Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Genomics ; 114(2): 110274, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35090995

RESUMO

The cotyledon and caruncle tissues provide a functional bridge between the fetus and the dam. However, the relationship between these tissues and the transcriptomic profile that underlies the tissue functions remains elusive. Herein we investigate the expression profile of cotyledon and caruncle from nulliparous beef heifers carrying female fetuses at day 83 of pregnancy to identify changes occurring across tissues that contribute to placental function and their tissue-specific roles. We identified 2654 differentially expressed genes [padj ≤ 0.05, abs(log2FC) ≥ 1], including nutrient transporters and paternally imprinted genes. We found key regulators of tissue function and differentiation, including FOXO4, GATA2, GATA3, and HAND1, rewired between the tissues. Finally, we shed light on the over-represented pathways related to immune tolerance, tissue differentiation and remodeling. Our findings highlighted the intricate and coordinated cross-talk between fetal-maternal tissues. They provided evidence of a fine-tuned gene regulatory network underlying pregnancy and tissue-specific function in the bovine placenta.


Assuntos
Redes Reguladoras de Genes , Placenta , Animais , Bovinos/genética , Feminino , Feto , Nutrientes , Placenta/metabolismo , Gravidez , Transcriptoma
2.
Reprod Fertil Dev ; 35(2): 19-26, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36592977

RESUMO

Developmental programming is the concept that 'stressors' during development (i.e. pregnancy, the perinatal period and infancy) can cause long-term changes in gene expression, leading to altered organ structure and function. Such long-term changes are associated with an increased risk of a host of chronic pathologies, or non-communicable diseases including abnormal growth and body composition, behavioural or cognitive dysfunction, metabolic abnormalities, and cardiovascular, gastro-intestinal, immune, musculoskeletal and reproductive dysfunction. Maternal nutrition during the periconceptual period, pregnancy and postnatally can have profound influences on the developmental program. Animal models, including domestic livestock species, have been important for defining the mechanisms and consequences of developmental programming. One of the important observations is that maternal nutritional status and other maternal stressors (e.g. environmental temperature, high altitude, maternal age and breed, multiple fetuses, etc.) early in pregnancy and even periconceptually can affect not only embryonic/fetal development but also placental development. Indeed, altered placental function may underlie the effects of many maternal stressors on fetal growth and development. We suggest that future directions should focus on the consequences of developmental programming during the offspring's life course and for subsequent generations. Other important future directions include evaluating interventions, such as strategic dietary supplementation, and also determining how we can take advantage of the positive, adaptive aspects of developmental programming.


Assuntos
Desenvolvimento Fetal , Placenta , Animais , Humanos , Gravidez , Feminino , Placentação , Fenômenos Fisiológicos da Nutrição Materna , Modelos Animais
3.
Adv Exp Med Biol ; 1354: 63-76, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34807437

RESUMO

Maternal nutritional status affects conceptus development and, therefore, embryonic survival, growth, and development. These effects are apparent very early in pregnancy, which is when most embryonic losses occur. Maternal nutritional status has been shown to affect conceptus growth and gene expression throughout the periconceptual period of pregnancy (the period immediately before and after conception). Thus, the periconceptual period may be an important "window" during which the structure and function of the fetus and the placenta are "programmed" by stressors such as maternal malnutrition, which can have long-term consequences for the health and well-being of the offspring, a concept often referred to as Developmental Origins of Health and Disease (DOHaD) or simply developmental programming. In this review, we focus on recent studies, using primarily animal models, to examine the effects of various maternal "stressors," but especially maternal malnutrition and Assisted Reproductive Techniques (ART, including in vitro fertilization, cloning, and embryo transfer), during the periconceptual period of pregnancy on conceptus survival, growth, and development. We also examine the underlying mechanisms that have been uncovered in these recent studies, such as effects on the development of both the placenta and fetal organs. We conclude with our view of future research directions in this critical area of investigation.


Assuntos
Fenômenos Fisiológicos da Nutrição Materna , Complicações na Gravidez , Animais , Desenvolvimento Embrionário , Feminino , Fertilização , Desenvolvimento Fetal , Feto , Humanos , Placenta , Gravidez
4.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769097

RESUMO

Assisted reproductive techniques (ART) and parental nutritional status have profound effects on embryonic/fetal and placental development, which are probably mediated via "programming" of gene expression, as reflected by changes in their epigenetic landscape. Such epigenetic changes may underlie programming of growth, development, and function of fetal organs later in pregnancy and the offspring postnatally, and potentially lead to long-term changes in organ structure and function in the offspring as adults. This latter concept has been termed developmental origins of health and disease (DOHaD), or simply developmental programming, which has emerged as a major health issue in animals and humans because it is associated with an increased risk of non-communicable diseases in the offspring, including metabolic, behavioral, and reproductive dysfunction. In this review, we will briefly introduce the concept of developmental programming and its relationship to epigenetics. We will then discuss evidence that ART and periconceptual maternal and paternal nutrition may lead to epigenetic alterations very early in pregnancy, and how each pregnancy experiences developmental programming based on signals received by and from the dam. Lastly, we will discuss current research on strategies designed to overcome or minimize the negative consequences or, conversely, to maximize the positive aspects of developmental programming.


Assuntos
Desenvolvimento Embrionário , Fenômenos Fisiológicos da Nutrição Materna , Técnicas de Reprodução Assistida , Animais , Epigênese Genética , Pai , Feminino , Humanos , Masculino , Estado Nutricional , Cuidado Pré-Concepcional , Gravidez , Resultado da Gravidez
5.
J Dairy Sci ; 103(11): 10060-10073, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32921447

RESUMO

The hypothesis of this experiment was that dietary fructose would influence visceral organ mass, carbohydrase activity, and mRNA expression of carbohydrases and nutrient transporters in the small intestine in neonatal calves. Therefore, our objective was to use the neonatal calf as a model to evaluate the effects of postruminal fructose supply on small intestinal carbohydrate assimilation. Ten calves (<7 d of age; 41.2 ± 1.46 kg of body weight) were fed milk replacer at 2.0% of body weight daily (816 ± 90.5 g/d; 272 ± 30.1 g/L; dry-matter basis) in 2 equal portions and assigned to the following dietary treatment groups: (1) milk replacer (control; n = 6) or (2) milk replacer + 2.2 g of fructose/kg of body weight (fructose; n = 4). Calves were fed dietary treatments for 28 d, with jugular blood sampled every 7 d before and after the morning feeding. Calves were slaughtered, and visceral weights were recorded. Postruminal carbohydrase activities were assayed. Quantitative real-time PCR was conducted for small intestinal mRNA expression of nutrient transporters [solute carrier family 2 member 5 (GLUT5), solute carrier family 2 member 2 (GLUT2), and solute carrier family 5 member 1 (SGLT1)], carbohydrases (lactase, maltase-glucoamylase, and sucrase-isomaltase), and ketohexokinase (KHK). Data were analyzed using MIXED procedures in SAS version 9.4 (SAS Institute Inc, Cary, NC). Dietary fructose supplementation decreased serum glucose concentration. Small intestinal mass was greater in calves supplemented with fructose. Dietary fructose supplementation did not influence pancreatic α-amylase, small intestinal isomaltase, or maltase activities. Sucrase activity was undetected in the small intestine. Dietary fructose supplementation increased small intestinal glucoamylase activity per gram of tissue by 30% and increased maltase-glucoamylase mRNA expression by 6.8-fold. Dietary fructose supplementation did not influence mRNA expression of GLUT5, SGLT1, GLUT2, or KHK. Dietary fructose supplementation increased small intestinal lactase mRNA expression by 3.1-fold. Sucrase-isomaltase mRNA expression in the small intestine decreased 5.1-fold with dietary fructose supplementation. Dietary fructose supplementation does not induce sucrase activity in neonatal calves; however, sucrase-isomaltase may be transcriptionally regulated by dietary fructose in neonatal calves. More research is needed to compare glucose and fructose at isocaloric intakes to examine effects of dietary fructose at equal metabolizable energy intake.


Assuntos
Metabolismo dos Carboidratos/genética , Bovinos/metabolismo , Suplementos Nutricionais/análise , Frutose/farmacologia , Glicosídeo Hidrolases/metabolismo , Animais , Animais Recém-Nascidos , Dieta/veterinária , Glucose/metabolismo , Glicosídeo Hidrolases/genética , Intestino Delgado/metabolismo , Substitutos do Leite/metabolismo , Nutrientes/metabolismo , RNA Mensageiro/genética
6.
Breast Cancer Res ; 19(1): 65, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28583138

RESUMO

BACKGROUND: Breast cancer cell lines are frequently used as model systems to study the cellular properties and biology of breast cancer. Our objective was to characterize a large, commonly employed panel of breast cancer cell lines obtained from the American Type Culture Collection (ATCC 30-4500 K) to enable researchers to make more informed decisions in selecting cell lines for specific studies. Information about these cell lines was obtained from a wide variety of sources. In addition, new information about cellular pathways that are activated within each cell line was generated. METHODS: We determined key protein expression data using immunoblot analyses. In addition, two analyses on serum-starved cells were carried out to identify cellular proteins and pathways that are activated in these cells. These analyses were performed using a commercial PathScan array and a novel and more extensive phosphopeptide-based kinome analysis that queries 1290 phosphorylation events in major signaling pathways. Data about this panel of breast cancer cell lines was also accessed from several online sources, compiled and summarized for the following areas: molecular classification, mRNA expression, mutational status of key proteins and other possible cancer-associated mutations, and the tumorigenic and metastatic capacity in mouse xenograft models of breast cancer. RESULTS: The cell lines that were characterized included 10 estrogen receptor (ER)-positive, 12 human epidermal growth factor receptor 2 (HER2)-amplified and 18 triple negative breast cancer cell lines, in addition to 4 non-tumorigenic breast cell lines. Within each subtype, there was significant genetic heterogeneity that could impact both the selection of model cell lines and the interpretation of the results obtained. To capture the net activation of key signaling pathways as a result of these mutational combinations, profiled pathway activation status was examined. This provided further clarity for which cell lines were particularly deregulated in common or unique ways. CONCLUSIONS: These two new kinase or "Kin-OMIC" analyses add another dimension of important data about these frequently used breast cancer cell lines. This will assist researchers in selecting the most appropriate cell lines to use for breast cancer studies and provide context for the interpretation of the emerging results.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Genômica , Proteômica , Animais , Biomarcadores , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Biologia Computacional/métodos , Análise Mutacional de DNA , Bases de Dados Genéticas , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genômica/métodos , Xenoenxertos , Humanos , Camundongos , Proteoma , Proteômica/métodos , Transdução de Sinais
7.
Breast Cancer Res ; 18(1): 12, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26810754

RESUMO

BACKGROUND: CREB3L1 (cAMP-responsive element-binding protein 3-like protein 1), a member of the unfolded protein response, has recently been identified as a metastasis suppressor in both breast and bladder cancer. METHODS: Quantitative real time PCR (qPCR) and immunoblotting were used to determine the impact of histone deacetylation and DNA methylation inhibitors on CREB3L1 expression in breast cancer cell lines. Breast cancer cell lines and tumor samples were analyzed similarly, and CREB3L1 gene methylation was determined using sodium bisulfite conversion and DNA sequencing. Immunohistochemistry was used to determine nuclear versus cytoplasmic CREB3L1 protein. Large breast cancer database analyses were carried out to examine relationships between CREB3L1 gene methylation and mRNA expression in addition to CREB3L1 mRNA expression and prognosis. RESULTS: This study demonstrates that the low CREB3L1 expression previously seen in highly metastatic breast cancer cell lines is caused in part by epigenetic silencing. Treatment of several highly metastatic breast cancer cell lines that had low CREB3L1 expression with DNA methyltransferase and histone deacetylase inhibitors induced expression of CREB3L1, both mRNA and protein. In human breast tumors, CREB3L1 mRNA expression was upregulated in low and medium-grade tumors, most frequently of the luminal and HER2 amplified subtypes. In contrast, CREB3L1 expression was repressed in high-grade tumors, and its loss was most frequently associated with triple negative breast cancers (TNBCs). Importantly, bioinformatics analyses of tumor databases support these findings, with methylation of the CREB3L1 gene associated with TNBCs, and strongly negatively correlated with CREB3L1 mRNA expression. Decreased CREB3L1 mRNA expression was associated with increased tumor grade and reduced progression-free survival. An immunohistochemistry analysis revealed that low-grade breast tumors frequently had nuclear CREB3L1 protein, in contrast to the high-grade breast tumors in which CREB3L1 was cytoplasmic, suggesting that differential localization may also regulate CREB3L1 effectiveness in metastasis suppression. CONCLUSIONS: Our data further strengthens the role for CREB3L1 as a metastasis suppressor in breast cancer and demonstrates that epigenetic silencing is a major regulator of the loss of CREB3L1 expression. We also highlight that CREB3L1 expression is frequently altered in many cancer types suggesting that it could have a broader role in cancer progression and metastasis.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Metilação de DNA/genética , Epigênese Genética , Proteínas do Tecido Nervoso/genética , Prognóstico , Neoplasias de Mama Triplo Negativas/genética , Idoso , Linhagem Celular Tumoral , Ilhas de CpG/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/biossíntese , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Pessoa de Meia-Idade , Metástase Neoplásica , Proteínas do Tecido Nervoso/biossíntese , Regiões Promotoras Genéticas , RNA Mensageiro/biossíntese , Neoplasias de Mama Triplo Negativas/classificação , Neoplasias de Mama Triplo Negativas/patologia , Resposta a Proteínas não Dobradas/genética
8.
J Nutr Biochem ; 132: 109691, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38879136

RESUMO

Maternal nutrition during pregnancy influences fetal development; however, the regulatory markers of fetal programming across different gestational phases remain underexplored in livestock models. Herein, we investigated the regulatory role of long non-coding RNAs (lncRNAs) on fetal liver gene expression, the impacts of maternal vitamin and mineral supplementation, and the rate of maternal body weight gain during the periconceptual period. To this end, crossbred Angus heifers (n=31) were randomly assigned to a 2×2 factorial design to evaluate the main effects of the rate of weight gain (low gain [LG, avg. daily gain of 0.28 kg/day] vs. moderate gain [MG, avg. daily gain of 0.79 kg/day]) and vitamins and minerals supplementation (VTM vs. NoVTM). On day 83±0.27 of gestation, fetuses were collected for morphometric measurements, and fetal liver was collected for transcriptomic and mineral analyses. The maternal diet significantly affected fetal liver development and mineral reserves. Using an RNA-Seq approach, we identified 320 unique differentially expressed genes (DEGs) across all six comparisons (FDR <0.05). Furthermore, lncRNAs were predicted through the FEELnc pipeline, revealing 99 unique differentially expressed lncRNAs (DELs). The over-represented pathways and biological processes (BPs) were associated with energy metabolism, Wnt signaling, CoA carboxylase activity, and fatty acid metabolism. The DEL-regulated BPs were associated with metal ion transport, pyrimidine metabolism, and classical energy metabolism-related glycolytic, gluconeogenic, and TCA cycle pathways. Our findings suggest that lncRNAs regulate mineral homeostasis- and energy metabolism-related gene networks in the fetal liver in response to early maternal nutrition.

9.
J Anim Sci ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028746

RESUMO

One-carbon metabolites (OCM) are metabolites and cofactors which include folate, vitamin B12, methionine, and choline that support methylation reactions. The objectives of this study were to investigate the effects of moderate changes in maternal body weight gain in combination with OCM supplementation during the first 63 days of gestation in beef cattle on (1) B12 and folate concentrations in maternal serum (2) folate cycle intermediates in maternal and fetal liver, allantoic fluid (ALF), and amniotic fluid (AMF) and (3) metabolites involved in one-carbon metabolism and related metabolic pathways in maternal and fetal liver. Heifers were either intake restricted (RES) and fed to lose 0.23 kg/d, or fed to gain 0.60 kg/d (CON). Supplemented (+OCM) heifers were given B12 and folate injections weekly and fed rumen protected methionine and choline daily, while non-supplemented (-OCM) heifers were given weekly saline injections. These two treatments were combined in a 2 × 2 factorial arrangement resulting in four treatments: CON-OCM, CON+OCM, RES-OCM, and RES+OCM. Samples of maternal serum, maternal and fetal liver, ALF, and AMF were collected at slaughter on day 63 of gestation. Restricted maternal nutrition most notably increased (P ≤ 0.05) the concentration of: vitamin B12 in maternal serum, 5,10-methylenetetrahydrofolate and 5,10-methenyltetrahydrofolate in maternal liver, and of cystathionine in fetal liver; conversely, maternal restriction decreased (P = 0.05) 5,10-methylenetetrahydrofolate concentration in fetal liver. Supplementing OCM increased (P ≤ 0.05) the concentrations of: maternal serum B12, folate and folate intermediates, ALF and AMF 5-methyltetrahydrofolate concentration, and altered (P ≤ 0.02) other maternal liver intermediates including S-adenosylmethionine, dimethylglycine, cystathionine Glutathione reduced, glutathione oxidized, taurine, serine, sarcosine, and pyridoxine. These data demonstrate that OCM supplementation was effective at increasing maternal OCM status. Furthermore, these data are similar to previously published literature where restricted maternal nutrition also affected maternal OCM status. Altering OCM status in both the dam and fetus could impact fetal developmental outcomes and production efficiencies. Lastly, these data demonstrate that fetal metabolite abundance is highly regulated, although the changes required to maintain homeostasis may program altered metabolism postnatally.

10.
Vet Sci ; 11(4)2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38668414

RESUMO

To investigate the effects of nutrient restriction and one-carbon metabolite (OCM) supplementation (folate, vitamin B12, methionine, and choline) on fetal small intestine weight, vascularity, and cell proliferation, 29 (n = 7 ± 1 per treatment) crossbred Angus beef heifers (436 ± 42 kg) were estrous synchronized and conceived by artificial insemination with female sexed semen from a single sire. Then, they were allotted randomly to one of four treatments in a 2 × 2 factorial arrangement with the main factors of nutritional plane [control (CON) vs. restricted feed intake (RES)] and OCM supplementation [without OCM (-OCM) or with OCM (+OCM)]. Heifers receiving the CON level of intake were fed to target an average daily gain of 0.45 kg/day, which would allow them to reach 80% of mature BW by calving. Heifers receiving the RES level of intake were fed to lose 0.23 kg/heifer daily, which mimics observed production responses in heifers that experience a diet and environment change during early gestation. Targeted heifer gain and OCM treatments were administered from d 0 to 63 of gestation, and then all heifers were fed a common diet targeting 0.45 kg/d gain until d 161 of gestation, when heifers were slaughtered, and fetal jejunum was collected. Gain had no effect (p = 0.17) on the fetal small intestinal weight. However, OCM treatments (p = 0.02) displayed less weight compared to the -OCM groups. Capillary area density was increased in fetal jejunal villi of RES - OCM (p = 0.02). Vascular endothelial growth factor receptor 2 (VEGFR2) positivity ratio tended to be greater (p = 0.08) in villi and was less in the crypts (p = 0.02) of the RES + OCM group. Cell proliferation decreased (p = 0.02) in villi and crypts of fetal jejunal tissue from heifers fed the RES + OCM treatment compared with all groups and CON - OCM, respectively. Spatial cell density increased in RES - OCM compared with CON + OCM (p = 0.05). Combined, these data show OCM supplementation can increase expression of VEGFR2 in jejunal villi, which will promote maintenance of the microvascular beds, while at the same time decreasing small intestine weight and crypt cell proliferation.

11.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38407272

RESUMO

We hypothesized that restricted maternal nutrition and supplementation of one-carbon metabolites (OCM; methionine, folate, choline, and vitamin B12) would affect placental vascular development during early pregnancy. A total of 43 cows were bred, and 32 heifers successfully became pregnant with female calves, leading to the formation of four treatment groups: CON - OCM (n = 8), CON + OCM (n = 7), RES - OCM (n = 9), and RES + OCM (n = 8). The experimental design was a 2 × 2 factorial, with main factors of dietary intake affecting average daily gain: control (CON; 0.6 kg/d ADG) and restricted (RES; -0.23 kg/d ADG); and OCM supplementation (+OCM) in which the heifers were supplemented with rumen-protected methionine (7.4 g/d) and choline (44.4 g/d) and received weekly injections of 320 mg of folate and 20 mg of vitamin B12, or received no supplementation (-OCM; corn carrier and saline injections). Heifers were individually fed and randomly assigned to treatment at breeding (day 0). Placentomes were collected on day 63 of gestation (0.225 of gestation). Fluorescent staining with CD31 and CD34 combined with image analysis was used to determine the vascularity of the placenta. Images were analyzed for capillary area density (CAD) and capillary number density (CND). Areas evaluated included fetal placental cotyledon (COT), maternal placental caruncle (CAR), whole placentome (CAR + COT), intercotyledonary fetal membranes (ICOT, or chorioallantois), intercaruncular endometrium (ICAR), and endometrial glands (EG). Data were analyzed with the GLM procedure of SAS, with heifer as the experimental unit and significance at P ≤ 0.05 and a tendency at P > 0.05 and P < 0.10. Though no gain × OCM interactions existed (P ≥ 0.10), OCM supplementation increased (P = 0.01) CAD of EG, whereas nutrient restriction tended (P < 0.10) to increase CAD of ICOT and CND of COT. Additionally, there was a gain × OCM interaction (P < 0.05) for CAD within the placentome and ICAR, such that RES reduced and supplementation of RES with OCM restored CAD. These results indicate that maternal rate of gain and OCM supplementation affected placental vascularization (capillary area and number density), which could affect placental function and thus the efficiency of nutrient transfer to the fetus during early gestation.


In cow­calf production, periods of poor forage availability or quality can result in nutrient restriction during pregnancy. Previous studies have shown that even moderate maternal feed restriction during pregnancy, including very early in pregnancy, has profound effects on fetal and placental development, potentially having lasting impacts on calf growth and body composition later in life. One-carbon metabolites (OCM) in the diet are biomolecules required for methylation reactions and participate in the regulation of gene expression. Our objective was to evaluate the effects of nutrient restriction and OCM supplementation (specifically methionine, choline, folate, and vitamin B12) on placental vascular development during early pregnancy. Proper placental vascular development is necessary for healthy pregnancy outcomes, reflected by normal birth weight and healthy offspring. Our results indicated that maternal rate of gain and OCM supplementation affect placental vascularization, which could affect placental function and thereby fetal development throughout gestation. In the context of beef cattle production, our study sheds light on strategies that could enhance placental vascular development during early pregnancy. However, it is essential to recognize the nuances in our data, highlighting the need for further research to fully comprehend these intricate processes.


Assuntos
Complexo Ferro-Dextran , Placenta , Feminino , Gravidez , Animais , Bovinos , Melhoramento Vegetal , Metionina/farmacologia , Racemetionina , Carbono , Colina/farmacologia , Suplementos Nutricionais , Ácido Fólico/farmacologia , Vitamina B 12/farmacologia , Dieta/veterinária
12.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38770669

RESUMO

The objective of this study was to determine the dose-dependent response of one-carbon metabolite (OCM: methionine, choline, folate, and vitamin B12) supplementation on heifer dry matter intake on fixed gain, organ mass, hematology, cytokine concentration, pancreatic and jejunal enzyme activity, and muscle hydrogen peroxide production. Angus heifers (n = 30; body weight [BW] = 392.6 ±â€…12.6 kg) were individually fed and assigned to one of five treatments: 0XNEG: total mixed ration (TMR) and saline injections at days 0 and 7 of the estrous cycle, 0XPOS: TMR, rumen-protected methionine (MET) fed at 0.08% of the diet dry matter, rumen-protected choline (CHOL) fed at 60 g/d, and saline injections at days 0 and 7, 0.5X: TMR, MET, CHOL, 5-mg B12, and 80-mg folate injections at days 0 and 7, 1X: TMR, MET CHOL, 10-mg vitamin B12, and 160-mg folate at days 0 and 7, and 2X: TMR, MET, CHOL, 20-mg vitamin B12, and 320-mg folate at days 0 and 7. All heifers were estrus synchronized but not bred, and blood samples were collected on days 0, 7, and at slaughter (day 14) during which tissues were collected. By design, heifer ADG did not differ (P = 0.96). Spleen weight and uterine weight were affected cubically (P = 0.03) decreasing from 0XPOS to 0.5X. Ovarian weight decreased linearly (P < 0.01) with increasing folate and B12 injection. Hemoglobin and hematocrit percentage were decreased (P < 0.01) in the 0.5X treatment compared with all other treatments. Plasma glucose, histotroph protein, and pancreatic α-amylase were decreased (P ≤ 0.04) in the 0.5X treatment. Heifers on the 2X treatment had greater pancreatic α-amylase compared with 0XNEG and 0.5X treatment. Interleukin-6 in plasma tended (P = 0.08) to be greater in the 0XPOS heifers compared with all other treatments. Lastly, 0XPOS-treated heifers had reduced (P ≤ 0.07) hydrogen peroxide production in muscle compared with 0XNEG heifers. These data imply that while certain doses of OCM do not improve whole animal physiology, OCM supplementation doses that disrupt one-carbon metabolism, such as that of the 0.5X treatment, can induce a negative systemic response that results in negative effects in both the dam and the conceptus during early gestation. Therefore, it is necessary to simultaneously establish an optimal OCM dose that increases circulating concentrations for use by the dam and the conceptus, while avoiding potential negative side effects of a disruptive OCM, to evaluate the long-term impacts of OCM supplementation of offspring programming.


The feeding of one-carbon metabolites (including methionine and B vitamins) has been shown to improve fetal growth and milk production in species such as mice, sheep, and dairy cattle. Extending this to beef cattle around the time of breeding is a growing area of research. Our group previously determined that one-carbon metabolite supplementation to beef heifers altered the abundance of circulating methionine-folate cycle intermediates in a dose-dependent manner. Therefore, we aimed to determine a whole-body response to one-carbon metabolite supplementation in heifers by measuring the effects on specific physiological systems as well as a total systemic response. We determined that treatments that negatively altered the methionine-folate cycle yielded a fundamental negative whole-body response to supplementation.


Assuntos
Ração Animal , Colina , Dieta , Suplementos Nutricionais , Ácido Fólico , Metionina , Vitamina B 12 , Animais , Feminino , Bovinos/fisiologia , Bovinos/metabolismo , Metionina/administração & dosagem , Metionina/metabolismo , Metionina/farmacologia , Dieta/veterinária , Vitamina B 12/administração & dosagem , Vitamina B 12/metabolismo , Vitamina B 12/farmacologia , Ácido Fólico/administração & dosagem , Ácido Fólico/metabolismo , Ração Animal/análise , Colina/administração & dosagem , Colina/metabolismo
13.
Animals (Basel) ; 13(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958127

RESUMO

ß-Defensins are cationic antimicrobial peptides (AMPs) that play an important role in the innate immune defense of bovines. They are constitutively expressed in mammary glands and induced differently in response to pathogens. Their expression is influenced by various factors, including hormones, plant-derived compounds, and dietary energy imbalance. The toll-like receptors (TLRs)/nuclear factor-kappa B (NF-κB) pathway plays a crucial role in ß-defensin induction, while alternative pathways such as mitogen-activated protein kinase (MAPK) and epigenetic regulation also make substantial contributions. ß-Defensins exhibit bactericidal activity against a wide range of pathogens, including two major mastitis pathogens, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), primarily through membrane disruption. ß-Defensins have low cytotoxicity to host cells and demonstrate immunomodulatory properties, and pathogens also display minimal resistance to these AMPs. Given the increasing concern in antimicrobial resistance, the potential of ß-defensins as natural antimicrobials has garnered considerable attention. This article provides an overview of the characteristics of bovine ß-defensins, their expression pathways, their mode of action, and factors influencing their expression in the mammary glands of cattle. Additionally, it identifies the current gaps in research within this field and suggests areas that require further investigation. Understanding the regulation and function of ß-defensins offers valuable insights to develop effective strategies for strengthening the immune system of mammary glands, reducing the reliance on synthetic antimicrobials, and explore novel natural antimicrobial alternatives.

14.
Metabolites ; 13(5)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37233634

RESUMO

Maternal mineral nutrition during the critical phases of fetal development may leave lifetime impacts on the productivity of an individual. Most research within the developmental origins of the health and disease (DOHaD) field is focused on the role of macronutrients in the genome function and programming of the developing fetus. On the other hand, there is a paucity of knowledge about the role of micronutrients and, specifically, minerals in regulating the epigenome of livestock species, especially cattle. Therefore, this review will address the effects of the maternal dietary mineral supply on the fetal developmental programming from the embryonic to the postnatal phases in cattle. To this end, we will draw a parallel between findings from our cattle model research with data from model animals, cell lines, and other livestock species. The coordinated role and function of different mineral elements in feto-maternal genomic regulation underlies the establishment of pregnancy and organogenesis and, ultimately, affects the development and functioning of metabolically important tissues, such as the fetal liver, skeletal muscle, and, importantly, the placenta. Through this review, we will delineate the key regulatory pathways involved in fetal programming based on the dietary maternal mineral supply and its crosstalk with epigenomic regulation in cattle.

15.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37129588

RESUMO

Adequate maternal nutrition is key for proper fetal development and epigenetic programming. One-carbon metabolites (OCM), including vitamin B12, folate, choline, and methionine, play a role in epigenetic mechanisms associated with developmental programming. This study investigated the presence of B12 and folate in maternal serum, allantoic fluid (ALF), and amniotic fluid (AMF), as well as how those concentrations in all three fluids correlate to the concentrations of methionine-folate cycle intermediates in heifers receiving either a control (CON) or restricted (RES) diet for the first 50 d of gestation and fetal hepatic gene expression for methionine-folate cycle enzymes. Angus cross heifers (n = 43) were estrus synchronized, bred via artificial insemination with semen from a single sire, and randomly assigned to one of two nutrition treatments (CON = 20, RES = 23). Heifers were ovariohysterectomized on either day 16 (n = 14), 34 (n = 15), or 50 of gestation (n = 14), where samples of maternal serum (n = 42), ALF (n = 29), and AMF (n = 11) were collected and analyzed for concentrations of folate and B12. Concentrations of B12 and folate in ALF were greater (P < 0.05) in RES compared to CON. For ALF, folate concentrations were also greater (P < 0.01) on day 34 compared to day 50. There was a significant (P = 0.04) nutrition × fluid interaction for B12 concentrations where concentrations were greatest in restricted ALF, intermediate in control ALF, and lowest in CON and RES serum and AMF. Folate concentrations were greatest (P < 0.01) in ALF, intermediate in serum, and lowest in AMF. Additionally, positive correlations (P < 0.05) were found between ALF and AMF folate concentrations and AMF concentrations of methionine, serine, and glycine. Negative correlations (P < 0.05) between AMF folate and serum homocysteine were also observed. Both positive and negative correlations (P < 0.05) depending on the fluid evaluated were found between B12 and methionine, serine, and glycine concentrations. There was a downregulation (P = 0.05) of dihydrofolate reductase and upregulation (P = 0.03) of arginine methyltransferase 7 gene expression in RES fetal liver samples compared with CON fetal liver on day 50. Combined, these data show restricted maternal nutrition results in increased B12 and folate concentrations present in fetal fluids, and increased expression of genes for enzymes within one-carbon metabolism.


When pregnant cattle have restricted access to feed or specific nutrients, calf development can be affected, and the degree of impairment depends, at least partially, on timing, duration, and severity of the limitations. A biochemical pathway present in cells that can be affected by limited nutrition is one-carbon metabolism. This pathway is related to epigenetics, which regulates gene expression or the turning on and off of genes. Two important vitamins in one-carbon metabolism are vitamins B12 and folate. By understanding the amounts of those vitamins available to the developing calf, we can gain better insight into the regulation and potential avenues of improvement of calf growth and development. In this study, we found a nutrient restricted maternal diet increased the amount of B12 and folate in calf allantoic and amniotic fluids. We also found that folate and B12 were correlated to the presence of other nutrients in serum, allantoic fluid, and amniotic fluid. In addition, we found that a protein methylating gene in one-carbon metabolism had increased expression in calves from heifers receiving limited nutrition. This study is an important step in understanding how the nutrients available to a pregnant heifer during gestation affects nutrients available to the conceptus.


Assuntos
Ácido Fólico , Metionina , Gravidez , Animais , Bovinos , Feminino , Vitamina B 12 , Dieta/veterinária , Racemetionina , Fígado/metabolismo , Glicina , Serina , Carbono/metabolismo
16.
Microbiol Spectr ; 11(6): e0273223, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37921486

RESUMO

IMPORTANCE: Emerging evidence suggests that microbiome-targeted approaches may provide a novel opportunity to reduce the incidence of reproductive failures in cattle. To develop such microbiome-based strategies, one of the first logical steps is to identify reproductive microbiome features related to fertility and to isolate the fertility-associated microbial species for developing a future bacterial consortium that could be administered before breeding to enhance pregnancy outcomes. Here, we characterized the vaginal and uterine microbiota in beef cattle that became pregnant or remained open via artificial insemination and identified microbiota features associated with fertility. We compared similarities between vaginal and uterine microbiota and between heifers and cows. Using culturing, we provided new insights into the culturable fraction of the vaginal and uterine microbiota and their antimicrobial resistance. Overall, our findings will serve as an important basis for future research aimed at harnessing the vaginal and uterine microbiome for improved cattle fertility.


Assuntos
Microbiota , Reprodução , Gravidez , Bovinos , Animais , Feminino , Vagina/microbiologia , Inseminação Artificial/veterinária , Fertilidade
17.
Animals (Basel) ; 13(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36830387

RESUMO

During pregnancy, the fetus relies on the dam for its nutrient supply. Nutritional stimuli during fetal organ development can program hepatic metabolism and function. Herein, we investigated the role of vitamin and mineral supplementation (VTM or NoVTM-at least 71 days pre-breeding to day 83 of gestation) and rate of weight gain (low (LG) or moderate (MG)-from breeding to day 83) on the fetal liver transcriptome and the underlying biological pathways. Crossbred Angus beef heifers (n = 35) were randomly assigned to one of four treatments in a 2 × 2 factorial design (VTM_LG, VTM_MG, NoVTM_LG, and NoVTM_MG). Gene expression was measured with RNA-Seq in fetal livers collected on day 83 ± 0.27 of gestation. Our results show that vitamin and mineral supplementation and rate of weight gain led to the differential expression of hepatic genes in all treatments. We identified 591 unique differentially expressed genes across all six VTM-gain contrasts (FDR ≤ 0.1). Over-represented pathways were related to energy metabolism, including PPAR and PI3K-Akt signaling pathways, as well as lipid metabolism, mineral transport, and amino acid transport. Our findings suggest that periconceptual maternal nutrition affects fetal hepatic function through altered expression of energy- and lipid-related genes.

18.
Metabolites ; 13(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36837794

RESUMO

Herein, we evaluated the hepatic lipid metabolic profiles of bovine fetuses in response to maternal vitamin and mineral supplementation (VMSUP; supplemented (VTM) or not (NoVTM)) and two different rates of gain (GAIN; low gain (LG), 0.28 kg/d, or moderate gain (MG), 0.79 kg/d). Crossbred Angus heifers (n = 35; initial BW = 359.5 ± 7.1 kg) were randomly assigned to a 2 × 2 factorial arrangement, resulting in the following treatment combinations: NoVTM-LG (n = 9), NoVTM-MG (n = 9), VTM-LG (n = 9), and VTM-MG (n = 8). Heifers received their treatments until d 83 of gestation, when they were ovariohysterectomized. Fetuses were harvested and liver samples were analyzed via ultrahigh-performance liquid chromatography-tandem mass spectroscopy to characterize lipid profiles and abundances. We identified 374 biochemicals/metabolites belonging to 57 sub-pathways of the lipid metabolism super-pathway. The majority of the biochemicals/metabolites (n = 152) were significantly affected by the main effect of GAIN. Maternal moderate rates of gain resulted in greater abundances (p ≤ 0.0001) of ω-3 fatty acids (eicosapentaenoate, docosapentaenoate, and docosahexaenoate) and lower abundances (p ≤ 0.0001) of ω-6 fatty acids. Further, MG resulted in the accumulation of several diacylglycerols and depletion of the majority of the monoacylglycerols. Concentrations of nearly all acylcarnitines (p ≤ 0.03) were decreased in VTM-LG fetal livers compared to all other treatment combinations, indicating a greater rate of complete oxidation of fatty acids. Levels of secondary bile acids were impacted by VMSUP, being greater (p ≤ 0.0048) in NoVTM than in VTM fetal livers. Moreover, NoVTM combined with lower rate of gain resulted in greater concentrations of most secondary bile acid biochemicals/metabolites. These data indicate that maternal diet influenced and altered fetal hepatic lipid composition in the first trimester of gestation. Maternal body weight gain exerted a greater influence on fetal lipid profiles than vitamin and mineral supplementation. Specifically, lower rate of gain (0.28 kg/d) resulted in an increased abundance of the majority of the biochemicals/metabolites identified in this study.

19.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36566452

RESUMO

The objective of this study was to determine the dose of folate and vitamin B12 in beef heifers fed rumen protected methionine and choline required to maintain increased B12 levels and intermediates of the methionine-folate cycle in circulation. Angus heifers (n = 30; BW = 392.6 ±â€…12.6 kg) were individually fed and assigned to one of five treatments: 0XNEG: Total mixed ration (TMR) and saline injections at day 0 and 7 of the estrous cycle, 0XPOS: TMR, rumen protected methionine (MET) fed at 0.08% of the diet DM, rumen protected choline (CHOL) fed at 60 g/d, and saline injections at day 0 and 7, 0.5X: TMR, MET, CHOL, 5 mg B12, and 80 mg folate at day 0 and 7, 1X: TMR, MET CHOL, 10 mg vitamin B12, and 160 mg folate at day 0 and 7, and 2X: TMR, MET, CHOL, 20 mg B12, and 320 mg folate at day 0 and 7. All heifers were estrus synchronized but not bred, and blood was collected on day 0, 2, 5, 7, 9, 12, and 14 of a synchronized estrous cycle. Heifers were slaughtered on day 14 of the estrous cycle for liver collection. Serum B12 concentrations were greater in the 0.5X, 1X, and 2X, compared with 0XNEG and 0XPOS on all days after treatment initiation (P < 0.0001). Serum folate concentrations were greater for the 2X treatment at day 5, 7, and 9 of the cycle compared with all other treatments (P ≤ 0.05). There were no differences (P ≥ 0.19) in hepatic methionine-cycle or choline analyte concentrations by treatment. Concentrations of hepatic folate cycle intermediates were always greater (P ≤ 0.04) in the 2X treatment compared with the 0XNEG and 0XPOS heifers. Serum methionine was greater (P = 0.04) in the 0.5X and 2X heifers compared with 0XNEG, and S-adenosylhomocysteine (SAH) tended (P = 0.06) to be greater in the 0.5X heifers and the S-adenosylmethionine (SAM):SAH ratio was decreased (P = 0.05) in the 0.5X treatment compared with the 0XNEG, 0XPOS, and 2X heifers. The hepatic transcript abundance of MAT2A and MAT2B were decreased (P ≤ 0.02) in the 0.5X heifers compared with the 0XNEG, 0XPOS, and 2X heifers. These data support that beef heifers fed rumen protected methionine and choline require 20 mg B12 and 320 mg folate once weekly to maintain increased concentrations of B12 and folate in serum. Furthermore, these data demonstrate that not all supplementation levels are equal in providing positive responses, and that some levels, such as the 0.5X, may result in a stoichiometric imbalance in the one-carbon metabolism pathway that results in a decreased SAM:SAH ratio.


The strategic inclusion of one-carbon metabolites, which include vitamins and minerals that are found in human prenatal vitamins, to beef cattle feeding and management protocols during the periconceptual period (the time around breeding) is a novel concept. Therefore, this study aimed to identify the feeding and injection doses of one-carbon metabolites in beef heifers to maintain increased circulating concentrations of one-carbon metabolites for use as a model from which other studies could base their treatments on. We determined that daily feeding of methionine and choline at 0.08% of dry matter and 60 g/d, respectively, and administration of vitamin B12 and folate at 20 mg and 320 mg once per week, respectively resulted in sustained elevated concentrations of one-carbon metabolites.


Assuntos
Ácido Fólico , Metionina , Bovinos , Feminino , Animais , Ácido Fólico/metabolismo , Carbono/metabolismo , Racemetionina/metabolismo , Fígado/metabolismo , Ciclo Estral , Colina/metabolismo , S-Adenosilmetionina/metabolismo , Suplementos Nutricionais , Rúmen/metabolismo
20.
Data Brief ; 48: 109173, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37180878

RESUMO

Herein, we present a dataset based on the RNA-Seq analysis of liver tissue from bovine female fetuses at day 83 of gestation. The findings were reported in the main article, "Periconceptual maternal nutrition affects fetal liver programming of energy- and lipid-related genes" [1]. These data were generated to investigate the effects of periconceptual maternal vitamin and mineral supplementation and rates of body weight gain on the transcript abundance of genes associated with fetal hepatic metabolism and function. To this end, crossbred Angus beef heifers (n = 35) were randomly assigned to 1 of 4 treatments in a 2 × 2 factorial design. The main effects tested were vitamin and mineral supplementation (VTM or NoVTM - at least 71 days pre-breeding to day 83 of gestation) and rate of weight gain (low (LG - 0.28 kg/d) or moderate (MG - 0.79 kg/d) - from breeding to day 83). The fetal liver was collected on day 83 ± 0.27 of gestation. After total RNA isolation and quality control, strand-specific RNA libraries were prepared and sequenced on the Illumina® NovaSeq 6000 platform to generate paired-end 150-bp reads. After read mapping and counting, differential expression analysis was performed with edgeR. We identified 591 unique differentially expressed genes across all six vitamin-gain contrasts (FDR ≤ 0.1). To our knowledge, this is the first dataset investigating the fetal liver transcriptome in response to periconceptual maternal vitamin and mineral supplementation and/or the rate of weight gain. The data described in this article provides genes and molecular pathways differentially programming liver development and function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA