Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 228, 2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120525

RESUMO

BACKGROUND: Moth bean (Vigna aconitifolia) is an underutilized, protein-rich legume that is grown in arid and semi-arid areas of south Asia and is highly resistant to abiotic stresses such as heat and drought. Despite its economic importance, the crop remains unexplored at the genomic level for genetic diversity and trait mapping studies. To date, there is no report of SNP marker discovery and association mapping of any trait in this crop. Therefore, this study aimed to dissect the genetic diversity, population structure and marker-trait association for the flowering trait in a diversity panel of 428 moth bean accessions using genotyping by sequencing (GBS) approach. RESULTS: A total of 9078 high-quality single nucleotide polymorphisms (SNPs) were discovered by genotyping of 428 moth bean accessions. Model-based structure analysis and PCA grouped the moth bean accessions into two subpopulations. Cluster analysis revealed accessions belonging to the Northwestern region of India had higher variability than accessions from the other regions suggesting that this region represents its center of diversity. AMOVA revealed more variations within individuals (74%) and among the individuals (24%) than among the populations (2%). Marker-trait association analysis using seven multi-locus models including mrMLM, FASTmrEMMA FASTmrEMMA, ISIS EM-BLASSO, MLMM, BLINK and FarmCPU revealed 29 potential genomic regions for the trait days to 50% flowering, which were consistently detected in three or more models. Analysis of the allelic effect of the major genomic regions explaining phenotypic variance of more than 10% and those detected in at least 2 environments showed 4 genomic regions with significant phenotypic effect on this trait. Further, we also analyzed genetic relationships among the Vigna species using SNP markers. The genomic localization of moth bean SNPs on genomes of closely related Vigna species demonstrated that maximum numbers of SNPs were getting localized on Vigna mungo. This suggested that the moth bean is most closely related to V. mungo. CONCLUSION: Our study shows that the north-western regions of India represent the center of diversity of the moth bean. Further, the study revealed flowering-related genomic regions/candidate genes which can be potentially exploited in breeding programs to develop early-maturity moth bean varieties.


Assuntos
Estudo de Associação Genômica Ampla , Vigna , Vigna/genética , Genótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único/genética
2.
Photosynth Res ; 153(3): 125-134, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35648247

RESUMO

Carbon concentrating mechanisms (CCMs) in plants are abaptive features that have evolved to sustain plant growth in unfavorable environments, especially at low atmospheric carbon levels and high temperatures. Uptake of CO2 and its storage in the aerenchyma tissues of Lycopsids and diurnal acidity fluctuation in aquatic plants during the Palaeozoic era (ca. 300 Ma.) would represent the earliest evolution of a CCM. The CCM parts of the dark reactions of photosynthesis have evolved many times, while the light reactions are conserved across plant lineages. A C4 type CCM, leaf C4 photosynthesis is evolved in the PACMAD clade of the Poaceae family. The evolution of C4 photosynthesis from C3 photosynthesis was an abaptation. Photosynthesis in reproductive tissues of sorghum and maize (PACMAD clade) has been shown to be of a weaker C4 type (high CO2 compensation point, low carbon isotope discrimination, and lack of Rubisco compartmentalization, when compared to the normal C4 types) than that in the leaves (normal C4 type). However, this does not fit well with the character polarity concept from an evolutionary perspective. In a recent model proposed for CCM evolution, the development of a rudimentary CCM prior to the evolution of a more efficient CCM (features contrasting to a weaker C4 type, leading to greater biomass production rate) has been suggested. An intermediate crassulacean acid metabolism (CAM) type of CCM (rudimentary) was reported in the genera, Brassia, Coryanthes, Eriopsis, Peristeria, of the orchids (well-known group of plants that display the CAM pathway). Similarly, we propose here the evolution of a rudimentary CCM (C4-like type pathway) in the non-foliar tissues of the Poaceae, prior to the evolution of the C4 pathway as identified in the leaves of the C4 species of the PACMAD clade.


Assuntos
Poaceae , Ribulose-Bifosfato Carboxilase , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Plantas/metabolismo , Poaceae/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
3.
Curr Genomics ; 17(3): 177-92, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27252585

RESUMO

Coarse grains are important group of crops that constitutes staple food for large population residing primarily in the arid and semi-arid regions of the world. Coarse grains are designated as nutri-cereals as they are rich in essential amino acids, minerals and vitamins. In spite of having several nutritional virtues in coarse grain as mentioned above, there is still scope for improvement in quality parameters such as cooking qualities, modulation of nutritional constituents and reduction or elimination of anti-nutritional factors. Besides its use in traditional cooking, coarse grains have been used mainly in the weaning food preparation and other malted food production. Improvement in quality parameters will certainly increase consumer's preference for coarse grains and increase their demand. The overall genetic gain in quality traits of economic importance in the cultivated varieties will enhance their industrial value and simultaneously increase income of farmers growing these varieties. The urgent step for improvement of quality traits in coarse grains requires a detailed understanding of molecular mechanisms responsible for varied level of different nutritional contents in different genotypes of these crops. In this review we have discussed the progresses made in understanding of coarse grain biology with various omics tool coupled with modern breeding approaches and the current status with regard to our effort towards dissecting traits related to improvement of quality and nutritional constituents of grains.

4.
BMC Plant Biol ; 13: 121, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23984709

RESUMO

BACKGROUND: The canonical mitogen activated protein kinase (MAPK) signaling pathway plays a vital role in carrying out the normal growth and development of the plant. The pathway, connecting the upstreams signal with the downstream target is considered to be linear, mostly starting with a MAPKKK and ending in a MAPK. RESULTS: Here we report a novel interaction between two rice MAPKs, OsMPK20-4 and OsMPK3 suggesting the complex nature of the pathway rather than a linear one at individual steps. The interaction between OsMPK20-4 and OsMPK3 found by yeast two-hybrid analysis was confirmed in planta by co-immunoprecipitation and fluorescence resonance energy transfer (FRET) assays. The interaction is specific and is phosphorylation independent. The results suggest a role of the interaction between OsMPK20-4 and OsMPK3 in basic plant defense. CONCLUSIONS: The current novel work showing the physical interaction between two plant MAPKs, OsMPK20-4 and OsMPK3 is the diversion from the dogma of a typical MAPK cascade thereby opening a new dimension to the MAPK signal transduction.


Assuntos
Proteínas Quinases Ativadas por Mitógeno/metabolismo , Oryza/enzimologia , Proteínas de Plantas/metabolismo , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas Quinases Ativadas por Mitógeno/genética , Oryza/genética , Oryza/fisiologia , Proteínas de Plantas/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
5.
Protoplasma ; 257(2): 475-487, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31786672

RESUMO

Dwindling fresh water resources and climate change poses serious threats to rice production. Roots play crucial role in sensing water gradient and directing growth of the plant towards water through a mechanism called hydrotropism. Since very little information is available on root hydrotropism in major food crops, this study was carried out to clone and characterize an ortholog of Arabidopsis MIZU-KUSSEI1 (MIZ1) from rice. Contrasting rice genotypes for drought and salt tolerance were selected based on phenotyping for root traits. Nagina 22 and CR-262-4 were identified as most tolerant and Pusa Sugandh 5 and Pusa Basmati 1121 were identified as most susceptible varieties for both drought and salt stresses. Allele mining of MIZ1 in these varieties identified a 12 bp Indel but did not show specific allelic association with stress tolerance. Analysis of allelic variation of OsMIZ1 in 3024 rice genotypes of 3K genome lines using Rice SNP-Seek database revealed 49 InDels. Alleles with the 12 bp deletions were significantly prevalent in indica group as compared to that of japonica group. Real-time RT-PCR analysis revealed that OsMIZ1 expression levels were upregulated significantly in tolerant cv. Nagina 22 and CR-262-4 under osmotic stress, while under salt stress, it was significantly upregulated only in CR-262-4 but maintained in Nagina 22 under salt stress. However, in the roots of susceptible genotypes, OsMIZ1 expression decreased under both the stresses. These results highlight the possible involvement of OsMIZ1 in drought and salt stress tolerance in rice. Furthermore, expression studies using publically available resources showed that enhanced expression of OsMIZ1 is regulated in response to disease infections, mineral deficiency, and heavy metal stresses and is also expressed in reproductive tissues in addition to roots. These findings indicate potential involvement of MIZ1 in developmental and stress response processes in rice.


Assuntos
Adaptação Fisiológica/fisiologia , Oryza/genética , Proteínas de Plantas/química , Tolerância ao Sal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA