Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Cell ; 186(10): 2062-2077.e17, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37075755

RESUMO

Entry of enveloped viruses into cells is mediated by viral fusogenic proteins that drive membrane rearrangements needed for fusion between viral and target membranes. Skeletal muscle development also requires membrane fusion events between progenitor cells to form multinucleated myofibers. Myomaker and Myomerger are muscle-specific cell fusogens but do not structurally or functionally resemble classical viral fusogens. We asked whether the muscle fusogens could functionally substitute for viral fusogens, despite their structural distinctiveness, and fuse viruses to cells. We report that engineering of Myomaker and Myomerger on the membrane of enveloped viruses leads to specific transduction of skeletal muscle. We also demonstrate that locally and systemically injected virions pseudotyped with the muscle fusogens can deliver µDystrophin to skeletal muscle of a mouse model of Duchenne muscular dystrophy and alleviate pathology. Through harnessing the intrinsic properties of myogenic membranes, we establish a platform for delivery of therapeutic material to skeletal muscle.


Assuntos
Bioengenharia , Lentivirus , Proteínas de Membrana , Músculo Esquelético , Distrofia Muscular de Duchenne , Animais , Camundongos , Fusão Celular , Fusão de Membrana , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/virologia , Bioengenharia/métodos , Distrofia Muscular de Duchenne/terapia , Modelos Animais de Doenças , Tropismo Viral , Lentivirus/genética
3.
Biochem Biophys Res Commun ; 727: 150315, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38950493

RESUMO

In response to mechanical loading of bone, osteocytes produce nitric oxide (NO•) and decrease sclerostin protein expression, leading to an increase in bone mass. However, it is unclear whether NO• production and sclerostin protein loss are mechanistically linked, and, if so, the nature of their hierarchical relationship within an established mechano-transduction pathway. Prior work showed that following fluid-shear stress (FSS), osteocytes produce NOX2-derived reactive oxygen species, inducing calcium (Ca2+) influx. Increased intracellular Ca2+ results in calcium-calmodulin dependent protein kinase II (CaMKII) activation, which regulates the lysosomal degradation of sclerostin protein. Here, we extend our discoveries, identifying NO• as a regulator of sclerostin degradation downstream of mechano-activated CaMKII. Pharmacological inhibition of nitric oxide synthase (NOS) activity in Ocy454 osteocyte-like cells prevented FSS-induced sclerostin protein loss. Conversely, short-term treatment with a NO• donor in Ocy454 cells or isolated murine long bones was sufficient to induce the rapid decrease in sclerostin protein abundance, independent of changes in Sost gene expression. Ocy454 cells express all three NOS genes, and transfection with siRNAs targeting eNOS/Nos3 was sufficient to prevent FSS-induced loss of sclerostin protein, while siRNAs targeting iNOS/Nos2 mildly blunted the loss of sclerostin but did not reach statistical significance. Similarly, siRNAs targeting both eNOS/Nos3 and iNOS/Nos2 prevented FSS-induced NO• production. Together, these data show iNOS/Nos2 and eNOS/Nos3 are the primary producers of FSS-dependent NO•, and that NO• is necessary and sufficient for sclerostin protein control. Further, selective inhibition of elements within this sclerostin-controlling mechano-transduction pathway indicated that NO• production occurs downstream of CaMKII activation. Targeting Camk2d and Camk2g with siRNA in Ocy454 cells prevented NO• production following FSS, indicating that CaMKII is needed for NO• production. However, NO• donation (1min) resulted in a significant increase in CaMKII activation, suggesting that NO• may have the ability to tune CaMKII response. Together, these data support that CaMKII is necessary for, and may be modulated by NO•, and that the interaction of these two signals is involved in the control of sclerostin protein abundance, consistent with a role in bone anabolic responses.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Óxido Nítrico , Osteócitos , Óxido Nítrico/metabolismo , Animais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Osteócitos/metabolismo , Camundongos , Estresse Mecânico , Camundongos Endogâmicos C57BL , Mecanotransdução Celular , Linhagem Celular , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(42): 26008-26019, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33020304

RESUMO

Changes in the mechanical microenvironment and mechanical signals are observed during tumor progression, malignant transformation, and metastasis. In this context, understanding the molecular details of mechanotransduction signaling may provide unique therapeutic targets. Here, we report that normal breast epithelial cells are mechanically sensitive, responding to transient mechanical stimuli through a two-part calcium signaling mechanism. We observed an immediate, robust rise in intracellular calcium (within seconds) followed by a persistent extracellular calcium influx (up to 30 min). This persistent calcium was sustained via microtubule-dependent mechanoactivation of NADPH oxidase 2 (NOX2)-generated reactive oxygen species (ROS), which acted on transient receptor potential cation channel subfamily M member 8 (TRPM8) channels to prolong calcium signaling. In contrast, the introduction of a constitutively active oncogenic KRas mutation inhibited the magnitude of initial calcium signaling and severely blunted persistent calcium influx. The identification that oncogenic KRas suppresses mechanically-induced calcium at the level of ROS provides a mechanism for how KRas could alter cell responses to tumor microenvironment mechanics and may reveal chemotherapeutic targets for cancer. Moreover, we find that expression changes in both NOX2 and TRPM8 mRNA predict poor clinical outcome in estrogen receptor (ER)-negative breast cancer patients, a population with limited available treatment options. The clinical and mechanistic data demonstrating disruption of this mechanically-activated calcium pathway in breast cancer patients and by KRas activation reveal signaling alterations that could influence cancer cell responses to the tumor mechanical microenvironment and impact patient survival.


Assuntos
Mama/patologia , Cálcio/metabolismo , Mecanotransdução Celular , NADPH Oxidase 2/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canais de Cátion TRPM/metabolismo , Mama/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , Microtúbulos/metabolismo , NADPH Oxidase 2/genética , Prognóstico , Proteínas Proto-Oncogênicas p21(ras)/genética , Taxa de Sobrevida , Canais de Cátion TRPM/genética , Microambiente Tumoral
5.
Connect Tissue Res ; 62(1): 15-23, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32777957

RESUMO

Purpose: Optogenetics is an emerging alternative to traditional electrical stimulation to initiate action potentials in activatable cells both ex vivo and in vivo. Optogenetics has been commonly used in mammalian neurons and more recently, it has been adapted for activation of cardiomyocytes and skeletal muscle. Therefore, the aim of this study was to evaluate the stimulation feasibility and sustain isometric muscle contraction and limit decay for an extended period of time (1s), using non-invasive transdermal light activation of skeletal muscle (triceps surae) in vivo. MATERIALS AND METHODS: We used inducible Cre recombination to target expression of Channelrhodopsin-2 (ChR2(H134R)-EYFP) in skeletal muscle (Acta1-Cre) in mice. Fluorescent imaging confirmed that ChR2 expression is localized in skeletal muscle and does not have specific expression in sciatic nerve branch, therefore, allowing for non-nerve mediated optical stimulation of skeletal muscle. We induced muscle contraction using transdermal exposure to blue light and selected 10 Hz stimulation after controlled optimization experiments to sustain prolonged muscle contraction. RESULTS: Increasing the stimulation frequency from 10 Hz to 40 Hz increased the muscle contraction decay during prolonged 1s stimulation, highlighting frequency dependency and importance of membrane repolarization for effective light activation. Finally, we showed that optimized pulsed optogenetic stimulation of 10 Hz resulted in comparable ankle torque and contractile functionality to that of electrical stimulation. CONCLUSIONS: Our results demonstrate the feasibility and repeatability of non-invasive optogenetic stimulation of muscle in vivo and highlight optogenetic stimulation as a powerful tool for non-invasive in vivo direct activation of skeletal muscle.


Assuntos
Contração Muscular , Optogenética , Animais , Channelrhodopsins/genética , Luz , Camundongos , Músculo Esquelético
6.
Basic Res Cardiol ; 115(6): 60, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32910221

RESUMO

Obscurin comprises a family of giant modular proteins that play key structural and regulatory roles in striated muscles. Immunoglobulin domains 58/59 (Ig58/59) of obscurin mediate binding to essential modulators of muscle structure and function, including canonical titin, a smaller splice variant of titin, termed novex-3, and phospholamban (PLN). Importantly, missense mutations localized within the obscurin-Ig58/59 region that affect binding to titins and/or PLN have been linked to the development of myopathy in humans. To elucidate the pathophysiological role of this region, we generated a constitutive deletion mouse model, Obscn-ΔIg58/59, that expresses obscurin lacking Ig58/59, and determined the consequences of this manipulation on cardiac morphology and function under conditions of acute stress and through the physiological process of aging. Our studies show that young Obscn-ΔIg58/59 mice are susceptible to acute ß-adrenergic stress. Moreover, sedentary Obscn-ΔIg58/59 mice develop left ventricular hypertrophy that progresses to dilation, contractile impairment, atrial enlargement, and arrhythmia as a function of aging with males being more affected than females. Experiments in ventricular cardiomyocytes revealed altered Ca2+ cycling associated with changes in the expression and/or phosphorylation levels of major Ca2+ cycling proteins, including PLN, SERCA2, and RyR2. Taken together, our work demonstrates that obscurin-Ig58/59 is an essential regulatory module in the heart and its deletion leads to age- and sex-dependent cardiac remodeling, ventricular dilation, and arrhythmia due to deregulated Ca2+ cycling.


Assuntos
Arritmias Cardíacas/enzimologia , Frequência Cardíaca , Hipertrofia Ventricular Esquerda/enzimologia , Miócitos Cardíacos/enzimologia , Proteínas Serina-Treonina Quinases/deficiência , Fatores de Troca de Nucleotídeo Guanina Rho/deficiência , Disfunção Ventricular Esquerda/enzimologia , Função Ventricular Esquerda , Remodelação Ventricular , Potenciais de Ação , Fatores Etários , Animais , Arritmias Cardíacas/genética , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/metabolismo , Feminino , Deleção de Genes , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Domínios de Imunoglobulina , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/patologia , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Comportamento Sedentário , Fatores Sexuais , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
7.
Am J Physiol Cell Physiol ; 317(1): C48-C57, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30995108

RESUMO

Mechanical forces regulate muscle development, hypertrophy, and homeostasis. Force-transmitting structures allow mechanotransduction at the sarcolemma, cytoskeleton, and nuclear envelope. There is growing evidence that Yes-associated protein (YAP) serves as a nuclear relay of mechanical signals and can induce a range of downstream signaling cascades. Dystrophin is a sarcolemma-associated protein, and its absence underlies the pathology in Duchenne muscular dystrophy. We tested the hypothesis that the absence of dystrophin in muscle would result in reduced YAP signaling in response to loading. Following in vivo contractile loading in muscles of healthy (wild-type; WT) mice and mice lacking dystrophin (mdx), we performed Western blots of whole and fractionated muscle homogenates to examine the ratio of phospho (cytoplasmic) YAP to total YAP and nuclear YAP, respectively. We show that in vivo contractile loading induced a robust increase in YAP expression and its nuclear localization in WT muscles. Surprisingly, in mdx muscles, active YAP expression was constitutively elevated and unresponsive to load. Results from qRT-PCR analysis support the hyperactivation of YAP in vivo in mdx muscles, as evidenced by increased gene expression of YAP downstream targets. In vitro assays of isolated myofibers plated on substrates with high stiffness showed YAP nuclear labeling for both genotypes, indicating functional YAP signaling in mdx muscles. We conclude that while YAP signaling can occur in the absence of dystrophin, dystrophic muscles have altered mechanotransduction, whereby constitutively active YAP results in a failure to respond to load, which could be attributed to the increased state of "pre-stress" with increased cytoskeletal and extracellular matrix stiffness.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ciclo Celular/metabolismo , Distrofina/deficiência , Mecanotransdução Celular , Contração Muscular , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/metabolismo , Transporte Ativo do Núcleo Celular , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular/genética , Modelos Animais de Doenças , Distrofina/genética , Camundongos Endogâmicos mdx , Músculo Esquelético/fisiopatologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/fisiopatologia , Fosforilação , Proteínas de Sinalização YAP
8.
FASEB J ; : fj201800624R, 2018 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-29874125

RESUMO

Myosin binding protein-C slow (sMyBP-C) comprises a family of accessory proteins in skeletal muscles that bind both myosin and actin filaments. Herein, we examined the role of sMyBP-C in adult skeletal muscles using in vivo gene transfer and clustered regularly interspaced short palindromic repeats technology to knock down all known sMyBP-C variants. Our findings, confirmed in two different skeletal muscles, demonstrated efficient knockdown (KD) of sMyBP-C (>70%) resulting in notably decreased levels of thick, but not thin, filament proteins ranging from ∼50% for slow and fast myosin to ∼20% for myomesin. Consistent with this, A bands were selectively distorted, and sarcomere length was significantly reduced. Contrary to earlier in vitro studies showing that addition of recombinant sMyBP-C slows down the formation of actomyosin crossbridges, our work demonstrates that KD of sMyBP-C in intact myofibers results in decreased contraction and relaxation kinetics under no-load conditions. Similarly, KD muscles develop markedly reduced twitch and tetanic force and contraction velocity. Taken together, our results show that sMyBP-C is essential for the regular organization and maintenance of myosin filaments into A bands and that its structural role precedes its ability to regulate actomyosin crossbridges.-Geist, J., Ward, C. W., Kontrogianni-Konstantopoulos, A. Structure before function: myosin binding protein-C slow is a structural protein with regulatory properties.

9.
Hum Mol Genet ; 23(12): 3180-8, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24452336

RESUMO

Development of novel therapeutics requires good animal models of disease. Disorders for which good animal models do not exist have very few drugs in development or clinical trial. Even where there are accepted, albeit imperfect models, the leap from promising preclinical drug results to positive clinical trials commonly fails, including in disorders of skeletal muscle. The main alternative model for early drug development, tissue culture, lacks both the architecture and, usually, the metabolic fidelity of the normal tissue in vivo. Herein, we demonstrate the feasibility and validity of human to mouse xenografts as a preclinical model of myopathy. Human skeletal muscle biopsies transplanted into the anterior tibial compartment of the hindlimbs of NOD-Rag1(null) IL2rγ(null) immunodeficient host mice regenerate new vascularized and innervated myofibers from human myogenic precursor cells. The grafts exhibit contractile and calcium release behavior, characteristic of functional muscle tissue. The validity of the human graft as a model of facioscapulohumeral muscular dystrophy is demonstrated in disease biomarker studies, showing that gene expression profiles of xenografts mirror those of the fresh donor biopsies. These findings illustrate the value of a new experimental model of muscle disease, the human muscle xenograft in mice, as a feasible and valid preclinical tool to better investigate the pathogenesis of human genetic myopathies and to more accurately predict their response to novel therapeutics.


Assuntos
Marcadores Genéticos , Xenoenxertos/fisiologia , Músculo Esquelético/transplante , Distrofia Muscular Facioescapuloumeral/cirurgia , Animais , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos NOD , Músculo Esquelético/patologia , Distrofia Muscular Facioescapuloumeral/patologia
10.
Cell Mol Life Sci ; 72(1): 153-64, 2015 01.
Artigo em Inglês | MEDLINE | ID: mdl-24947322

RESUMO

Duchenne muscular dystrophy (DMD) is a devastating neuromuscular disease in which weakness, increased susceptibility to muscle injury, and inadequate repair underlie the pathology. While most attention has focused within the muscle fiber, we recently demonstrated significant alterations in the neuromuscular junction (NMJ) morphology and resulting neuromuscular transmission failure (NTF) 24 h after injury in mdx mice (murine model for DMD). Here we determine the contribution of NMJ morphology and NTF to the recovery of muscle contractile function post-injury. NMJ morphology and NTF rates were assessed day 0 (immediately after injury) and days 1, 7, 14 and 21 after quadriceps injury. Eccentric injury of the quadriceps resulted in a significant loss of maximal torque in both WT (39 ± 6 %) and mdx (76 ± 8 %) with a full recovery in WT by day 7 and in mdx by day 21. Post-injury alterations in NMJ morphology and NTF were found only in mdx, were limited to days 0 and 1, and were independent of changes in MuSK or AChR expression. Such early changes at the NMJ after injury are consistent with mechanical disruption rather than newly forming NMJs. Furthermore, we show that the dense microtubule network that underlies the NMJ is significantly reduced and disorganized in mdx compared to WT. These structural changes at the NMJ may play a role in the increased NMJ disruption and the exaggerated loss of nerve-evoked muscle force seen after injury to dystrophic muscles.


Assuntos
Distrofina/fisiologia , Distrofia Muscular de Duchenne/patologia , Junção Neuromuscular/lesões , Junção Neuromuscular/metabolismo , Regeneração/fisiologia , Animais , Western Blotting , Células Cultivadas , Imunofluorescência , Imunoprecipitação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Contração Muscular , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Junção Neuromuscular/fisiopatologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores Colinérgicos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
Proc Natl Acad Sci U S A ; 110(51): 20831-6, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24302765

RESUMO

Dysferlinopathies, most commonly limb girdle muscular dystrophy 2B and Miyoshi myopathy, are degenerative myopathies caused by mutations in the DYSF gene encoding the protein dysferlin. Studies of dysferlin have focused on its role in the repair of the sarcolemma of skeletal muscle, but dysferlin's association with calcium (Ca(2+)) signaling proteins in the transverse (t-) tubules suggests additional roles. Here, we reveal that dysferlin is enriched in the t-tubule membrane of mature skeletal muscle fibers. Following experimental membrane stress in vitro, dysferlin-deficient muscle fibers undergo extensive functional and structural disruption of the t-tubules that is ameliorated by reducing external [Ca(2+)] or blocking L-type Ca(2+) channels with diltiazem. Furthermore, we demonstrate that diltiazem treatment of dysferlin-deficient mice significantly reduces eccentric contraction-induced t-tubule damage, inflammation, and necrosis, which resulted in a concomitant increase in postinjury functional recovery. Our discovery of dysferlin as a t-tubule protein that stabilizes stress-induced Ca(2+) signaling offers a therapeutic avenue for limb girdle muscular dystrophy 2B and Miyoshi myopathy patients.


Assuntos
Sinalização do Cálcio , Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Estresse Fisiológico , Animais , Anti-Hipertensivos/farmacologia , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo L/metabolismo , Membrana Celular/patologia , Diltiazem/farmacologia , Disferlina , Proteínas de Membrana/genética , Camundongos , Camundongos Mutantes , Contração Muscular/efeitos dos fármacos , Contração Muscular/genética , Fibras Musculares Esqueléticas/patologia , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/patologia , Necrose/genética , Necrose/metabolismo , Necrose/patologia
12.
J Physiol ; 593(11): 2479-97, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25854148

RESUMO

KEY POINTS: Smad7 is an intracellular antagonist of transforming growth factor-ß signalling pathways and modulates muscle growth in vivo. Loss of Smad7 results in decreased muscle mass, reduced force generation, fibre type switching from glycolytic towards oxidative type and delayed recovery from injury. Upregulated Smad2/3 signalling in Smad7(-/-) muscle results in reduced myoblast proliferation and differentiation. Smad7 is an important regulator of muscle growth and may be a potential intracellular therapeutic target for muscle disorders. ABSTRACT: The transforming growth factor-ß (TGF-ß) family of growth factors plays an essential role in mediating cellular growth and differentiation. Myostatin is a muscle-specific member of the TGF-ß superfamily and a negative regulator of muscle growth. Myostatin inhibitors are currently being pursued as therapeutic options for muscle disorders. Smad7 inhibits intracellular myostatin signalling via Smad2/3, and thus presents a means of regulating myostatin and potentiating muscle growth. We investigated the functional loss of Smad7 on muscle in vivo by examining muscle growth and differentiation in mice deficient in Smad7 (Smad7(-/-) ). Smad7(-/-) mice showed reduced muscle mass, hypotrophy and hypoplasia of muscle fibres, as well as an increase in oxidative fibre types. Examination of muscle strength showed reduced force generation in vivo and ex vivo compared to wild-type controls. Analysis of muscle regeneration showed a delay in recovery, probably as a result of decreased activation, proliferation and differentiation of satellite cells, as confirmed in vitro. Additionally, myostatin expression was upregulated in Smad7(-/-) muscle. Our findings suggest that increased Smad2/3 signalling in the absence of Smad7 inhibition impedes muscle growth and regeneration. Taken together, our experiments demonstrate that Smad7 is an important mediator of muscle growth in vivo. Our studies enhance our understanding of in vivo TGF-ß pathway modulation and suggest that Smad7 may be an important therapeutic target for muscle disorders.


Assuntos
Desenvolvimento Muscular , Músculo Esquelético/crescimento & desenvolvimento , Proteína Smad7/genética , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Feminino , Masculino , Camundongos Knockout , Força Muscular , Músculo Esquelético/citologia , Músculo Esquelético/lesões , Mioblastos/citologia , Regeneração , Proteína Smad7/fisiologia
13.
Biophys J ; 107(6): 1289-301, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25229137

RESUMO

Existing theory suggests that mitochondria act as significant, dynamic buffers of cytosolic calcium ([Ca(2+)]i) in heart. These buffers can remove up to one-third of the Ca(2+) that enters the cytosol during the [Ca(2+)]i transients that underlie contractions. However, few quantitative experiments have been presented to test this hypothesis. Here, we investigate the influence of Ca(2+) movement across the inner mitochondrial membrane during both subcellular and global cellular cytosolic Ca(2+) signals (i.e., Ca(2+) sparks and [Ca(2+)]i transients, respectively) in isolated rat cardiomyocytes. By rapidly turning off the mitochondria using depolarization of the inner mitochondrial membrane potential (ΔΨm), the role of the mitochondria in buffering cytosolic Ca(2+) signals was investigated. We show here that rapid loss of ΔΨm leads to no significant changes in cytosolic Ca(2+) signals. Second, we make direct measurements of mitochondrial [Ca(2+)] ([Ca(2+)]m) using a mitochondrially targeted Ca(2+) probe (MityCam) and these data suggest that [Ca(2+)]m is near the [Ca(2+)]i level (∼100 nM) under quiescent conditions. These two findings indicate that although the mitochondrial matrix is fully buffer-capable under quiescent conditions, it does not function as a significant dynamic buffer during physiological Ca(2+) signaling. Finally, quantitative analysis using a computational model of mitochondrial Ca(2+) cycling suggests that mitochondrial Ca(2+) uptake would need to be at least ∼100-fold greater than the current estimates of Ca(2+) influx for mitochondria to influence measurably cytosolic [Ca(2+)] signals under physiological conditions. Combined, these experiments and computational investigations show that mitochondrial Ca(2+) uptake does not significantly alter cytosolic Ca(2+) signals under normal conditions and indicates that mitochondria do not act as important dynamic buffers of [Ca(2+)]i under physiological conditions in heart.


Assuntos
Sinalização do Cálcio , Mitocôndrias Cardíacas/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Transporte Biológico , Citosol/metabolismo , Ventrículos do Coração/citologia , Modelos Biológicos , Miócitos Cardíacos/citologia , Ratos , Espécies Reativas de Oxigênio/metabolismo
14.
BMC Neurosci ; 15: 24, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24524276

RESUMO

BACKGROUND: Age is considered a primary risk factor for neurodegenerative diseases including Alzheimer's disease (AD). It is also now well understood that mitochondrial function declines with age. Mitochondrial deficits have been previously assessed in brain from both human autopsy tissue and disease-relevant transgenic mice. Recently it has been recognized that abnormalities of muscle may be an intrinsic aspect of AD and might contribute to the pathophysiology. However, deficits in mitochondrial function have yet to be clearly assessed in tissues outside the central nervous system (CNS). In the present study, we utilized a well-characterized AD-relevant transgenic mouse strain to assess mitochondrial respiratory deficits in both brain and muscle. In addition to mitochondrial function, we assessed levels of transgene-derived amyloid precursor protein (APP) in homogenates isolated from brain and muscle of these AD-relevant animals. RESULTS: We now demonstrate that skeletal muscles isolated from these animals have differential levels of mutant full-length APP depending on muscle type. Additionally, isolated muscle fibers from young transgenic mice (3 months) have significantly decreased maximal mitochondrial oxygen consumption capacity compared to non-transgenic, age-matched mice, with similar deficits to those previously described in brain. CONCLUSIONS: This is the first study to directly examine mitochondrial function in skeletal muscle from an AD-relevant transgenic murine model. As with brain, these deficits in muscle are an early event, occurring prior to appearance of amyloid plaques.


Assuntos
Envelhecimento/metabolismo , Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Oxigênio/metabolismo , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
15.
Nat Med ; 13(2): 204-10, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17237794

RESUMO

Skeletal muscle has the ability to achieve rapid repair in response to injury or disease. Many individuals with Marfan syndrome (MFS), caused by a deficiency of extracellular fibrillin-1, exhibit myopathy and often are unable to increase muscle mass despite physical exercise. Evidence suggests that selected manifestations of MFS reflect excessive signaling by transforming growth factor (TGF)-beta (refs. 2,3). TGF-beta is a known inhibitor of terminal differentiation of cultured myoblasts; however, the functional contribution of TGF-beta signaling to disease pathogenesis in various inherited myopathic states in vivo remains unknown. Here we show that increased TGF-beta activity leads to failed muscle regeneration in fibrillin-1-deficient mice. Systemic antagonism of TGF-beta through administration of TGF-beta-neutralizing antibody or the angiotensin II type 1 receptor blocker losartan normalizes muscle architecture, repair and function in vivo. Moreover, we show TGF-beta-induced failure of muscle regeneration and a similar therapeutic response in a dystrophin-deficient mouse model of Duchenne muscular dystrophy.


Assuntos
Losartan/uso terapêutico , Síndrome de Marfan/tratamento farmacológico , Músculo Esquelético/fisiologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo , Análise de Variância , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Animais , Anticorpos/farmacologia , Anticorpos/uso terapêutico , Fibrilina-1 , Fibrilinas , Imunofluorescência , Histocitoquímica , Losartan/farmacologia , Camundongos , Proteínas dos Microfilamentos/genética , Mutação/genética , Regeneração/fisiologia
16.
Proc Natl Acad Sci U S A ; 108(17): 7046-51, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21482776

RESUMO

The skeletal muscle dihydropyridine receptor (DHPR) and ryanodine receptor (RyR1) are known to engage a form of conformation coupling essential for muscle contraction in response to depolarization, referred to as excitation-contraction coupling. Here we use WT and Ca(V)1.1 null (dysgenic) myotubes to provide evidence for an unexplored RyR1-DHPR interaction that regulates the transition of the RyR1 between gating and leak states. Using double-barreled Ca(2+)-selective microelectrodes, we demonstrate that the lack of Ca(V)1.1 expression was associated with an increased myoplasmic resting [Ca(2+)] ([Ca(2+)](rest)), increased resting sarcolemmal Ca(2+) entry, and decreased sarcoplasmic reticulum (SR) Ca(2+) loading. Pharmacological control of the RyR1 leak state, using bastadin 5, reverted the three parameters to WT levels. The fact that Ca(2+) sparks are not more frequent in dysgenic than in WT myotubes adds support to the hypothesis that the leak state is a conformation distinct from gating RyR1s. We conclude from these data that this orthograde DHPR-to-RyR1 signal inhibits the transition of gated RyR1s into the leak state. Further, it suggests that the DHPR-uncoupled RyR1 population in WT muscle has a higher propensity to be in the leak conformation. RyR1 leak functions are to keep [Ca(2+)](rest) and the SR Ca(2+) content in the physiological range and thus maintain normal intracellular Ca(2+) homeostasis.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sarcolema/metabolismo , Animais , Canais de Cálcio Tipo L/genética , Sinalização do Cálcio/efeitos dos fármacos , Éteres Difenil Halogenados/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Camundongos , Camundongos Mutantes , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/citologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Sarcolema/genética
17.
bioRxiv ; 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-37720055

RESUMO

Heart Failure with preserved ejection fraction (HFpEF) is the most prevalent form of heart failure worldwide and its significant mortality is associated with a high rate of sudden cardiac death (SCD; 30% - 40%). Chronic metabolic stress is an important driver of HFpEF, and clinical data show metabolic stress as a significant risk factor for ventricular arrhythmias in HFpEF patients. The mechanisms of SCD and ventricular arrhythmia in HFpEF remain critically understudied and empirical treatment is ineffective. To address this important knowledge gap, we developed a novel preclinical model of metabolic-stress induced HFpEF using Western diet (High fructose and fat) and hypertension induced by nitric oxide synthase inhibition (with L-NAME) in wildtype C57BL6/J mice. After 5 months, mice display all clinical characteristics of HFpEF and present with stress-induced sustained ventricular tachycardia (VT). Mechanistically, we found a novel pattern of arrhythmogenic intracellular Ca 2+ handling that is distinct from the well-characterized changes pathognomonic for heart failure with reduced ejection fraction. In addition, we show that the transverse tubular system remains intact in HFpEF and that arrhythmogenic, intracellular Ca 2+ mobilization becomes hyper-sensitive to ß- adrenergic activation. Finally, in proof-of-concept experiments we show in vivo that the clinically used intracellular calcium stabilizer dantrolene, which acts on the Ca 2+ release channels of the sarcoplasmic reticulum (SR), the ryanodine receptors, acutely prevents stress-induced VT in HFpEF mice. Therapeutic control of SR Ca 2+ leak may present a novel mechanistic treatment approach in metabolic HFpEF.

18.
bioRxiv ; 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38948772

RESUMO

Duchenne muscular dystrophy (DMD) is marked by the genetic deficiency of the dystrophin protein in striated muscle whose consequence is a cascade of cellular changes that predispose the susceptibility to contraction injury central to DMD pathology. Recent evidence identified the proliferation of microtubules enriched in post-translationally modified tubulin as a consequence of dystrophins absence that increases the passive mechanics of the muscle fiber and the excess mechanotransduction elicited reactive oxygen species and calcium signals that promote contraction injury. Motivated by evidence that acutely normalizing the disease microtubule alterations reduced contraction injury in murine DMD muscle (mdx), here we sought the direct impact of these microtubule alterations independent of dystrophins absence and the multitude of other changes consequent to dystrophic disease. To this end we used acute pharmacologic (epithiolone-D, EpoD; 4 hours) or genetic (vashohibin-2 and small vasohibin binding protein overexpression via AAV9; 2 weeks) strategies to effectively model the proliferation of detyrosination enriched microtubules in the mdx muscle. Quantifying in vivo nerve evoked plantarflexor function we find no alteration in peak torque nor contraction kinetics in WT mice modeling these DMD relevant MT alterations. Quantifying the susceptibility to eccentric contraction injury we show EpoD treatment proffered a small but significant protection from contraction injury while VASH/SVBP had no discernable impact. We conclude that the disease dependent MT alterations act in concert with additional cellular changes to predispose contraction injury in DMD.

19.
J Mol Cell Cardiol ; 58: 172-81, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23220288

RESUMO

X-ROS signaling is a novel redox signaling pathway that links mechanical stress to changes in [Ca(2+)]i. This pathway is activated rapidly and locally within a muscle cell under physiological conditions, but can also contribute to Ca(2+)-dependent arrhythmia in the heart and to the dystrophic phenotype in the heart and skeletal muscle. Upon physiologic cellular stretch, microtubules serve as mechanotransducers to activate NADPH oxidase 2 in the transverse tubules and sarcolemmal membranes to produce reactive oxygen species (ROS). In the heart, the ROS acts locally to activate ryanodine receptor Ca(2+) release channels in the junctional sarcoplasmic reticulum, increasing the Ca(2+) spark rate and "tuning" excitation-contraction coupling. In the skeletal muscle, where Ca(2+) sparks are not normally observed, the X-ROS signaling process is muted. However in muscular dystrophies, such as Duchenne Muscular Dystrophy and dysferlinopathy, X-ROS signaling operates at a high level and contributes to myopathy. Importantly, Ca(2+) permeable stretch-activated channels are activated by X-ROS and contribute to skeletal muscle pathology. Here we review X-ROS signaling and mechanotransduction in striated muscle, and highlight important questions to drive future work on stretch-dependent signaling. We conclude that X-ROS provides an exciting mechanism for the mechanical control of redox and Ca(2+) signaling, but much work is needed to establish its contribution to physiologic and pathophysiologic processes in diverse cell systems.


Assuntos
Cálcio/metabolismo , Músculo Esquelético/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Sinalização do Cálcio , Humanos , Músculo Esquelético/patologia , Miócitos Cardíacos , Sarcolema/metabolismo , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais
20.
J Physiol ; 591(2): 559-70, 2013 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-23109110

RESUMO

The most common and severe form of muscular dystrophy is Duchenne muscular dystrophy (DMD), a disorder caused by the absence of dystrophin, a structural protein found on the cytoplasmic surface of the sarcolemma of striated muscle fibres. Considerable attention has been dedicated to studying myofibre damage and muscle plasticity, but there is little information to determine if damage from contraction-induced injury occurs at or near the nerve terminal axon. We used α-bungarotoxin to compare neuromuscular junction (NMJ) morphology in healthy (wild-type, WT) and dystrophic (mdx) mouse quadriceps muscles and evaluated transcript levels of the post-synaptic muscle-specific kinase signalling complex. Our focus was to study changes in NMJs after injury induced with an established in vivo animal injury model. Neuromuscular transmission, electromyography (EMG), and NMJ morphology were assessed 24 h after injury. In non-injured muscle, muscle-specific kinase expression was significantly decreased in mdx compared to WT. Injury resulted in a significant loss of maximal torque in WT (39 ± 6%) and mdx (76 ± 8%) quadriceps, but significant changes in NMJ morphology, neuromuscular transmission and EMG data were found only in mdx following injury. Compared with WT mice, motor end-plates of mdx mice demonstrated less continuous morphology, more disperse acetylcholine receptor aggregates and increased number of individual acetylcholine receptor clusters, an effect that was exacerbated following injury. Neuromuscular transmission failure increased and the EMG measures decreased after injury in mdx mice only. The data show that eccentric contraction-induced injury causes morphological and functional changes to the NMJs in mdx skeletal muscle, which may play a role in excitation-contraction coupling failure and progression of the dystrophic process.


Assuntos
Contração Isométrica , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Junção Neuromuscular/fisiopatologia , Animais , Axônios/ultraestrutura , Bungarotoxinas , Distrofina/genética , Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Placa Motora/citologia , Distrofia Muscular de Duchenne/genética , Junção Neuromuscular/metabolismo , Junção Neuromuscular/patologia , RNA Mensageiro/biossíntese , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Colinérgicos/metabolismo , Torque
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA