Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 272(1): 245-55, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23707608

RESUMO

Tyrosine kinase inhibitors (TKi) have greatly improved the treatment and prognosis of multiple cancer types. However, unexpected cardiotoxicity has arisen in a subset of patients treated with these agents that was not wholly predicted by pre-clinical testing, which centers around animal toxicity studies and inhibition of the human Ether-à-go-go-Related Gene (hERG) channel. Therefore, we sought to determine whether a multi-parameter test panel assessing the effect of drug treatment on cellular, molecular, and electrophysiological endpoints could accurately predict cardiotoxicity. We examined how 4 FDA-approved TKi agents impacted cell viability, apoptosis, reactive oxygen species (ROS) generation, metabolic status, impedance, and ion channel function in human cardiomyocytes. The 3 drugs clinically associated with severe cardiac adverse events (crizotinib, sunitinib, nilotinib) all proved to be cardiotoxic in our in vitro tests while the relatively cardiac-safe drug erlotinib showed only minor changes in cardiac cell health. Crizotinib, an ALK/MET inhibitor, led to increased ROS production, caspase activation, cholesterol accumulation, disruption in cardiac cell beat rate, and blockage of ion channels. The multi-targeted TKi sunitinib showed decreased cardiomyocyte viability, AMPK inhibition, increased lipid accumulation, disrupted beat pattern, and hERG block. Nilotinib, a second generation Bcr-Abl inhibitor, led to increased ROS generation, caspase activation, hERG block, and an arrhythmic beat pattern. Thus, each drug showed a unique toxicity profile that may reflect the multiple mechanisms leading to cardiotoxicity. This study demonstrates that a multi-parameter approach can provide a robust characterization of drug-induced cardiomyocyte damage that can be leveraged to improve drug safety during early phase development.


Assuntos
Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Proteínas Quinases/toxicidade , Proteínas Tirosina Quinases/antagonistas & inibidores , Caspase 3/metabolismo , Caspase 7/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Colesterol/metabolismo , Crizotinibe , Canal de Potássio ERG1 , Ativação Enzimática/efeitos dos fármacos , Cloridrato de Erlotinib , Canais de Potássio Éter-A-Go-Go/biossíntese , Canais de Potássio Éter-A-Go-Go/genética , Humanos , Indóis/toxicidade , Canais Iônicos/efeitos dos fármacos , Lipídeos/biossíntese , Miócitos Cardíacos/ultraestrutura , Técnicas de Patch-Clamp , Células-Tronco Pluripotentes/efeitos dos fármacos , Pirazóis/toxicidade , Piridinas/toxicidade , Pirimidinas/toxicidade , Pirróis/toxicidade , Quinazolinas/toxicidade , RNA/biossíntese , RNA/isolamento & purificação , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sunitinibe
2.
Cell Cycle ; 7(12): 1769-75, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18594201

RESUMO

ErbB2 targeted therapies represent an attractive strategy in breast cancer. Herceptin, an anti-ErbB2 monoclonal antibody, is an approved treatment for patients with ErbB2-overexpressing breast cancers. ErbB2 signaling can also be blocked using small molecule tyrosine kinase inhibitors, like Lapatinib, that compete with ATP for binding at the ErbB2 catalytic kinase domain. The principal adverse event attributable to Herceptin is cardiac toxicity. Data from clinical trials show that, unlike Herceptin, Lapatinib may have reduced cardiac toxicity. This study was conducted to elucidate pathways which may contribute to cardiac toxicity or survival using Lapatinib and Herceptin. Our results show that treatments directed to ErbB1/2 receptors using GW-2974 (a generic ErbB1/2 inhibitor) activated AMPK, a key regulator in mitochondrial energy production pathways in human cardiac cells and cancer cells. Although Herceptin downregulates tumor survival pathways, AMPK fails to be activated in tumor and cardiac cells. When treated in combination with TNFalpha, a known cytokine associated with cardiac toxicity, GW-2974 protected cardiac cells from cell death whereas Herceptin contributed to TNFalpha-induced cellular killing. Since activity of AMPK in cardiac cells is associated with stress induced survival in response to cytokines or energy depletion, cardiac toxicity by Herceptin may be a consequence of failure to induce stress-related survival mechanisms. Thus, the ability to activate AMPK after treatment with tyrosine kinase inhibitors may be a crucial factor for increased efficacy against the tumor and decreased risk of cardiomyopathy.


Assuntos
Antineoplásicos/toxicidade , Complexos Multienzimáticos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Proteínas Quinases/toxicidade , Proteínas Serina-Treonina Quinases/metabolismo , Quinazolinas/toxicidade , Proteínas Quinases Ativadas por AMP , Anticorpos Monoclonais/toxicidade , Anticorpos Monoclonais Humanizados , Linhagem Celular Tumoral , Células Cultivadas , Ativação Enzimática , Receptores ErbB/antagonistas & inibidores , Genes p53 , Humanos , Mutação , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Trastuzumab
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA