research gaps, the present study collected resting-state EEG data from 32 subclinical depression subjects with insomnia (SDI), 31 subclinical depression subjects without insomnia (SD), and 32 healthy controls (HCs). Four topographic maps were generated from clean EEG data after clustering and rearrangement. Temporal characteristics were obtained for statistical analysis, including cross-group variance analysis (ANOVA) and intra-group correlation analysis. In our study, the global clustering of all individuals in the EEG microstate analysis revealed the four previously discovered categories of microstates (A, B, C, and D). The occurrence of microstate B was lower in SDI than in SD and HC subjects. The correlation analysis showed that the total Pittsburgh Sleep Quality Index (PSQI) score negatively correlated with the occurrence of microstate C in SDI (r = - 0.415, p < 0.05). Conversely, there was a positive correlation between Self-rating Depression Scale (SDS) scores and the duration of microstate C in SD (r = 0.359, p < 0.05). These results indicate that microstates reflect altered large-scale brain network dynamics in subclinical populations. Abnormalities in the visual network corresponding to microstate B are an electrophysiological characteristic of subclinical individuals with symptoms of depressive insomnia. Further investigation is needed for microstate changes related to high arousal and emotional problems in people suffering from depression and insomnia.


Assuntos
Mapeamento Encefálico , Distúrbios do Início e da Manutenção do Sono , Humanos , Mapeamento Encefálico/métodos , Depressão , Eletroencefalografia , Encéfalo/fisiologia
16.
Cereb Cortex ; 33(8): 4794-4805, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36300597

RESUMO

Childhood obesity is associated with alterations in brain structure. Previous studies generally used a single structural index to characterize the relationship between body mass index(BMI) and brain structure, which could not describe the alterations of structural covariance between brain regions. To cover this research gap, this study utilized two independent datasets with brain structure profiles and BMI of 155 school-aged children. Connectome-based predictive modeling(CPM) was used to explore whether children's BMI is reliably predictable by the novel individualized morphometric similarity network(MSN). We revealed the MSN can predict the BMI in school-age children with good generalizability to unseen dataset. Moreover, these revealed significant brain structure covariant networks can further predict children's food approach behavior. The positive predictive networks mainly incorporated connections between the frontoparietal network(FPN) and the visual network(VN), between the FPN and the limbic network(LN), between the default mode network(DMN) and the LN. The negative predictive network primarily incorporated connections between the FPN and DMN. These results suggested that the incomplete integration of the high-order brain networks and the decreased dedifferentiation of the high-order networks to the primary reward networks can be considered as a core structural basis of the imbalance between inhibitory control and reward processing in childhood obesity.


Assuntos
Conectoma , Obesidade Infantil , Humanos , Criança , Índice de Massa Corporal , Encéfalo/diagnóstico por imagem , Alimentos , Imageamento por Ressonância Magnética
17.
Cereb Cortex ; 33(11): 7015-7025, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-36749000

RESUMO

Normal sleepers may be at risk for insomnia during COVID-19. Identifying psychological factors and neural markers that predict their insomnia risk, as well as investigating possible courses of insomnia development, could lead to more precise targeted interventions for insomnia during similar public health emergencies. Insomnia severity index of 306 participants before and during COVID-19 were employed to determine the development of insomnia, while pre-COVID-19 psychometric and resting-state fMRI data were used to explore corresponding psychological and neural markers of insomnia development. Normal sleepers as a group reported a significant increase in insomnia symptoms after COVID-19 outbreak (F = 4.618, P = 0.0102, df = 2, 609.9). Depression was found to significantly contribute to worse insomnia (ß = 0.066, P = 0.024). Subsequent analysis found that functional connectivity between the precentral gyrus and middle/inferior temporal gyrus mediated the association between pre-COVID-19 depression and insomnia symptoms during COVID-19. Cluster analysis identified that postoutbreak insomnia symptoms followed 3 courses (lessened, slightly worsened, and developed into mild insomnia), and pre-COVID-19 depression symptoms and functional connectivities predicted these courses. Timely identification and treatment of at-risk individuals may help avoid the development of insomnia in the face of future health-care emergencies, such as those arising from COVID-19 variants.


Assuntos
COVID-19 , Distúrbios do Início e da Manutenção do Sono , Humanos , Distúrbios do Início e da Manutenção do Sono/diagnóstico por imagem , Distúrbios do Início e da Manutenção do Sono/epidemiologia , COVID-19/complicações , Depressão/diagnóstico por imagem , Emergências , SARS-CoV-2 , Encéfalo/diagnóstico por imagem
18.
Appl Microbiol Biotechnol ; 108(1): 389, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904674

RESUMO

Direct ammonia oxidation (Dirammox) might be of great significance to advance the innovation of biological nitrogen removal process in wastewater treatment systems. However, it remains unknown whether Dirammox bacteria can be selectively enriched in activated sludge. In this study, a lab-scale bioreactor was established and operated for 2 months to treat synthetic wastewater with hydroxylamine as a selection pressure. Three Dirammox strains (Alcaligenes aquatilis SDU_AA1, Alcaligenes aquatilis SDU_AA2, and Alcaligenes sp. SDU_A2) were isolated from the activated sludge, and their capability to perform Dirammox process was confirmed. Although these three Dirammox bacteria were undetectable in the seed sludge (0%), their relative abundances rapidly increased after a month of operation, reaching 12.65%, 0.69%, and 0.69% for SDU_A2, SDU_AA1, and SDU_AA2, respectively. Among them, the most dominant Dirammox (SDU_A2) exhibited higher nitrogen removal rate (32.35%) than the other two strains (13.57% of SDU_AA1 and 14.52% of SDU_AA2). Comparative genomic analysis demonstrated that the most dominant Dirammox bacterium (SDU_A2) possesses fewer complete metabolic modules compared to the other two less abundant Alcaligenes strains. Our findings expanded the understanding of the application of Dirammox bacteria as key functional microorganisms in a novel biological nitrogen and carbon removal process if they could be well stabilized. KEY POINTS: • Dirammox-dominated microbial community was enriched in activated sludge bioreactor. • The addition of hydroxylamine played a role in Dirammox enrichment. • Three Dirammox bacterial strains, including one novel species, were isolated.


Assuntos
Alcaligenes , Reatores Biológicos , Nitrogênio , Oxirredução , Águas Residuárias , Águas Residuárias/microbiologia , Águas Residuárias/química , Reatores Biológicos/microbiologia , Nitrogênio/metabolismo , Alcaligenes/metabolismo , Alcaligenes/isolamento & purificação , Alcaligenes/genética , Esgotos/microbiologia , Amônia/metabolismo , Purificação da Água/métodos , Hidroxilamina/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Microbiota
19.
Biotechnol Appl Biochem ; 71(2): 372-386, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38128959

RESUMO

In the present study, taking red yeast rice (RYR) as the raw material, the optimum extraction process of RYR starch was investigated through a single-factor experiment and the Box-Behnken design: The liquid-to-solid ratio was 5 mL/g, the concentration of sodium hydroxide solution was 0.075 mol/L, and the extraction time was 3.1 h. Under these extraction conditions, the extraction rate of starch reached 90.077%. To explore the influence of solid-state fermentation on RYR starch, three different fermentation stages of RYR starch, raw rice starch, semi-gelatinized rice starch, and RYR starch were used as test materials to determine the changes in the physicochemical properties and glycemic index (GI) values of RYR starch during solid-state fermentation. The results showed that with the advancement of the RYR solid-state fermentation process, the starch particle size gradually increased, the light transmittance gradually decreased, and the solubility and swelling power significantly increased. In addition, the amylose content of starch gradually increased, whereas the amylopectin content gradually decreased; the content of fast digestible starch and slow digestible starch decreased, whereas the content of resistant starch increased. In parallel, during solid-state fermentation, the hydrolysis index significantly decreased, and the GI values also decreased. In summary, solid-state fermentation reduced the digestibility of RYR starch. These results provide a theoretical basis for the structural and physicochemical properties of RYR starch and lay a foundation for its subsequent application and expansion of RYR starch.


Assuntos
Produtos Biológicos , Oryza , Amido , Amido/química , Oryza/química , Amilopectina/química , Hidrólise
20.
Artigo em Inglês | MEDLINE | ID: mdl-38518141

RESUMO

Objective: To investigate an alternative approach to family participatory nursing in neonatal intensive care units (NICUs) during the COVID-19 pandemic, focusing on auditory interventions to mitigate the effects of maternal separation (MS) on neonatal neurological development. Methods: This study was a randomized, double-blind, prospective trial involving 100 newborns younger than 6 months old, born between January 2022 and October 2022, who experienced MS for more than 2 weeks. Newborns were randomly allocated into control and study groups using a computer-generated list to ensure unbiased selection. Inclusion criteria were gestational age ≥37 weeks and admission to NICU due to various medical conditions; exclusion criteria included severe hearing impairment and congenital neurological disorders. The intervention group received maternal voice exposure at 40-50 dB for eight 30-minute sessions daily, while the control group was exposed to children's songs at the same volume and duration. Key metrics such as oxygen saturation, heart rate, Neonatal Infant Pain Scale (NIPS) scores, and Neonatal Behavioral Neurological Assessment (NBNA) scores were measured before and after the intervention period, which lasted one week. Results: Post-intervention, the NIPS scores in the intervention group were significantly lower (3.45±0.99) compared to the control group (5.36±0.49, P < .01), indicating reduced pain sensitivity. Additionally, NBNA scores were higher in the intervention group (39.90±1.56) than in the control group (35.86±1.05, P < .01), suggesting enhanced neurological development. No significant difference in pre-intervention blood oxygen saturation levels was observed between the groups. However, the intervention group showed less reduction in oxygen saturation during and post-blood collection, with significantly higher levels at 2, 4, and 6 minutes post-procedure (P < .01). The findings underscore the significance of maternal voice as a non-pharmacological intervention to alleviate pain and foster neurological development in neonates facing MS, especially in situations where traditional family participatory nursing is hindered by the COVID-19 pandemic. Integrating maternal voice stimulation into neonatal care strategies offers a viable method to improve outcomes for newborns undergoing MS. Conclusion: Maternal voice intervention presents a promising strategy to diminish pain sensitivity and bolster neurological development in neonates separated from their mothers, particularly when family participatory nursing practices are constrained by pandemic-related restrictions. These findings advocate for the broader implementation of maternal voice stimulation in NICU settings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA