Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Br J Clin Pharmacol ; 88(10): 4573-4584, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35466438

RESUMO

AIMS: Acalabrutinib, a selective Bruton tyrosine kinase inhibitor, is approved for the treatment of mantle cell lymphoma and chronic lymphocytic leukaemia. Many critically ill patients are unable to swallow and need oral medications to be delivered via a nasogastric (NG) tube. Furthermore, critically ill patients are typically administered proton-pump inhibitors (PPIs) to prevent stress ulcers. Concomitant administration with PPIs reduces acalabrutinib exposure and is not currently recommended. To evaluate acalabrutinib in subjects co-administered with PPIs who require NG delivery, a phase 1, open-label, randomized, crossover, single-dose study was conducted in healthy subjects. METHODS: The study assessed the relative bioavailability of an acalabrutinib suspension-in regular, degassed Coca-Cola-administered via NG tube (Acala-NG) versus the pharmacokinetics (PK) of an acalabrutinib capsule administered orally with water. In addition, the PPI effect was evaluated by comparing the PK following Acala-NG in the presence or absence of rabeprazole. RESULTS: Exposure of acalabrutinib and its active metabolite (ACP-5862) were comparable following administration of Acala-NG versus the oral capsule (Geo mean ratio, % ref [90% confidence interval, CI]: acalabrutinib AUCinf : 103 [93-113]; Cmax : 144 [120-173]). In addition, exposure was similar following administration of Acala-NG with and without a PPI (Geo mean ratio, % ref [90% CI]: acalabrutinib AUCinf : 105 [79-138]; Cmax : 95 [66-137]). No safety or tolerability concerns were observed, and all adverse events were mild and resolved without treatment. CONCLUSIONS: Acala-NG with or without a PPI is safe and well-tolerated without impeding bioavailability.


Assuntos
Estado Terminal , Inibidores da Bomba de Prótons , Adulto , Benzamidas , Disponibilidade Biológica , Estudos Cross-Over , Voluntários Saudáveis , Humanos , Inibidores da Bomba de Prótons/efeitos adversos , Inibidores da Bomba de Prótons/farmacocinética , Pirazinas , Suspensões
2.
Xenobiotica ; 51(7): 796-810, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33938357

RESUMO

The absorption, metabolism and excretion of pictilisib, a selective small molecule inhibitor of class 1 A phosphoinositide 3-kinase (PI3K), was characterized following a single oral administration of [14C]pictilisib in rats, dogs and humans at the target doses of 30 mg/kg, 5 mg/kg and 60 mg, respectively.Pictilisib was rapidly absorbed with Tmax less than 2 h across species. In systemic circulation, pictilisib represented the predominant total radioactivity greater than 86.6% in all species.Total pictilisib and related radioactivity was recovered from urine and faeces in rats, dogs, and human at 98%, 80% and 95%, respectively, with less than 2% excreted in urine and the rest excreted into faeces.In rat and dog, more than 40% of drug-related radioactivity was excreted into the bile suggesting biliary excretion was the major route of excretion. Unchanged pictilisib was a minor component in rat and dog bile. The major metabolite in bile was O-glucuronide of oxidation on indazole moiety (M20, 21% of the dose) in rats and an oxidative piperazinyl ring-opened metabolite M7 (10.8% of the dose) in dogs.Oxidative glutathione (GSH) conjugates (M18, M19) were novel metabolites detected in rat bile, suggesting the potential generation of reactive intermediates from pictilisib. The structure of M18 was further confirmed by NMR to be a N-hydroxylated and GSH conjugated metabolite on the moiety of the indazole ring.


Assuntos
Indazóis , Fosfatidilinositol 3-Quinases , Animais , Classe I de Fosfatidilinositol 3-Quinases , Cães , Fezes , Humanos , Fosfatidilinositóis , Ratos , Sulfonamidas
3.
Br J Clin Pharmacol ; 85(8): 1751-1760, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30973970

RESUMO

AIMS: Navoximod (GDC-0919, NLG-919) is a small molecule inhibitor of indoleamine-2,3-dioxygenase 1 (IDO1), developed to treat the acquired immune tolerance associated with cancer. The primary objectives of this study were to assess navoximod's absolute bioavailability (aBA), determine the mass balance and routes of elimination of [14 C]-navoximod, and characterize navoximod's metabolite profile. METHODS: A phase 1, open-label, two-part study was conducted in healthy volunteers. In Part 1 (aBA), subjects (n = 16) were randomized to receive oral (200 mg tablet) or intravenous (5 mg solution) navoximod in a crossover design with a 5-day washout. In Part 2 (mass balance), subjects (n = 8) were administered [14 C]-navoximod (200 mg/600 µCi) as an oral solution. RESULTS: The aBA of navoximod was estimated to be 55.5%, with a geometric mean (%CV) plasma clearance and volume of distribution of 62.0 L/h (21.0%) and 1120 L (28.4%), respectively. Mean recovery of total radioactivity was 87.8%, with 80.4% detected in urine and the remainder (7.4%) in faeces. Navoximod was extensively metabolized, with unchanged navoximod representing 5.45% of the dose recovered in the urine and faeces. Glucuronidation was identified as the primary route of metabolism, with the major glucuronide metabolite, M28, accounting for 57.5% of the total drug-derived exposure and 59.7% of the administered dose recovered in urine. CONCLUSIONS: Navoximod was well tolerated, quickly absorbed and showed moderate bioavailability, with minimal recovery of the dose as unchanged parent in the urine and faeces. Metabolism was identified as the primary route of clearance and navoximod glucuronide (M28) was the most abundant metabolite in circulation with all other metabolites accounting for <10% of drug-related exposure.


Assuntos
Imidazóis/farmacocinética , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indóis/farmacocinética , Administração Intravenosa , Administração Oral , Adulto , Disponibilidade Biológica , Estudos Cross-Over , Feminino , Voluntários Saudáveis , Humanos , Imidazóis/administração & dosagem , Indóis/administração & dosagem , Eliminação Intestinal , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Eliminação Renal , Evasão Tumoral/efeitos dos fármacos , Adulto Jovem
4.
Oncologist ; 22(12): 1491-1499, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28798270

RESUMO

BACKGROUND: Epidermal growth factor receptor (EGFR) and phosphatidylinositol 3-kinase (PI3K) are involved in the proliferation and survival of many cancer types. Enhanced antitumor activity may be achieved through combined inhibition of these pathways. We report results for pictilisib (GDC-0941, a class I pan-PI3K inhibitor) plus erlotinib (an EGFR tyrosine kinase inhibitor) in patients with advanced solid tumors. MATERIALS AND METHODS: A 3 + 3 dose-escalation study was carried out at a starting daily dose of 60 mg pictilisib on days 1-21 of a 28-day cycle and 150 mg erlotinib from day 2 of cycle 1. The primary objectives of the study were to assess safety and tolerability, identify dose-limiting toxicities (DLTs), estimate the maximum tolerated dose, and identify the recommended phase II dose (RP2D). Evaluation of a dose-expansion cohort at the RP2D was performed. RESULTS: Fifty-seven patients were treated in the study. All patients experienced at least one adverse event (AE). Grade ≥3 AEs, serious AEs, and deaths were reported in 38 (66.7%), 19 (33.3%), and 4 (7.0%) patients, respectively. DLTs occurred in nine patients across eight cohorts and the RP2D was determined to be 340 mg pictilisib on a "5 days on, 2 days off" schedule plus 100 mg erlotinib. Two patients (3.5%) experienced partial response and 19 (33.3%) had stable disease. CONCLUSION: Combining pictilisib with erlotinib in patients with advanced solid tumors is feasible; however, antitumor activity is limited. Additional studies may identify patients likely to benefit from combined inhibition of EGFR and PI3K pathways. IMPLICATIONS FOR PRACTICE: Combining drugs targeting different signaling pathways in cancer growth and survival could overcome drug resistance and improve antitumor activity. In this first-in-human study for the combination, addition of the PI3K inhibitor pictilisib to the EGFR tyrosine kinase inhibitor erlotinib resulted in toxicity that led to dose and schedule modifications to identify a tolerable recommended phase II dose of 340 mg pictilisib on a "5 days on, 2 days off" schedule plus 100 mg erlotinib daily. The limited antitumor activity observed, however, suggests that additional studies are needed to identify patients most likely to benefit from combined EGFR and PI3K inhibition.


Assuntos
Receptores ErbB/genética , Cloridrato de Erlotinib/administração & dosagem , Indazóis/administração & dosagem , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Sulfonamidas/administração & dosagem , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Proliferação de Células/genética , Relação Dose-Resposta a Droga , Receptores ErbB/antagonistas & inibidores , Cloridrato de Erlotinib/efeitos adversos , Cloridrato de Erlotinib/farmacocinética , Feminino , Humanos , Indazóis/efeitos adversos , Indazóis/farmacocinética , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Neoplasias/genética , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/genética , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacocinética , Sulfonamidas/efeitos adversos , Sulfonamidas/farmacocinética
5.
Cancer ; 122(22): 3519-3528, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27603005

RESUMO

BACKGROUND: The current single-arm, open-label trial was designed to evaluate the activity of apitolisib (GDC-0980), a dual phosphoinositide 3-kinase/mammalian target of rapamycin (PI3K/mTOR) inhibitor, in patients with advanced endometrial cancer (EC). METHODS: Patients with recurrent or persistent EC who were treated with 1 to 2 prior lines of chemotherapy but no prior PI3K/mTOR inhibitor received oral apitolisib at a dose of 40 mg daily during 28-day cycles until disease progression or intolerable toxicity occurred. Patients with type I/II diabetes who required insulin were excluded. The primary endpoints were progression-free survival (PFS) at 6 months and objective response rate. RESULTS: A total of 56 women were enrolled, including 13 (23%) with well-controlled diabetes. Reasons for discontinuation were disease progression (24 patients; 43%), adverse events (13 patients; 23%), and withdrawal by subject (12 patients; 21%). Grade 3/4 apitolisib-related adverse events were hyperglycemia (46%), rash (30%), colitis (5%), and pneumonitis (4%) (toxicities were graded according to the National Cancer Institute Common Terminology Criteria for Adverse Events [version 4.0]). The PFS rate at 6 months was 20% (Kaplan-Meier estimate; 95% confidence interval [95% CI], 7%-33%). The objective response rate was 6% (confirmed). The median PFS was 3.5 months (95% CI, 2.7-3.7 months) and the median overall survival was 15.7 months (95% CI, 9.2-17.0 months). Nineteen patients discontinued the study before the first tumor assessment. Dose reductions were required for 4 diabetic (31%) and 18 nondiabetic (42%) patients. Comprehensive molecular profiling of 46 evaluable archival tumor samples demonstrated that 57% of patients had at least 1 alteration in phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), phosphatase and tensin homolog (PTEN), or AKT1. All 3 patients with a confirmed response had at least 1 alteration in a PI3K pathway gene. CONCLUSIONS: The antitumor activity noted with the use of a dose of 40 mg of apitolisib daily was limited by tolerability, especially in diabetic patients. Patients with PI3K pathway mutations may have derived enhanced benefit from apitolisib. Cancer 2016;122:3519-28. © 2016 American Cancer Society.

6.
Drug Discov Today Technol ; 21-22: 11-16, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27978982

RESUMO

The aim of personalized medicine is to offer the right treatment to the right person at the right dose, thus maximizing efficacy and minimizing toxicity for each individual patient. Pharmacogenomic approaches attempt to refine the aim of personalized medicine by utilizing an individual's germline and somatic DNA signatures to guide treatment. In this review, we highlight the current use of pharmacogenomic based biomarker information in drug labeling. We also present several case studies on the implementation of pharmacogenomic strategies in drug discovery and development. Lastly, we comment on current challenges to implementing pharmacogenomic based testing in the clinic.


Assuntos
Farmacogenética , Medicina de Precisão , Descoberta de Drogas , Rotulagem de Medicamentos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética
7.
Drug Metab Dispos ; 43(4): 490-509, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25587128

RESUMO

Breast cancer resistance protein (BCRP; ABCG2) limits intestinal absorption of low-permeability substrate drugs and mediates biliary excretion of drugs and metabolites. Based on clinical evidence of BCRP-mediated drug-drug interactions (DDIs) and the c.421C>A functional polymorphism affecting drug efficacy and safety, both the US Food and Drug Administration and European Medicines Agency recommend preclinical evaluation and, when appropriate, clinical assessment of BCRP-mediated DDIs. Although many BCRP substrates and inhibitors have been identified in vitro, clinical translation has been confounded by overlap with other transporters and metabolic enzymes. Regulatory recommendations for BCRP-mediated clinical DDI studies are challenging, as consensus is lacking on the choice of the most robust and specific human BCRP substrates and inhibitors and optimal study design. This review proposes a path forward based on a comprehensive analysis of available data. Oral sulfasalazine (1000 mg, immediate-release tablet) is the best available clinical substrate for intestinal BCRP, oral rosuvastatin (20 mg) for both intestinal and hepatic BCRP, and intravenous rosuvastatin (4 mg) for hepatic BCRP. Oral curcumin (2000 mg) and lapatinib (250 mg) are the best available clinical BCRP inhibitors. To interrogate the worst-case clinical BCRP DDI scenario, study subjects harboring the BCRP c.421C/C reference genotype are recommended. In addition, if sulfasalazine is selected as the substrate, subjects having the rapid acetylator phenotype are recommended. In the case of rosuvastatin, subjects with the organic anion-transporting polypeptide 1B1 c.521T/T genotype are recommended, together with monitoring of rosuvastatin's cholesterol-lowering effect at baseline and DDI phase. A proof-of-concept clinical study is being planned by a collaborative consortium to evaluate the proposed BCRP DDI study design.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Interações Medicamentosas , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/metabolismo , Proteínas de Neoplasias/antagonistas & inibidores , Preparações Farmacêuticas/metabolismo , Farmacocinética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Ensaios Clínicos como Assunto , Resistência a Múltiplos Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/genética , Humanos , Proteínas de Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Guias de Prática Clínica como Assunto , Projetos de Pesquisa , Especificidade por Substrato
8.
Drug Metab Dispos ; 41(2): 508-17, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23223496

RESUMO

The compound (S)-1-[(S)-2-cyclohexyl-2-([S]-2-[methylamino]propanamido)acetyl]-N-(4-phenyl-1,2,3-thiadiazol-5-yl)pyrrolidine-2-carboxamide (GDC-0152) is a peptidomimetic small molecule antagonist of inhibitor of apoptosis (IAP) proteins with antitumor activity. The mass balance, pharmacokinetics, tissue distribution and metabolism of GDC-0152 was investigated in rats following intravenous administration of 15 mg/kg of [(14)C]GDC-0152, labeled either at the terminal phenyl ring (A) or at the carbonyl of the 2-amino-2-cyclohexylacetyl moiety (B). In rats, 92.2%-95.1% of the radiolabeled GDC-0152 dose was recovered. Approximately 62.3% and 25.1% of A was excreted in urine and feces, respectively. By contrast, B was excreted almost equally in urine (27.2%), feces (32.2%), and expired air (27.5%). GDC-0152 underwent extensive metabolism, with less than 9% of the dose recovered as parent in excreta. Similarly, in plasma, GDC-0152 represented 16.7% and 7.5% of the area under the curve of the total radioactivity for A and B, respectively. The terminal half-life (t(1/2)) for total radioactivity was longer for B (21.2 hours) than for A (4.59 hours). GDC-0152 was highly metabolized via oxidation and amide hydrolysis, followed by subsequent sulfation and glucuronidation. The most abundant circulating metabolites were the amide hydrolyzed products, M26, M28, M30, M31, and M34, which ranged from 3.5% to 9.0% of total radioactivity. In quantitative whole-body autoradiography studies, the residence of radioactivity in tissues was longer for B than for A, which is consistent with the t(1/2) of the total radioactivity in circulation. A novel 4-phenyl-5-amino-1,2,3-thiadiazole (M28) oxidative cleavage resulted in the formation of hippuric acid (M24). This biotransformation was also observed in rat hepatocyte incubations with para-substituted M28 analogs. In addition, the formation of M24 was inhibited by 1-aminobenzotriazole, which points to the involvement of P450 enzymes.


Assuntos
Antineoplásicos/farmacocinética , Radioisótopos de Carbono , Cicloexanos/farmacocinética , Hipuratos/farmacocinética , Marcação por Isótopo/métodos , Pirróis/farmacocinética , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/sangue , Antineoplásicos/química , Antineoplásicos/urina , Área Sob a Curva , Autorradiografia , Bile/metabolismo , Biotransformação , Cicloexanos/administração & dosagem , Cicloexanos/sangue , Cicloexanos/química , Cicloexanos/urina , Inibidores das Enzimas do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/metabolismo , Inibidores Enzimáticos/farmacologia , Fezes/química , Feminino , Meia-Vida , Hepatócitos/efeitos dos fármacos , Hepatócitos/enzimologia , Hipuratos/sangue , Hipuratos/urina , Hidrólise , Injeções Intravenosas , Masculino , Espectrometria de Massas , Taxa de Depuração Metabólica , Estrutura Molecular , Oxirredução , Pirróis/administração & dosagem , Pirróis/sangue , Pirróis/química , Pirróis/urina , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Distribuição Tecidual , Triazóis/farmacologia
9.
Mol Pharm ; 10(11): 4024-31, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-23980865

RESUMO

Changes in gastric pH can impact the dissolution and absorption of compounds presenting pH-dependent solubility. We assessed, in dogs, the effects of gastric pH-modifying agents on the oral absorption of two weakly basic anticancer drugs, dasatinib and GDC-0941. We also tested whether drug-induced hypochlorhydria could be temporarily mitigated using betaine HCl. Pretreatments with pentagastrin, famotidine, betaine HCl, or combinations of famotidine and betaine HCl were administered orally to dogs prior to drug dosing. The gastric pH was measured under each condition for up to 7 h, and the exposure of the compounds tested was calculated. The average gastric pH in fasted dogs ranged from 1.45 to 3.03. Pentagastrin or betaine HCl treatments lowered the pH and reduced its variability between dogs compared to control animals. In contrast, famotidine treatment maintained gastric pH at values close to 7 for up to 5 h, while betaine HCl transiently reduced the pH to approximately 2 in the famotidine-treated dogs. Famotidine pretreatment lowered GDC-0941 exposure by 5-fold, and decreased dasatinib measurable concentrations 30-fold, compared to the pentagastrin-treated dogs. Betaine HCl restored GDC-0941 AUC in famotidine-treated dogs to levels achieved in control animals, and increased dasatinib AUC to 1.5-fold that measured in control dogs. The results confirmed the negative impact of acid-reducing agents on the absorption of weakly basic drugs. They also suggested that betaine HCl coadministration may be a viable strategy in humans treated with acid-reducing agents in order to temporarily reduce gastric pH and restore drug exposure.


Assuntos
Antineoplásicos/farmacocinética , Indazóis/farmacocinética , Pirimidinas/farmacocinética , Sulfonamidas/farmacocinética , Tiazóis/farmacocinética , Absorção/efeitos dos fármacos , Acloridria/metabolismo , Animais , Betaína/farmacologia , Dasatinibe , Cães , Famotidina/farmacologia , Mucosa Gástrica/metabolismo , Concentração de Íons de Hidrogênio , Masculino , Pentagastrina/farmacologia , Inibidores da Bomba de Prótons/farmacologia , Estômago/efeitos dos fármacos
10.
Mol Pharm ; 10(11): 4032-7, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-23980906

RESUMO

Previous studies have demonstrated that increased gastric pH from the use of acid-reducing agents, such as proton-pump inhibitors or H2-receptor antagonists, can significantly impact the absorption of weakly basic drugs that exhibit pH-dependent solubility. Clinically practical strategies to mitigate this interaction have not been developed. This pilot study evaluated the extent and time course of gastric reacidification after a solid oral dosage form of anhydrous betaine HCl in healthy volunteers with pharmacologically induced hypochlorhydria. Six healthy volunteers with baseline normochlorhydria (fasting gastric pH < 4) were enrolled in this single period study. Hypochlorhydria was induced via 20 mg oral rabeprazole twice daily for four days. On the fifth day, an additional 20 mg dose of oral rabeprazole was given and gastric pH was monitored continuously using the Heidelberg pH capsule. After gastric pH > 4 was confirmed for 15 min, 1500 mg of betaine HCl was given orally with 90 mL of water and gastric pH was continuously monitored for 2 h. Betaine HCl significantly lowered gastric pH by 4.5 (± 0.5) units from 5.2 (± 0.5) to 0.6 (± 0.2) (P < 0.001) during the 30 min interval after administration. The onset of effect of betaine HCl was rapid, with a mean time to pH < 3 of 6.3 (± 4.3) min. The reacidification period was temporary with a gastric pH < 3 and < 4 lasting 73 (± 33) and 77 (± 30) min, respectively. Betaine HCl was well tolerated by all subjects. In healthy volunteers with pharmacologically induced hypochlorhydria, betaine HCl was effective at temporarily lowering gastric pH. The rapid onset and relatively short duration of gastric pH reduction gives betaine HCl the potential to aid the absorption of orally administered weakly basic drugs that exhibit pH-dependent solubility when administered under hypochlorhydric conditions.


Assuntos
Acloridria/induzido quimicamente , Acloridria/tratamento farmacológico , Betaína/uso terapêutico , Inibidores da Bomba de Prótons/efeitos adversos , Rabeprazol/efeitos adversos , Adulto , Antiulcerosos/efeitos adversos , Feminino , Voluntários Saudáveis , Humanos , Concentração de Íons de Hidrogênio , Masculino , Pessoa de Meia-Idade
11.
Mol Pharm ; 10(11): 4055-62, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24044612

RESUMO

Acid-reducing agents (ARAs) are the most commonly prescribed medications in North America and Western Europe. There are currently no data describing the prevalence of their use among cancer patients. However, this is a paramount question due to the potential for significant drug-drug interactions (DDIs) between ARAs, most commonly proton pump inhibitors (PPIs), and orally administered cancer therapeutics that display pH-dependent solubility, which may lead to decreased drug absorption and decreased therapeutic benefit. Of recently approved orally administered cancer therapeutics, >50% are characterized as having pH-dependent solubility, but there are currently no data describing the potential for this ARA-DDI liability among targeted agents currently in clinical development. The objectives of this study were to (1) determine the prevalence of ARA use among different cancer populations and (2) investigate the prevalence of orally administered cancer therapeutics currently in development that may be liable for an ARA-DDI. To address the question of ARA use among cancer patients, a retrospective cross-sectional analysis was performed using two large healthcare databases: Thomson Reuters MarketScan (N = 1,776,443) and the U.S. Department of Veterans Affairs (VA, N = 1,171,833). Among all cancer patients, the total prevalence proportion of ARA use (no. of cancer patients receiving an ARA/total no. of cancer patients) was 20% and 33% for the MarketScan and VA databases, respectively. PPIs were the most commonly prescribed agent, comprising 79% and 65% of all cancer patients receiving a prescription for an ARA (no. of cancer patients receiving a PPI /no. of cancer patients receiving an ARA) for the MarketScan and VA databases, respectively. To estimate the ARA-DDI liability of orally administered molecular targeted cancer therapeutics currently in development, two publicly available databases, (1) Kinase SARfari and (2) canSAR, were examined. For those orally administered clinical candidates that had available structures, the pKa's and corresponding relative solubilities were calculated for a normal fasting pH of 1.2 and an "ARA-hypochlorhydric" pH of 4. Taking calculated pKa's and relative solubilities into consideration, clinical candidates were classified based on their risk for an ARA-DDI. More than one-quarter (28%) of the molecules investigated are at high risk for an ARA-DDI, and of those high risk molecules, nearly three-quarters (73%) are being clinically evaluated for at least one of five cancer types with the highest prevalence of ARA use (gastrointestinal, pancreatic, lung, glioblastoma multiforme, gastrointestinal stromal tumor (GIST)). These data strongly suggest that with the clinical development of ARA-DDI-susceptible cancer therapeutics will come continued challenges for drug-development scientists, oncologists, and regulatory agencies in ensuring that patients achieve safe and efficacious exposures of their cancer therapeutics and thus optimal patient outcomes.


Assuntos
Interações Medicamentosas , Estudos Transversais , Bases de Dados Factuais , Feminino , Humanos , Masculino , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Inibidores da Bomba de Prótons/farmacocinética , Estudos Retrospectivos , Estados Unidos
12.
Mol Pharm ; 10(11): 4074-81, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24099279

RESUMO

GDC-0941 is an orally administered potent, selective pan-inhibitor of phosphatidylinositol 3-kinases (PI3Ks) with good preclinical antitumor activity in xenograft models and favorable pharmacokinetics and tolerability in phase 1 trials, and it is currently being investigated in phase II clinical trials as an anti-cancer agent. In vitro solubility and dissolution studies suggested that GDC-0941, a weak base, displays significant pH-dependent solubility. Moreover, preclinical studies conducted in famotidine-induced hypochlorhydric dog suggested that the pharmacokinetics of GDC-0941 may be sensitive to pharmacologically induced hypochlorhydria. To investigate the clinical significance of food and pH-dependent solubility on GDC-0941 pharmacokinetics a four-period, two-sequence, open-label, randomized, crossover study was conducted in healthy volunteers. During the fasting state, GDC-0941 was rapidly absorbed with a median Tmax of 2 h. The presence of a high-fat meal delayed the absorption of GDC-0941, with a median Tmax of 4 h and a modest increase in AUC relative to the fasted state, with an estimated geometric mean ratio (GMR, 90% CI) of fed/fasted of 1.28 (1.08, 1.51) for AUC0-∞ and 0.87 (0.70, 1.06) for Cmax. The effect of rabeprazole (model PPI) coadministration on the pharmacokinetics of GDC-0941 was evaluated in the fasted and fed state. When comparing the effect of rabeprazole + GDC-0941 (fasted) to baseline GDC-0941 absorption in a fasted state, GDC-0941 median Tmax was unchanged, however, both Cmax and AUC0-∞ decreased significantly after pretreatment with rabeprazole, with an estimated GMR (90% CI) of 0.31 (0.21, 0.46) and 0.46 (0.35, 0.61), respectively for both parameters. When rabeprazole was administered in the presence of the high-fat meal, the impact of food did not fully reverse the pH effect; the overall effect of rabeprazole on AUC0-∞ was somewhat attenuated by the high-fat meal (estimate GMR of 0.57, with 90% CI, 0.50, 0.65) but unchanged for the Cmax (estimate of 0.43, with 90% CI, 0.37, 0.50). The results of the current investigations emphasize the complex nature of physicochemical interactions and the importance of gastric acid for the dissolution and solubilization processes of GDC-0941. Given these findings, dosing of GDC-0941 in clinical trials was not constrained relative to fasted/fed states, but the concomitant use of ARAs was restricted. Mitigation strategies to limit the influence of pH on exposure of molecularly targeted agents such as GDC-0941 with pH-dependent solubility are discussed.


Assuntos
Antineoplásicos/farmacocinética , Indazóis/farmacocinética , Inibidores da Bomba de Prótons/efeitos adversos , Rabeprazol/efeitos adversos , Sulfonamidas/farmacocinética , Disponibilidade Biológica , Estudos Cross-Over , Interações Alimento-Droga , Voluntários Saudáveis , Concentração de Íons de Hidrogênio , Solubilidade
13.
Hepatology ; 54(2): 644-54, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21538436

RESUMO

UNLABELLED: The role of organic anion transporting polypeptides (OATPs), particularly the members of OATP1B subfamily, in hepatocellular handling of endogenous and exogenous compounds is an important and emerging area of research. Using a mouse model lacking Slco1b2, the murine ortholog of the OATP1B subfamily, we have demonstrated previously that genetic ablation causes reduced hepatic clearance capacity for substrates. In this study, we focused on the physiological function of the hepatic OATP1B transporters. First, we studied the influence of the Oatp1b2 deletion on bile acid (BA) metabolism, showing that lack of the transporter results in a significantly reduced expression of Cyp7a1, the key enzyme of BA synthesis, resulting in elevated cholesterol levels after high dietary fat challenge. Furthermore, Slco1b2-/- mice exhibited delayed clearance after oral glucose challenge resulting from reduced hepatic glucose uptake. In addition to increased hepatic glycogen content, Slco1b2-/- mice exhibited reduced glucose output after pyruvate challenge. This is in accordance with reduced hepatic expression of phosphoenolpyruvate carboxykinase (PEPCK) in knockout mice. We show that this phenotype is due to the loss of liver-specific Oatp1b2-mediated hepatocellular thyroid hormone entry, which then leads to reduced transcriptional activation of target genes of hepatic thyroid hormone receptor (TR), including Cyp7a1 and Pepck but also Dio1 and Glut2. Importantly, we assessed human relevance using a cohort of archived human livers in which OATP1B1 expression was noted to be highly associated with TR target genes, especially for glucose facilitating transporter 2 (GLUT2). Furthermore, GLUT2 expression was significantly decreased in livers harboring a common genetic polymorphism in SLCO1B1. CONCLUSION: Our findings reveal that OATP1B-mediated hepatic thyroid hormone entry is a key determinant of cholesterol and glucose homeostasis.


Assuntos
Colesterol/fisiologia , Glucose/fisiologia , Homeostase , Transportadores de Ânions Orgânicos/fisiologia , Receptores dos Hormônios Tireóideos/fisiologia , Animais , Humanos , Camundongos
14.
CPT Pharmacometrics Syst Pharmacol ; 11(5): 616-627, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34850607

RESUMO

Several PI3K inhibitors are in clinical development for the treatment of various forms of cancers, including pan-PI3K inhibitors targeting all four PI3K isoforms (α, ß, γ, and δ), and isoform-selective inhibitors. Diarrhea and immune-mediated colitis are among the adverse events observed with PI3K inhibition which limits the maximal tolerated dose. A quantitative systems pharmacology model was developed to investigate PI3K-inhibitor-induced colitis. The effects of individual PI3K isoforms on relevant cellular pathways were incorporated into a mechanistic representation of mucosal inflammation. A virtual clinical population captures the observed clinical variability in the onset timing and rates of diarrhea and colitis for seven clinically tested PI3K inhibitors. Model-based analysis suggests that colitis development is governed by both the inhibition of PI3Kδ, which drives T cell differentiation and proliferation, and PI3Kα, which regulates epithelial barrier integrity. Specifically, when PI3Kα is inhibited below a given threshold, epithelial barrier dysfunction precipitates an exaggerated T effector response due to PI3Kδ-inhibition, leading to risk of diarrhea and colitis. This synergy explains why the lowest diarrhea and colitis rates are seen with the weakest PI3Kδ inhibition (alpelisib), and higher rates are seen with strong PI3Kδ inhibition if PI3Kα is even mildly inhibited (e.g., idelalisib), whereas strong PI3Kδ inhibition in the absence of PI3Kα inhibition does not result in high colitis rates (umbralisib). Thus, the model-based analysis suggests that PI3Kα and δ inhibition play unique but synergistic roles in driving colitis. Finally, we explore if and how dose-regimen might influence colitis rates for molecules that inhibit both PI3Kα and PI3Kδ.


Assuntos
Colite , Fosfatidilinositol 3-Quinases , Colite/induzido quimicamente , Diarreia/induzido quimicamente , Humanos , Farmacologia em Rede , Inibidores de Fosfoinositídeo-3 Quinase , Isoformas de Proteínas
15.
J Clin Pharmacol ; 62(6): 812-822, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34897701

RESUMO

Acalabrutinib received approval for the treatment of adult patients with mantle cell lymphoma who received at least 1 prior therapy and adult patients with chronic lymphocytic leukemia or small lymphocytic lymphoma. This study investigated the impact of hepatic impairment (HI) on acalabrutinib pharmacokinetics (PK) and safety at a single 50-mg dose in fasted subjects. This study was divided into 2 parts: study 1, an open-label, parallel-group study in Child-Pugh class A or B subjects and healthy subjects; and study 2, an open-label, parallel-group study in Child-Pugh class C subjects and healthy subjects. Baseline characteristics and safety profiles were similar across groups. Acalabrutinib exposure (area under the plasma concentration-time curve) increased slightly (1.90- and 1.48-fold) in subjects with mild (Child-Pugh class A) and moderate (Child-Pugh class B) hepatic impairment compared with healthy subjects. In severe hepatic impairment (Child-Pugh class C), acalabrutinib exposure (area under the plasma concentration-time curve and maximum plasma concentration) increased ≈5.0- and 3.6-fold, respectively. Results were consistent across total and unbound exposures. Severe hepatic impairment did not impact total/unbound metabolite (ACP-5862) exposures; the metabolite-to-parent ratio decreased to 0.6 to 0.8 (vs 3.1-3.6 in healthy subjects). In summary, single oral dose of 50-mg acalabrutinib was safe and well tolerated in subjects with mild, moderate, and severe hepatic impairment and in healthy control subjects. In subjects with severe hepatic impairment, mean acalabrutinib exposure increased by up to 5-fold and should be avoided. Acalabrutinib does not require dose adjustment in patients with mild or moderate hepatic impairment.


Assuntos
Hepatopatias , Adulto , Área Sob a Curva , Benzamidas/efeitos adversos , Humanos , Hepatopatias/metabolismo , Pirazinas/efeitos adversos
16.
Clin Pharmacol Drug Dev ; 11(11): 1294-1307, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36029150

RESUMO

Acalabrutinib is a Bruton tyrosine kinase (BTK) inhibitor approved to treat adults with chronic lymphocytic leukemia, small lymphocytic lymphoma, or previously treated mantle cell lymphoma. As the bioavailability of the acalabrutinib capsule (AC) depends on gastric pH for solubility and is impaired by acid-suppressing therapies, coadministration with proton-pump inhibitors (PPIs) is not recommended. Three studies in healthy subjects (N = 30, N = 66, N = 20) evaluated the pharmacokinetics (PKs), pharmacodynamics (PDs), safety, and tolerability of acalabrutinib maleate tablet (AT) formulated with pH-independent release. Subjects were administered AT or AC (orally, fasted state), AT in a fed state, or AT in the presence of a PPI, and AT or AC via nasogastric (NG) route. Acalabrutinib exposures (geometric mean [% coefficient of variation, CV]) were comparable for AT versus AC (AUCinf 567.8 ng h/mL [36.9] vs 572.2 ng h/mL [38.2], Cmax 537.2 ng/mL [42.6] vs 535.7 ng/mL [58.4], respectively); similar results were observed for acalabrutinib's active metabolite (ACP-5862) and for AT-NG versus AC-NG. The geometric mean Cmax for acalabrutinib was lower when AT was administered in the fed versus the fasted state (Cmax 255.6 ng/mL [%CV, 46.5] vs 504.9 ng/mL [49.9]); AUCs were similar. For AT + PPI, geometric mean Cmax was lower (371.9 ng/mL [%CV, 81.4] vs 504.9 ng/mL [49.9]) and AUCinf was higher (AUCinf 694.1 ng h/mL [39.7] vs 559.5 ng h/mL [34.6]) than AT alone. AT and AC were similar in BTK occupancy. Most adverse events were mild with no new safety concerns. Acalabrutinib formulations were comparable and AT could be coadministered with PPIs, food, or via NG tube without affecting the PKs or PDs.


Assuntos
Inibidores da Bomba de Prótons , Pirazinas , Adulto , Humanos , Disponibilidade Biológica , Equivalência Terapêutica , Inibidores da Bomba de Prótons/efeitos adversos , Inibidores da Bomba de Prótons/farmacocinética , Pirazinas/efeitos adversos , Pirazinas/farmacocinética , Comprimidos , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacocinética
17.
Cancer Chemother Pharmacol ; 88(3): 451-464, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34080039

RESUMO

PURPOSE: Limited information is available regarding the drug-drug interaction (DDI) potential of molecular targeted agents and rituximab plus cyclophosphamide, doxorubicin (hydroxydaunorubicin), vincristine (Oncovin), and prednisone (R-CHOP) therapy. The addition of the Bruton tyrosine kinase (BTK) inhibitor ibrutinib to R-CHOP therapy results in increased toxicity versus R-CHOP alone, including higher incidence of peripheral neuropathy. Vincristine is a substrate of P-glycoprotein (P-gp, ABCB1); drugs that inhibit P-gp could potentially cause increased toxicity when co-administered with vincristine through DDI. While the combination of the BTK inhibitor acalabrutinib and R-CHOP is being explored clinically, the DDI potential between these therapies is unknown. METHODS: A human mechanistic physiology-based pharmacokinetic (PBPK) model of vincristine following intravenous dosing was developed to predict potential DDI interactions with combination therapy. In vitro absorption, distribution, metabolism, and excretion and in vivo clinical PK parameters informed PBPK model development, which was verified by comparing simulated vincristine concentrations with observed clinical data. RESULTS: While simulations suggested no DDI between vincristine and ibrutinib or acalabrutinib in plasma, simulated vincristine exposure in muscle tissue was increased in the presence of ibrutinib but not acalabrutinib. Extrapolation of the vincristine mechanistic PBPK model to other P-gp substrates further suggested DDI risk when ibrutinib (area under the concentration-time curve [AUC] ratio: 1.8), but not acalabrutinib (AUC ratio: 0.92), was given orally with venetoclax or digoxin. CONCLUSION: Overall, these data suggest low DDI risk between acalabrutinib and P-gp substrates with negligible increase in the potential risk of vincristine-induced peripheral neuropathy when acalabrutinib is added to R-CHOP therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Modelos Biológicos , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Vincristina/administração & dosagem , Administração Intravenosa , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Área Sob a Curva , Células CACO-2 , Simulação por Computador , Ciclofosfamida/administração & dosagem , Ciclofosfamida/efeitos adversos , Ciclofosfamida/farmacocinética , Doxorrubicina/administração & dosagem , Doxorrubicina/efeitos adversos , Doxorrubicina/farmacocinética , Interações Medicamentosas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Prednisona/administração & dosagem , Prednisona/efeitos adversos , Prednisona/farmacocinética , Rituximab/administração & dosagem , Rituximab/efeitos adversos , Rituximab/farmacocinética , Distribuição Tecidual , Vincristina/efeitos adversos , Vincristina/farmacocinética , Adulto Jovem
18.
Clin Transl Sci ; 13(2): 410-418, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31729137

RESUMO

Pharmacokinetic (PK) variability in cancer clinical trials may be due to heterogeneous populations and identifying sources of variability is important. Use of healthy subjects in clinical pharmacology studies together with detailed knowledge of the characteristics of patients with cancer can allow for quick identification and quantification of factors affecting PK variability. PK data and sources of variability of 40 marketed molecularly targeted oncology therapeutics were compiled from regulatory approval documents covering an 18-year period (1999-2017). Variability in PK parameters was compared and contributors to variability were identified. The results show that PK variability was ~ 16% higher for peak plasma concentration (Cmax ) and area under the concentration time curve (AUC) in patients with cancer compared with healthy subjects. Several factors were identified as major contributors to variability including hepatic/renal impairment and cytochrome P450 inhibition/induction. Lower PK variability in healthy subjects may represent an opportunity to perform rapid and robust pharmacological and PK assessments to inform subsequent studies in the development of new cancer therapies.


Assuntos
Antineoplásicos/farmacocinética , Neoplasias/tratamento farmacológico , Administração Oral , Adulto , Fatores Etários , Antineoplásicos/administração & dosagem , Área Sob a Curva , Variação Biológica da População , Índice de Massa Corporal , Aprovação de Drogas , Europa (Continente) , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Terapia de Alvo Molecular/métodos , Neoplasias/sangue , Estados Unidos , United States Food and Drug Administration
20.
Mol Pharm ; 6(6): 1790-7, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19400585

RESUMO

The family of organic anion transporting polypeptides (OATPs) plays an important role in mediating the cellular uptake of numerous endogenous and exogenous compounds. Members of this family include human OATP1B1 and OATP1B3, which have been widely studied and shown to be involved in the hepatic uptake of hormones, bile acids, and many clinically used drugs. However, little is known about the murine orthologue, Oatp1b2. We determined expression of mouse oatp1b2 mRNA and protein using real-time PCR and Western blot analysis. Interestingly, mRNA transcripts and protein were detectable in a number of tissues including kidney and stomach, and, not surprisingly, the highest expression was noted in liver. Cloning of the full coding region of oatp1b2 revealed the presence of two novel splice variants. Interestingly, these splice variants were significantly expressed in organs such as the kidney, but much less in liver. Heterologous expression of the full-length Oatp1b2 cDNA revealed that taurocholic acid, estrone 3-sulfate, estradiol 17beta-glucuronide and pravastatin are substrates of this transporter. The newly identified splice variants were unable to significantly transport substrate compounds due to defects in cell surface trafficking. Our findings of murine Oatp1b2 expression and function will likely aid in better defining species related differences in OATP transporter function and the use of mouse models to predict hepatic drug disposition in humans.


Assuntos
Transportadores de Ânions Orgânicos Sódio-Independentes/fisiologia , Isoformas de Proteínas/fisiologia , Processamento Alternativo , Animais , Western Blotting , Estrona/análogos & derivados , Estrona/metabolismo , Glucuronídeos/metabolismo , Humanos , Técnicas In Vitro , Rim/metabolismo , Fígado/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado , Camundongos , Microscopia de Fluorescência , Modelos Genéticos , Transportadores de Ânions Orgânicos , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Reação em Cadeia da Polimerase , Pravastatina/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto , Ácido Taurocólico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA