Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Soc Rev ; 53(8): 3829-3895, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38436202

RESUMO

Subnanometer pores/channels (SNPCs) play crucial roles in regulating electrochemical redox reactions for rechargeable batteries. The delicately designed and tailored porous structure of SNPCs not only provides ample space for ion storage but also facilitates efficient ion diffusion within the electrodes in batteries, which can greatly improve the electrochemical performance. However, due to current technological limitations, it is challenging to synthesize and control the quality, storage, and transport of nanopores at the subnanometer scale, as well as to understand the relationship between SNPCs and performances. In this review, we systematically classify and summarize materials with SNPCs from a structural perspective, dividing them into one-dimensional (1D) SNPCs, two-dimensional (2D) SNPCs, and three-dimensional (3D) SNPCs. We also unveil the unique physicochemical properties of SNPCs and analyse electrochemical couplings in SNPCs for rechargeable batteries, including cathodes, anodes, electrolytes, and functional materials. Finally, we discuss the challenges that SNPCs may face in electrochemical reactions in batteries and propose future research directions.

2.
Theor Appl Genet ; 137(1): 20, 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221593

RESUMO

KEY MESSAGE: A novel super compact mutant, scp-3, was identified using map-based cloning in cucumber. The CsDWF7 gene encoding a delta7 sterol C-5(6) desaturase was the candidate gene of scp-3. Mining dwarf genes is important in understanding stem growth in crops. However, only a small number of dwarf genes have been cloned or characterized. Here, we characterized a cucumber (Cucumis sativus L.) dwarf mutant, super compact 3 (scp-3), which displays shortened internodes and dark green leaves with a wrinkled appearance. The photosynthetic rate of scp-3 is significantly lower than that of the wild type. The dwarf phenotype of scp-3 mutant can be partially rescued by the exogenous brassinolide (BL) application, and the endogenous brassinosteroids (BRs) levels in the scp-3 mutant were significantly lower compared to the wild type. Microscopic examination revealed that the reduced internode length in scp-3 resulted from a decrease in cell size. Genetic analysis showed that the dwarf phenotype of scp-3 was controlled by a single recessive gene. Combined with bulked segregant analysis and map-based cloning strategy, we delimited scp-3 locus into an 82.5 kb region harboring five putative genes, but only one non-synonymous mutation (A to T) was discovered between the mutant and its wild type in this region. This mutation occurred within the second exon of the CsGy4G017510 gene, leading to an amino acid alteration from Leu156 to His156. This gene encodes the CsDWF7 protein, an analog of the Arabidopsis DWF7 protein, which is known to be involved in the biosynthesis of BRs. The CsDWF7 protein was targeted to the cell membrane. In comparison to the wild type, scp-3 exhibited reduced CsDWF7 expression in different tissues. These findings imply that CsDWF7 is essential for both BR biosynthesis as well as growth and development of cucumber plants.


Assuntos
Cucumis sativus , Cucumis sativus/genética , Esteróis , Mapeamento Cromossômico , Genes de Plantas , Mutação , Fenótipo , Ácidos Graxos Dessaturases/genética , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas
3.
Clin Oral Implants Res ; 35(3): 350-357, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38174662

RESUMO

OBJECTIVES: To compare the accuracy of immediate implant placement of cylindrical implants (CI) and tapered implants (TI) of different lengths using a robotic dental implant system. MATERIALS AND METHODS: CI and TI of three lengths (8, 10, and 12 mm) each were digitally planned and placed in a three-dimensional printed extraction socket model under robotic guidance. There were six groups with three samples in each group, resulting in a total of 18 samples. Implant angular deviation, platform point deviation (total, lateral, depth), and implant apical point deviation (total, lateral, depth) were recorded and compared between the different groups. RESULTS: The angular deviations for CI 8 mm, CI 10 mm, CI 12 mm, TI 8 mm, TI 10 mm, and TI 12 mm were 1.32° ± 0.19°, 1.03° ± 0.56°, 1.31° ± 0.38°, 1.27° ± 0.64°, 1.10° ± 0.43° and 1.05° ± 0.45°, respectively. The total deviations of platform and apical points for CI 8 mm, CI 10 mm, CI 12 mm, TI 8 mm, TI 10 mm, and TI 12 mm were 0.79 ± 0.18 mm, 0.77 ± 0.33 mm; 0.64 ± 0.21 mm, 0.55 ± 0.17 mm; 0.64 ± 0.37 mm, 0.65 ± 0.34 mm; 0.68 ± 0.26 mm, 0.71 ± 0.20 mm; 0.70 ± 0.12 mm, 0.66 ± 0.23 mm; and 0.71 ± 0.15 mm, 0.77 ± 0.29 mm, respectively, and had no significant differences. CONCLUSIONS: Within the limitation of this study, acceptable accuracy can be achieved for both TI and CI using robotic systems. Our study demonstrated that the implant shape and length did not affect the accuracy of immediate implant placement under robotic guidance in vitro. However, further trials are required to confirm their efficacy in clinical practice.


Assuntos
Implantes Dentários , Procedimentos Cirúrgicos Robóticos , Robótica , Cirurgia Assistida por Computador , Implantação Dentária Endóssea/métodos , Cirurgia Assistida por Computador/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Desenho Assistido por Computador , Imageamento Tridimensional/métodos
4.
Bioorg Chem ; 134: 106467, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36933337

RESUMO

Ginsenosides are a promising group of secondary metabolites for developing anti-inflammatory agents. In this study, Michael acceptor was fused into the aglycone A-ring of protopanoxadiol (PPD)-type ginsenosides (MAAG), the main pharmacophore of ginseng, and its liver metabolites to produce novel derivatives and assess their anti-inflammatory activity in vitro. The structure-activity relationship of MAAG derivatives was assessed based on their NO-inhibition activities. Of these, a 4-nitrobenzylidene derivative of PPD (2a) was the most effective and dose-dependently inhibited the release of proinflammatory cytokines. Further studies indicated that 2a-induced downregulation on lipopolysaccharide (LPS)-induced iNOS protein expression and cytokine release may be related to its inhibitory effect on MAPK and NF-κB signaling pathways. Importantly, 2a almost completely inhibited LPS-induced production of mitochondrial reactive oxygen species (mtROS) and LPS-induced NLRP3 upregulation. This inhibition was higher than that by hydrocortisone sodium succinate, a glucocorticoid drug. Overall, the fusion of Michael acceptors into the aglycone of ginsenosides greatly enhanced the anti-inflammatory activities of the derivatives, and 2a alleviated inflammation considerably. These findings could be attributed to the inhibition of LPS-induced mtROS to block abnormal activation of the NLRP3 pathway.


Assuntos
Ginsenosídeos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ginsenosídeos/farmacologia , Ginsenosídeos/metabolismo , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Transdução de Sinais , Citocinas/metabolismo
5.
Clin Oral Implants Res ; 34(6): 555-564, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36847706

RESUMO

BACKGROUND: While suggested to be effective in tissue regeneration, the effects of horizontal platelet-rich fibrin (H-PRF) bone block in sinus augmentation have not been verified in an animal model. METHODS: A total of 12 male New Zealand white rabbits that underwent sinus augmentation were divided into two groups: deproteinized bovine bone mineral (DBBM) only and H-PRF bone block. H-PRF was prepared at 700 × g for 8 min using a horizontal centrifuge. The H-PRF bone block was prepared by mixing 0.1 g DBBM with H-PRF fragments and then adding liquid H-PRF. Samples were collected after 4 and 8 weeks and analyzed using microcomputed tomography (micro-CT) for vertical bone gain of the sinus, bone volume/total volume (BV/TV) percentage, trabecular number (Tb.N), trabecular thickness (Tb.Th) and trabecular separation (Tb.Sp). Then, histological analyses were performed to investigate new blood vessels, material residue, bone formation and osteoclasts. RESULTS: Higher vertical bone gain of the sinus floor, BV/TV percentage, Tb.Th, and Tb.N and lower Tb.Sp were found in the H-PRF bone block group at both time points compared with the DBBM group. Higher amounts of new blood vessels and more osteoclasts were found in the H-PRF bone block group than in the DBBM group at both time points, especially in the regions close to the bone plate. More new bone formation and less material residue were observed in the H-PRF bone block group at 8 weeks. CONCLUSIONS: H-PRF bone block showed greater potential for sinus augmentation by promoting angiogenesis, bone formation and bone remodeling in a rabbit model.


Assuntos
Substitutos Ósseos , Fibrina Rica em Plaquetas , Levantamento do Assoalho do Seio Maxilar , Masculino , Animais , Bovinos , Coelhos , Seio Maxilar/diagnóstico por imagem , Seio Maxilar/cirurgia , Levantamento do Assoalho do Seio Maxilar/métodos , Microtomografia por Raio-X , Substitutos Ósseos/farmacologia , Substitutos Ósseos/uso terapêutico , Regeneração Óssea
6.
Clin Oral Investig ; 27(1): 399-409, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36242639

RESUMO

OBJECTIVES: Platelet-rich fibrin (PRF) in liquid form has shown advantages in tissue engineering including acting as injectable fillers and drug carriers. However, few studies have investigated the best relative centrifugal force (RCF) for preparing liquid PRF. The aim of the present study was to find out optimal centrifugation force for preparing liquid PRF. MATERIALS AND METHODS: Liquid PRF was prepared using horizontal centrifugation (liquid H-PRF) with RCF ranging from 100 g, 300 g, 500 g, to 700 g for 8 min. The volume, weight, solidification time, and tensile properties were subsequently investigated. Scanning electron microscopy (SEM) and rheologic tests were carried out to investigate the microstructure and rheologic properties of liquid H-PRF after natural polymerization. The total number, concentration, and distribution of cells within each liquid H-PRF was evaluated by complete blood count (CBC) analysis and hematoxylin-eosin staining. RESULTS: As RCF values increased, the volume and weight of liquid H-PRF both increased accordingly. SEM images revealed that as the centrifugal force increased, the fibrin bundles became thinner with a denser fibrin network, and rheologic tests revealed improved mechanical properties. CBC analysis demonstrated that 500 g group had the highest number of leukocytes and neutrophils, whereas 100 g group yielded the highest concentration of leukocytes and platelets. Furthermore, histological analysis suggests that cells obtained by 500 g for 8 min were most evenly distributed in liquid H-PRF. CONCLUSIONS: In summary, the present study provided insights into the contents of liquid H-PRF prepared at different centrifugation forces, enabling clinicians to choose proper centrifugation forces based on their needs. CLINICAL RELEVANCE: The present findings provide theoretical basis for clinical choice of liquid H-PRF protocol from mechanical, cell contents, and histological aspects.


Assuntos
Fibrina Rica em Plaquetas , Leucócitos , Plaquetas , Centrifugação/métodos , Fibrina
7.
Molecules ; 28(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770974

RESUMO

Pyxinol skeleton is a promising framework of anti-inflammatory agents formed in the human liver from 20S-protopanaxadiol, the main active aglycone of ginsenosides. In the present study, a new series of amino acid-containing derivatives were produced from 12-dehydropyxinol, a pyxinol oxidation metabolite, and its anti-inflammatory activity was assessed using an NO inhibition assay. Interestingly, the dehydrogenation at C-12 of pyxinol derivatives improved their potency greatly. Furthermore, half of the derivatives exhibited better NO inhibitory activity than hydrocortisone sodium succinate, a glucocorticoid drug. The structure-activity relationship analysis indicated that the kinds of amino acid residues and their hydrophilicity influenced the activity to a great extent, as did R/S stereochemistry at C-24. Of the various derivatives, 5c with an N-Boc-protected phenylalanine residue showed the highest NO inhibitory activity and relatively low cytotoxicity. Moreover, derivative 5c could dose-dependently suppress iNOS, IL-1ß, and TNF-α via the MAPK and NF-κB pathways, but not the GR pathway. Overall, pyxinol derivatives hold potential for application as anti-inflammatory agents.


Assuntos
Anti-Inflamatórios , Ginsenosídeos , Humanos , Anti-Inflamatórios/farmacologia , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Relação Estrutura-Atividade , Ginsenosídeos/farmacologia , Lipopolissacarídeos
8.
J Basic Microbiol ; 62(6): 740-749, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35199357

RESUMO

Phosphoglucose isomerase (PGI) is a key enzyme that participates in polysaccharide synthesis, which is responsible for the interconversion of glucose-6-phosphate (G-6-P) and fructose-6-phosphate (F-6-P), but there is little research focusing on its role in fungi, especially in higher basidiomycetes. The pgi gene was cloned from Lentinula edodes and named lepgi. Then, the lepgi-silenced strains were constructed by RNA interference. In this study, we found that lepgi-silenced strains had significantly less biomass than the wild-type (WT) strain. Furthermore, the extracellular polysaccharide (EPS) and intracellular polysaccharide (IPS) levels increased 1.5- to 3-fold and 1.5-fold, respectively, in lepgi-silenced strains. Moreover, the cell wall integrity in the silenced strains was also altered, which might be due to changes in the compounds and structure of the cell wall. The results showed that compared to WT, silencing lepgi led to a significant decrease of approximately 40% in the ß-1,3-glucan content, and there was a significant increase of 2-3-fold in the chitin content. These findings provide support for studying the biological functions of lepgi in L. edodes.


Assuntos
Cogumelos Shiitake , Parede Celular , Clonagem Molecular , Glucose-6-Fosfato Isomerase/genética , Polissacarídeos , Cogumelos Shiitake/genética
9.
Nano Lett ; 21(19): 7970-7978, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34605652

RESUMO

The performance of single-atom catalysts strongly depends on their particular coordination environments in the near-surface region. Herein, we discover that engineering extra Pt single atoms in the subsurface (Ptsubsurf) can significantly enhance the catalytic efficiency of surface Pt single atoms toward the oxygen reduction reaction (ORR). We experimentally and theoretically investigated the effects of the Ptsubsurf single atoms implanted in different positions of the subsurface of Co particles. The local environments and catalytic properties of surface Pt1 are highly tunable via Ptsubsurf doping. Specifically, the obtained Pt1@Co/NC catalyst displays a remarkable performance for ORR, achieving mass activity of 4.2 mA µgPt-1 (28 times higher than that of commercial Pt/C) at 0.9 V versus reversible hydrogen electrode (RHE) in 0.1 M HClO4 solution with high stability over 30000 cycles.

10.
Angew Chem Int Ed Engl ; 61(42): e202212666, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36056534

RESUMO

Aqueous Zn-S battery with high energy density represents a promising large-scale energy storage technology, but its application is severely hindered by the poor reversibility of both S cathode and Zn anode. Herein, we develop a "cocktail optimized" electrolyte containing tetraglyme (G4) and water as co-solvents and I2 as additive. The G4-I2 synergy could activate efficient polar I3 - /I- catalyst couple and shield the cathode from water, thus facilitating the conversion kinetics of S and suppressing the interfacial side reactions. Simultaneously, it could stabilize Zn anode by forming an organic-inorganic interphase upon cycling. With boosted electrodes reversibility, the Zn-S cell delivers a high capacity of 775 mAh g-1 at 2 A g-1 , and retains over 70 % capacity after 600 cycles at 4 A g-1 . The advances can also be readily generalized to other ethers/water hybrid electrolytes, showing the universality of the "cocktail optimized" electrolyte design strategy.

11.
Angew Chem Int Ed Engl ; 61(16): e202200384, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35119192

RESUMO

It is vital to dynamically regulate S activity to achieve efficient and stable room-temperature sodium-sulfur (RT/Na-S) batteries. Herein, we report using cobalt sulfide as an electron reservoir to enhance the activity of sulfur cathodes, and simultaneously combining with cobalt single atoms as double-end binding sites for a stable S conversion process. The rationally constructed CoS2 electron reservoir enables the straight reduction of S to short-chain sodium polysulfides (Na2 S4 ) via a streamlined redox path through electron transfer. Meanwhile, cobalt single atoms synergistically work with the electron reservoir to reinforce the streamlined redox path, which immobilize in situ formed long-chain products and catalyze their conversion, thus realizing high S utilization and sustainable cycling stability. The as-developed sulfur cathodes exhibit a superior rate performance of 443 mAh g-1 at 5 A g-1 with a high cycling capacity retention of 80 % after 5000 cycles at 5 A g-1 .

12.
Environ Microbiol ; 23(8): 4405-4417, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34097348

RESUMO

The cell wall integrity (CWI) signaling activates the transcription factor Swi6 through a MAPK signaling cascade in response to cell wall stresses. In this study, we observed two different mRNA variants of swi6 (GlSwi6A and GlSwi6B) existed, due to alternative splicing. Besides, the expression level of GlSwi6B was higher than that of the GlSwi6A mRNA variant. The co-silencing of GlSwi6A and GlSwi6B was more sensitive to cell wall stress compared with WT, resulting in a decrease of 78% and 76% in chitin and ß-1,3-d-glucan content respectively. However, only the overexpression of GlSwi6B decreased the sensitivity to cell wall stress and increased the content of chitin and ß-1,3-d-glucan compared with the WT strain. Furthermore, Y1H, EMSA and BLI assays revealed that the GlSwi6B could bind to the promoters of chitin and glucan synthesis genes (GL24454 and GL18134). However, the binding phenome has not been observed in the isoform GlSwi6A. Taken together, our results found two different transcripts generated from Swi6, in which the alternative splice isoform of GlSwi6B participates in regulating the CWI of G. lucidum. This study provides the first insight into the alternative splicing isoform of GlSwi6B in the regulation of CWI signaling in fungi.


Assuntos
Reishi , Processamento Alternativo/genética , Parede Celular/genética , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reishi/metabolismo
13.
Small ; 17(48): e2006504, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33908696

RESUMO

Alkali-metal/sulfur batteries hold great promise for offering relatively high energy density compared to conventional lithium-ion batteries. By providing viable sulfur composites that can be effectively used, carbonaceous hosts as a key component play critical roles in overcoming the preliminary challenges associated with the insulating sulfur and its relatively soluble polysulfides. Herein, a comprehensive overview and recent progress on carbonaceous hosts for advanced next-generation alkali-metal/sulfur batteries are presented. In order to encapsulate the highly active sulfur mass and fully limit polysulfide dissolution, strategies for tailoring the design and synthesis of carbonaceous hosts are summarized in this work. The sticking points that remain for sulfur cathodes in current alkali-metal/sulfur systems and the future remedies that can be provided by carbonaceous hosts are also indicated, which can lead to long cycling lifetimes and highly reversible capacities under repeated sulfur reduction reactions in alkali-metal/sulfur during cycling.

14.
Small ; 17(26): e2100732, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34080772

RESUMO

The rational synthesis of single-layer noble metal directly anchored on support materials is an elusive target to accomplish for a long time. This paper reports well-defined single-layer Pt (Pt-SL) clusters anchored on ultrathin TiO2 nanosheets-as a new frontier in electrocatalysis. The structural evolution of Pt-SL/TiO2 via self-assembly of single Pt atoms (Pt-SA) is systematically recorded. Significantly, the Pt atoms of Pt-SL/TiO2 possess a unique electronic configuration with PtPt covalent bonds surrounded by abundant unpaired electrons. This Pt-SL/TiO2 catalyst presents enhanced electrochemical performance toward diverse electrocatalytic reactions (such as the hydrogen evolution reaction and the oxygen reduction reaction) compared with Pt-SA, multilayer Pt nanoclusters, and Pt nanoparticles, suggesting an efficient new type of catalyst that can be achieved by constructing single-layer atomic clusters on supports.

15.
Plant Mol Biol ; 102(1-2): 1-17, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31655970

RESUMO

KEY MESSAGE: HbMBF1a was isolated and characterized in H. brevisubulatum, and overexpressed HbMBF1a could enhance the salt tolerance and ABA insensitivity in Arabidopsis thaliana. The transcript levels of stress-responsive genes were significantly increased in the transgenic lines under salt and ABA conditions. Salinity is an abiotic stress that considerably affects plant growth, yield, and distribution. Hordeum brevisubulatum is a halophyte that evolved to become highly tolerant to salinity. Multiprotein bridging factor 1 (MBF1) is a transcriptional coactivator and an important regulator of stress tolerance. In this study, we isolated and characterized HbMBF1a based on the transcriptome data of H. brevisubulatum grown under saline conditions. We overexpressed HbMBF1a in Arabidopsis thaliana and compared the phenotypes of the transgenic lines and the wild-type in response to stresses. The results indicated that HbMBF1a expression was induced by salt and ABA treatments during the middle and late stages. The overexpression of HbMBF1a in A. thaliana resulted in enhanced salt tolerance and ABA insensitivity. More specifically, the enhanced salt tolerance manifested as the increased seed germination and seedling growth and development. Similarly, under ABA treatments, the cotyledon greening rate and seedling root length were higher in the HbMBF1a-overexpressing lines, suggesting the transgenic plants were better adapted to high exogenous ABA levels. Furthermore, the transcript levels of stress-responsive genes were significantly increased in the transgenic lines under salt and ABA conditions. Thus, HbMBF1a is a positive regulator of salt and ABA responses, and the corresponding gene may be useful for producing transgenic plants that are salt tolerant and/or ABA insensitive, with few adverse effects. This study involved a comprehensive analysis of HbMBF1a. The results may provide the basis and insight for the application of MBF1 family genes for developing stress-tolerant crops.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Hordeum/metabolismo , Plantas Geneticamente Modificadas/genética , Tolerância ao Sal/genética , Plantas Tolerantes a Sal/genética , Transativadores/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cotilédone/metabolismo , Genes de Plantas/genética , Germinação , Fenótipo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Tolerância ao Sal/fisiologia , Plantas Tolerantes a Sal/metabolismo , Sais/farmacologia , Plântula/crescimento & desenvolvimento , Análise de Sequência de DNA , Estresse Fisiológico/genética , Transativadores/classificação , Transativadores/metabolismo , Transcriptoma , Transformação Genética
16.
Small ; 16(20): e2000745, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32329571

RESUMO

Iron sulfides with high theoretical capacity and low cost have attracted extensive attention as anode materials for sodium ion batteries. However, the inferior electrical conductivity and devastating volume change and interface instability have largely hindered their practical electrochemical properties. Here, ultrathin amorphous TiO2 layer is constructed on the surface of a metal-organic framework derived porous Fe7 S8 /C electrode via a facile atomic layer deposition strategy. By virtue of the porous structure and enhanced conductivity of the Fe7 S8 /C, the electroactive TiO2 layer is expected to effectively improve the electrode interface stability and structure integrity of the electrode. As a result, the TiO2 -modified Fe7 S8 /C anode exhibits significant performance improvement for sodium-ion batteries. The optimal TiO2 -modified Fe7 S8 /C electrode delivers reversible capacity of 423.3 mA h g-1 after 200 cycles with high capacity retention of 75.3% at 0.2 C. Meanwhile, the TiO2 coating is conducive to construct favorable solid electrolyte interphase, leading to much enhanced initial Coulombic efficiency from 66.9% to 72.3%. The remarkable improvement suggests that the interphase modification holds great promise for high-performance metal sulfide-based anode materials for sodium-ion batteries.

17.
J Exp Bot ; 71(14): 4345-4358, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32280989

RESUMO

K+/Na+ homeostasis is the primary core response for plant to tolerate salinity. Halophytes have evolved novel regulatory mechanisms to maintain a suitable K+/Na+ ratio during long-term adaptation. The wild halophyte Hordeum brevisubulatum can adopt efficient strategies to achieve synergistic levels of K+ and Na+ under high salt stress. However, little is known about its molecular mechanism. Our previous study indicated that HbCIPK2 contributed to prevention of Na+ accumulation and K+ reduction. Here, we further identified the HbCIPK2-interacting proteins including upstream Ca2+ sensors, HbCBL1, HbCBL4, and HbCBL10, and downstream phosphorylated targets, the voltage-gated K+ channel HbVGKC1 and SOS1-like transporter HbSOS1L. HbCBL1 combined with HbCIPK2 could activate HbVGKC1 to absorb K+, while the HbCBL4/10-HbCIPK2 complex modulated HbSOS1L to exclude Na+. This discovery suggested that crosstalk between the sodium response and the potassium uptake signaling pathways indeed exists for HbCIPK2 as the signal hub, and paved the way for understanding the novel mechanism of K+/Na+ homeostasis which has evolved in the halophytic grass.


Assuntos
Hordeum , Plantas Tolerantes a Sal , Homeostase , Raízes de Plantas , Potássio , Sódio
18.
Microb Cell Fact ; 19(1): 105, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32430011

RESUMO

BACKGROUND: 2-Acetamidophenol (AAP) is an aromatic compound with the potential for antifungal, anti-inflammatory, antitumor, anti-platelet, and anti-arthritic activities. Due to the biosynthesis of AAP is not yet fully understood, AAP is mainly produced by chemical synthesis. Currently, metabolic engineering of natural microbial pathway to produce valuable aromatic compound has remarkable advantages and exhibits attractive potential. Thus, it is of paramount importance to develop a dominant strain to produce AAP by elucidating the AAP biosynthesis pathway. RESULT: In this study, the active aromatic compound AAP was first purified and identified in gene phzB disruption strain HT66ΔphzB, which was derived from Pseudomonas chlororaphis HT66. The titer of AAP in the strain HT66ΔphzB was 236.89 mg/L. Then, the genes involved in AAP biosynthesis were determined. Through the deletion of genes phzF, Nat and trpE, AAP was confirmed to have the same biosynthesis route as phenazine-1-carboxylic (PCA). Moreover, a new arylamine N-acetyltransferases (NATs) was identified and proved to be the key enzyme required for generating AAP by in vitro assay. P. chlororaphis P3, a chemical mutagenesis mutant strain of HT66, has been demonstrated to have a robust ability to produce antimicrobial phenazines. Therefore, genetic engineering, precursor addition, and culture optimization strategies were used to enhance AAP production in P. chlororaphis P3. The inactivation of phzB in P3 increased AAP production by 92.4%. Disrupting the phenazine negative regulatory genes lon and rsmE and blocking the competitive pathway gene pykA in P3 increased AAP production 2.08-fold, which also confirmed that AAP has the same biosynthesis route as PCA. Furthermore, adding 2-amidophenol to the KB medium increased AAP production by 64.6%, which suggested that 2-amidophenol is the precursor of AAP. Finally, by adding 5 mM 2-amidophenol and 2 mM Fe3+ to the KB medium, the production of AAP reached 1209.58 mg/L in the engineered strain P3ΔphzBΔlonΔpykAΔrsmE using a shaking-flask culture. This is the highest microbial-based AAP production achieved to date. CONCLUSION: In conclusion, this study clarified the biosynthesis process of AAP in Pseudomonas and provided a promising host for industrial-scale biosynthesis of AAP from renewable resources.


Assuntos
Acetaminofen/metabolismo , Arilamina N-Acetiltransferase/metabolismo , Vias Biossintéticas , Engenharia Metabólica , Pseudomonas chlororaphis/enzimologia , Arilamina N-Acetiltransferase/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genes Bacterianos , Microbiologia Industrial , Pseudomonas chlororaphis/genética
19.
BMC Neurol ; 20(1): 127, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32268886

RESUMO

BACKGROUND: The modified Rankin Scale (mRS) is a key global outcome measure after stroke internationally. The latest English version of the simplified modified Rankin scale questionnaire (smRSq)(2011) is a reliable and valid tool in scoring the mRS after stroke. In order to use this tool in Chinese patients, we translated it into Chinese and tested its clinimetric properties. METHODS: The English version smRSq (2011) was translated into Chinese by a standard process. We recruited 300 consecutive hospitalized ischemic stroke patients in the department of neurology, Beijing Chaoyang Hospital. Six randomly paired raters scored the conventional mRS, the novel Chinese version smRSq (2011), the National Institutes of Health Stroke Scale (NIHSS), and the Barthel index (BI) in-person. Inter-rater reliability and validity were assessed. RESULTS: Among the 300 ischemic stroke patients, mean age was 64.9 ± 12.1 years, and 220 (73%) were male. For inter-rater reliability of the smRSq (2011), the percent agreement among the paired raters was 87%, the kappa (κ) was 0.84 (95% CI, 0.79-0.88), and the weighted kappa (κw) was 0.96 (95% CI, 0.95-0.98). The percent agreement between the smRSq (2011) scores and the conventional mRS scores was 55%, κ = 0.47 (95% CI, 0.40-0.54), and κw = 0.91 (95% CI, 0.89-0.93). In construct validity testing, the Spearman's correlation coefficients comparing the smRSq (2011) scores with the NIHSS and the BI scores were 0.83 (P < 0.001) and - 0.86 (P < 0.001), respectively. CONCLUSIONS: Our results show good to excellent clinimetric properties of the novel Chinese version smRSq (2011) in scoring the mRS in Chinese stroke patients. Further validation in other clinical settings, including in communities and by remote methods in China is warranted.


Assuntos
Avaliação de Resultados em Cuidados de Saúde , Acidente Vascular Cerebral/diagnóstico , Inquéritos e Questionários , Idoso , Povo Asiático , China , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Índice de Gravidade de Doença , Traduções
20.
Clin Oral Investig ; 24(8): 2819-2828, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31788748

RESUMO

BACKGROUND AND OBJECTIVES: Liquid platelet rich fibrin (PRF; often referred to as injectable PRF) has been utilized as an injectable formulation of PRF that is capable of stimulating tissue regeneration. Our research group recently found that following standard L-PRF protocols (2700 RPM for 12 min), a massive increase in platelets and leukocytes was observed directly within the buffy-coat layer directly above the red blood cell layer. The purpose of this study was to develop a novel harvesting technique to isolate liquid PRF directly from this buffy coat layer and to compare this technique to standard i-PRF. MATERIALS AND METHODS: Standard high g-force L-PRF and low g-force i-PRF protocols were utilized to separate blood layers. Above the red blood corpuscle layer, sequential 100-µL layers of plasma were harvested (12 layers total; i.e., 1.2 mL, which represents the total i-PRF volume), and 3 layers (3 × 100 µL) were harvested from the red blood cell layer to quantify blood cells. Each layer was then sent for complete blood count (CBC) analysis, and the cell numbers were quantified including red blood cells, leukocytes, neutrophils, lymphocytes, monocytes, and platelets. The liquid PRF that was directly collected from the buffy-coat layer following L-PRF protocols was referred to as concentrated PRF (C-PRF). RESULTS: The i-PRF protocol typically yielded a 2- to 3-fold increase in platelets and a l.5-fold increase in leukocyte concentration from the 1- to 1.2-mL plasma layer compared to baseline concentrations in whole blood. While almost no cells were found in the first 4-mL layer of L-PRF, a massive accumulation of platelets and leukocytes was found directly within the buffy coat layer demonstrating extremely high concentrations of cells in this 0.3-0.5-mL layer (~ 20-fold increases). We therefore proposed harvesting this 0.3- to 0.5-mL layer directly above the red blood cell corpuscle layer as liquid C-PRF. In general, i-PRF was able to increase platelet numbers by ~ 250%, whereas a 1200-1700% increase in platelet numbers could easily be achieved by harvesting this 0.3-0.5 mL of C-PRF (total platelet concentrations of > 2000-3000 × 109 cells/L). CONCLUSION: While conventional i-PRF protocols increase platelet yield by 2-3-fold and leukocyte yield by 50%, we convincingly demonstrated the ability to concentrate platelets and leukocytes over 10-fold by harvesting the 0.3-0.5 mL of C-PRF within the buffy coat following L-PRF protocols. CLINICAL RELEVANCE: Previous studies have demonstrated only a slight increase in platelet and leukocyte concentrations in i-PRF. The present study described a novel harvesting technique with over a 10-fold increase in platelets and leukocytes that can be further utilized for tissue regeneration.


Assuntos
Plaquetas , Leucócitos , Monócitos , Neutrófilos , Fibrina Rica em Plaquetas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA