Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nature ; 585(7824): 225-233, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32908268

RESUMO

Isoprene is the dominant non-methane organic compound emitted to the atmosphere1-3. It drives ozone and aerosol production, modulates atmospheric oxidation and interacts with the global nitrogen cycle4-8. Isoprene emissions are highly uncertain1,9, as is the nonlinear chemistry coupling isoprene and the hydroxyl radical, OH-its primary sink10-13. Here we present global isoprene measurements taken from space using the Cross-track Infrared Sounder. Together with observations of formaldehyde, an isoprene oxidation product, these measurements provide constraints on isoprene emissions and atmospheric oxidation. We find that the isoprene-formaldehyde relationships measured from space are broadly consistent with the current understanding of isoprene-OH chemistry, with no indication of missing OH recycling at low nitrogen oxide concentrations. We analyse these datasets over four global isoprene hotspots in relation to model predictions, and present a quantification of isoprene emissions based directly on satellite measurements of isoprene itself. A major discrepancy emerges over Amazonia, where current underestimates of natural nitrogen oxide emissions bias modelled OH and hence isoprene. Over southern Africa, we find that a prominent isoprene hotspot is missing from bottom-up predictions. A multi-year analysis sheds light on interannual isoprene variability, and suggests the influence of the El Niño/Southern Oscillation.


Assuntos
Atmosfera/química , Butadienos/análise , Butadienos/química , Mapeamento Geográfico , Hemiterpenos/análise , Hemiterpenos/química , Imagens de Satélites , África , Austrália , Brasil , Conjuntos de Dados como Assunto , El Niño Oscilação Sul , Formaldeído/química , Radical Hidroxila/análise , Radical Hidroxila/química , Ciclo do Nitrogênio , Óxidos de Nitrogênio/análise , Óxidos de Nitrogênio/química , Oxirredução , Estações do Ano , Sudeste dos Estados Unidos
2.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34341119

RESUMO

Decades of air quality improvements have substantially reduced the motor vehicle emissions of volatile organic compounds (VOCs). Today, volatile chemical products (VCPs) are responsible for half of the petrochemical VOCs emitted in major urban areas. We show that VCP emissions are ubiquitous in US and European cities and scale with population density. We report significant VCP emissions for New York City (NYC), including a monoterpene flux of 14.7 to 24.4 kg ⋅ d-1 ⋅ km-2 from fragranced VCPs and other anthropogenic sources, which is comparable to that of a summertime forest. Photochemical modeling of an extreme heat event, with ozone well in excess of US standards, illustrates the significant impact of VCPs on air quality. In the most populated regions of NYC, ozone was sensitive to anthropogenic VOCs (AVOCs), even in the presence of biogenic sources. Within this VOC-sensitive regime, AVOCs contributed upwards of ∼20 ppb to maximum 8-h average ozone. VCPs accounted for more than 50% of this total AVOC contribution. Emissions from fragranced VCPs, including personal care and cleaning products, account for at least 50% of the ozone attributed to VCPs. We show that model simulations of ozone depend foremost on the magnitude of VCP emissions and that the addition of oxygenated VCP chemistry impacts simulations of key atmospheric oxidation products. NYC is a case study for developed megacities, and the impacts of VCPs on local ozone are likely similar for other major urban regions across North America or Europe.


Assuntos
Poluentes Atmosféricos/análise , Ozônio , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/química , Poluição do Ar , Cidades , Monitoramento Ambiental/métodos , Europa (Continente) , Humanos , Modelos Teóricos , Monoterpenos/análise , Cidade de Nova Iorque , Óxidos de Nitrogênio/análise , Óxidos de Nitrogênio/química , Odorantes/análise , Densidade Demográfica , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/química
3.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34635596

RESUMO

Oceans emit large quantities of dimethyl sulfide (DMS) to the marine atmosphere. The oxidation of DMS leads to the formation and growth of cloud condensation nuclei (CCN) with consequent effects on Earth's radiation balance and climate. The quantitative assessment of the impact of DMS emissions on CCN concentrations necessitates a detailed description of the oxidation of DMS in the presence of existing aerosol particles and clouds. In the unpolluted marine atmosphere, DMS is efficiently oxidized to hydroperoxymethyl thioformate (HPMTF), a stable intermediate in the chemical trajectory toward sulfur dioxide (SO2) and ultimately sulfate aerosol. Using direct airborne flux measurements, we demonstrate that the irreversible loss of HPMTF to clouds in the marine boundary layer determines the HPMTF lifetime (τHPMTF < 2 h) and terminates DMS oxidation to SO2 When accounting for HPMTF cloud loss in a global chemical transport model, we show that SO2 production from DMS is reduced by 35% globally and near-surface (0 to 3 km) SO2 concentrations over the ocean are lowered by 24%. This large, previously unconsidered loss process for volatile sulfur accelerates the timescale for the conversion of DMS to sulfate while limiting new particle formation in the marine atmosphere and changing the dynamics of aerosol growth. This loss process potentially reduces the spatial scale over which DMS emissions contribute to aerosol production and growth and weakens the link between DMS emission and marine CCN production with subsequent implications for cloud formation, radiative forcing, and climate.

4.
Environ Sci Technol ; 57(35): 13193-13204, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37611137

RESUMO

Volatile organic compounds (VOCs) emitted from biomass burning impact air quality and climate. Laboratory studies have shown that the variability in VOC speciation is largely driven by changes in combustion conditions and is only modestly impacted by fuel type. Here, we report that emissions of VOCs measured in ambient smoke emitted from western US wildfires can be parameterized by high- and low-temperature pyrolysis VOC profiles and are consistent with previous observations from laboratory simulated fires. This is demonstrated using positive matrix factorization (PMF) constrained by high- and low-temperature factors using VOC measurements obtained with a proton-transfer reaction time-of-flight mass spectrometer (PTR-ToF-MS) on board the NASA DC-8 during the FIREX-AQ (Fire Influence on Regional and Global Environments and Air Quality) project in 2019. A linear combination of high- and low-temperature factors described more than 70% of the variability of VOC emissions of long-lived VOCs in all sampled wildfire plumes. An additional factor attributable to atmospheric aging was required to parameterize short-lived and secondarily produced VOCs. The relative contribution of the PMF-derived high-temperature factor for a given fire plume was strongly correlated with the fire radiative power (FRP) at the estimated time of emission detected by satellite measurements. By combining the FRP with the fraction of the high-temperature PMF factor, the emission ratios (ERs) of VOCs to carbon monoxide (CO) in fresh wildfires were estimated and agree well with measured ERs (r2 = 0.80-0.93).


Assuntos
Incêndios , Compostos Orgânicos Voláteis , Incêndios Florestais , Biomassa
5.
Environ Sci Technol ; 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36607321

RESUMO

Increasing trends in biomass burning emissions significantly impact air quality in North America. Enhanced mixing ratios of ozone (O3) in urban areas during smoke-impacted periods occur through transport of O3 produced within the smoke or through mixing of pyrogenic volatile organic compounds (PVOCs) with urban nitrogen oxides (NOx = NO + NO2) to enhance local O3 production. Here, we analyze a set of detailed chemical measurements, including carbon monoxide (CO), NOx, and speciated volatile organic compounds (VOCs), to evaluate the effects of smoke transported from relatively local and long-range fires on O3 measured at a site in Boulder, Colorado, during summer 2020. Relative to the smoke-free period, CO, background O3, OH reactivity, and total VOCs increased during both the local and long-range smoke periods, but NOx mixing ratios remained approximately constant. These observations are consistent with transport of PVOCs (comprised primarily of oxygenates) but not NOx with the smoke and with the influence of O3 produced within the smoke upwind of the urban area. Box-model calculations show that local O3 production during all three periods was in the NOx-sensitive regime. Consequently, this locally produced O3 was similar in all three periods and was relatively insensitive to the increase in PVOCs. However, calculated NOx sensitivities show that PVOCs substantially increase O3 production in the transition and NOx-saturated (VOC-sensitive) regimes. These results suggest that (1) O3 produced during smoke transport is the main driver for O3 increases in NOx-sensitive urban areas and (2) smoke may cause an additional increase in local O3 production in NOx-saturated (VOC-sensitive) urban areas. Additional detailed VOC and NOx measurements in smoke impacted urban areas are necessary to broadly quantify the effects of wildfire smoke on urban O3 and develop effective mitigation strategies.

6.
Environ Sci Technol ; 57(44): 17011-17021, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37874964

RESUMO

Biomass burning particulate matter (BBPM) affects regional air quality and global climate, with impacts expected to continue to grow over the coming years. We show that studies of North American fires have a systematic altitude dependence in measured BBPM normalized excess mixing ratio (NEMR; ΔPM/ΔCO), with airborne and high-altitude studies showing a factor of 2 higher NEMR than ground-based measurements. We report direct airborne measurements of BBPM volatility that partially explain the difference in the BBPM NEMR observed across platforms. We find that when heated to 40-45 °C in an airborne thermal denuder, 19% of lofted smoke PM1 evaporates. Thermal denuder measurements are consistent with evaporation observed when a single smoke plume was sampled across a range of temperatures as the plume descended from 4 to 2 km altitude. We also demonstrate that chemical aging of smoke and differences in PM emission factors can not fully explain the platform-dependent differences. When the measured PM volatility is applied to output from the High Resolution Rapid Refresh Smoke regional model, we predict a lower PM NEMR at the surface compared to the lofted smoke measured by aircraft. These results emphasize the significant role that gas-particle partitioning plays in determining the air quality impacts of wildfire smoke.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Incêndios , Fumaça/análise , Poluentes Atmosféricos/análise , Biomassa , Poluição do Ar/análise , Material Particulado/análise , Aerossóis/análise , Monitoramento Ambiental/métodos
7.
Environ Sci Technol ; 56(12): 7564-7577, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35579536

RESUMO

Carbonaceous emissions from wildfires are a dynamic mixture of gases and particles that have important impacts on air quality and climate. Emissions that feed atmospheric models are estimated using burned area and fire radiative power (FRP) methods that rely on satellite products. These approaches show wide variability and have large uncertainties, and their accuracy is challenging to evaluate due to limited aircraft and ground measurements. Here, we present a novel method to estimate fire plume-integrated total carbon and speciated emission rates using a unique combination of lidar remote sensing aerosol extinction profiles and in situ measured carbon constituents. We show strong agreement between these aircraft-derived emission rates of total carbon and a detailed burned area-based inventory that distributes carbon emissions in time using Geostationary Operational Environmental Satellite FRP observations (Fuel2Fire inventory, slope = 1.33 ± 0.04, r2 = 0.93, and RMSE = 0.27). Other more commonly used inventories strongly correlate with aircraft-derived emissions but have wide-ranging over- and under-predictions. A strong correlation is found between carbon monoxide emissions estimated in situ with those derived from the TROPOspheric Monitoring Instrument (TROPOMI) for five wildfires with coincident sampling windows (slope = 0.99 ± 0.18; bias = 28.5%). Smoke emission coefficients (g MJ-1) enable direct estimations of primary gas and aerosol emissions from satellite FRP observations, and we derive these values for many compounds emitted by temperate forest fuels, including several previously unreported species.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Incêndios Florestais , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Gases , Tecnologia de Sensoriamento Remoto
8.
Proc Natl Acad Sci U S A ; 116(14): 6641-6646, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30886090

RESUMO

Atmospheric oxidation of natural and anthropogenic volatile organic compounds (VOCs) leads to secondary organic aerosol (SOA), which constitutes a major and often dominant component of atmospheric fine particulate matter (PM2.5). Recent work demonstrates that rapid autoxidation of organic peroxy radicals (RO2) formed during VOC oxidation results in highly oxygenated organic molecules (HOM) that efficiently form SOA. As NOx emissions decrease, the chemical regime of the atmosphere changes to one in which RO2 autoxidation becomes increasingly important, potentially increasing PM2.5, while oxidant availability driving RO2 formation rates simultaneously declines, possibly slowing regional PM2.5 formation. Using a suite of in situ aircraft observations and laboratory studies of HOM, together with a detailed molecular mechanism, we show that although autoxidation in an archetypal biogenic VOC system becomes more competitive as NOx decreases, absolute HOM production rates decrease due to oxidant reductions, leading to an overall positive coupling between anthropogenic NOx and localized biogenic SOA from autoxidation. This effect is observed in the Atlanta, Georgia, urban plume where HOM is enhanced in the presence of elevated NO, and predictions for Guangzhou, China, where increasing HOM-RO2 production coincides with increases in NO from 1990 to 2010. These results suggest added benefits to PM2.5 abatement strategies come with NOx emission reductions and have implications for aerosol-climate interactions due to changes in global SOA resulting from NOx interactions since the preindustrial era.

9.
Environ Sci Technol ; 55(1): 188-199, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33325693

RESUMO

With traffic emissions of volatile organic compounds (VOCs) decreasing rapidly over the last decades, the contributions of the emissions from other source categories, such as volatile chemical products (VCPs), have become more apparent in urban air. In this work, in situ measurements of various VOCs are reported for New York City, Pittsburgh, Chicago, and Denver. The magnitude of different emission sources relative to traffic is determined by measuring the urban enhancement of individual compounds relative to the enhancement of benzene, a known tracer of fossil fuel in the United States. The enhancement ratios of several VCP compounds to benzene correlate well with population density (R2 ∼ 0.6-0.8). These observations are consistent with the expectation that some human activity should correlate better with the population density than transportation emissions, due to the lower per capita rate of driving in denser cities. Using these data, together with a bottom-up fuel-based inventory of vehicle emissions and volatile chemical products (FIVE-VCP) inventory, we identify tracer compounds for different VCP categories: decamethylcyclopentasiloxane (D5-siloxane) for personal care products, monoterpenes for fragrances, p-dichlorobenzene for insecticides, D4-siloxane for adhesives, para-chlorobenzotrifluoride (PCBTF) for solvent-based coatings, and Texanol for water-based coatings. Furthermore, several other compounds are identified (e.g., ethanol) that correlate with population density and originate from multiple VCP sources. Ethanol and fragrances are among the most abundant and reactive VOCs associated with VCP emissions.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Chicago , Cidades , Monitoramento Ambiental , Humanos , Cidade de Nova Iorque , Estados Unidos , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise
10.
Environ Sci Technol ; 55(8): 4332-4343, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33720711

RESUMO

Despite decades of declining air pollution, urban U.S. areas are still affected by summertime ozone and wintertime particulate matter exceedance events. Volatile organic compounds (VOCs) are known precursors of secondary organic aerosol (SOA) and photochemically produced ozone. Urban VOC emission sources, including on-road transportation emissions, have decreased significantly over the past few decades through successful regulatory measures. These drastic reductions in VOC emissions have led to a change in the distribution of urban emissions and noncombustion sources of VOCs such as those from volatile chemical products (VCPs), which now account for a higher fraction of the urban VOC burden. Given this shift in emission sources, it is essential to quantify the relative contribution of VCP and mobile source emissions to urban pollution. Herein, ground site and mobile laboratory measurements of VOCs were performed. Two ground site locations with different population densities, Boulder, CO, and New York City (NYC), NY, were chosen in order to evaluate the influence of VCPs in cities with varying mixtures of VCPs and mobile source emissions. Positive matrix factorization was used to attribute hundreds of compounds to mobile- and VCP-dominated sources. VCP-dominated emissions contributed to 42 and 78% of anthropogenic VOC emissions for Boulder and NYC, respectively, while mobile source emissions contributed 58 and 22%. Apportioned VOC emissions were compared to those estimated from the Fuel-based Inventory of Vehicle Emissions and VCPs and agreed to within 25% for the bulk comparison and within 30% for more than half of individual compounds. The evaluated inventory was extended to other U.S. cities and it suggests that 50 to 80% of emissions, reactivity, and the SOA-forming potential of urban anthropogenic VOCs are associated with VCP-dominated sources, demonstrating their important role in urban U.S. air quality.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Cidades , Monitoramento Ambiental , Cidade de Nova Iorque , Ozônio/análise , Material Particulado/análise , Emissões de Veículos/análise , Compostos Orgânicos Voláteis/análise
11.
Environ Sci Technol ; 55(13): 9129-9139, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34161066

RESUMO

We present an updated fuel-based oil and gas (FOG) inventory with estimates of nitrogen oxide (NOx) emissions from oil and natural gas production in the contiguous US (CONUS). We compare the FOG inventory with aircraft-derived ("top-down") emissions for NOx over footprints that account for ∼25% of US oil and natural gas production. Across CONUS, we find that the bottom-up FOG inventory combined with other anthropogenic emissions is on average within ∼10% of top-down aircraft-derived NOx emissions. We also find good agreement in the trends of NOx from drilling- and production-phase activities, as inferred by satellites and in the bottom-up inventory. Leveraging tracer-tracer relationships derived from aircraft observations, methane (CH4) and non-methane volatile organic compound (NMVOC) emissions have been added to the inventory. Our total CONUS emission estimates for 2015 of oil and natural gas are 0.45 ± 0.14 Tg NOx/yr, 15.2 ± 3.0 Tg CH4/yr, and 5.7 ± 1.7 Tg NMVOC/yr. Compared to the US National Emissions Inventory and Greenhouse Gas Inventory, FOG NOx emissions are ∼40% lower, while inferred CH4 and NMVOC emissions are up to a factor of ∼2 higher. This suggests that NMVOC/NOx emissions from oil and gas basins are ∼3 times higher than current estimates and will likely affect how air quality models represent ozone formation downwind of oil and gas fields.


Assuntos
Poluentes Atmosféricos , Ozônio , Poluentes Atmosféricos/análise , Metano/análise , Gás Natural/análise , Campos de Petróleo e Gás , Ozônio/análise
12.
Environ Sci Technol ; 55(15): 10280-10290, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34255503

RESUMO

Understanding the efficiency and variability of photochemical ozone (O3) production from western wildfire plumes is important to accurately estimate their influence on North American air quality. A set of photochemical measurements were made from the NOAA Twin Otter research aircraft as a part of the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) experiment. We use a zero-dimensional (0-D) box model to investigate the chemistry driving O3 production in modeled plumes. Modeled afternoon plumes reached a maximum O3 mixing ratio of 140 ± 50 ppbv (average ± standard deviation) within 20 ± 10 min of emission compared to 76 ± 12 ppbv in 60 ± 30 min in evening plumes. Afternoon and evening maximum O3 isopleths indicate that plumes were near their peak in NOx efficiency. A radical budget describes the NOx volatile - organic compound (VOC) sensitivities of these plumes. Afternoon plumes displayed a rapid transition from VOC-sensitive to NOx-sensitive chemistry, driven by HOx (=OH + HO2) production from photolysis of nitrous acid (HONO) (48 ± 20% of primary HOx) and formaldehyde (HCHO) (26 ± 9%) emitted directly from the fire. Evening plumes exhibit a slower transition from peak NOx efficiency to VOC-sensitive O3 production caused by a reduction in photolysis rates and fire emissions. HOx production in evening plumes is controlled by HONO photolysis (53 ± 7%), HCHO photolysis (18 ± 9%), and alkene ozonolysis (17 ± 9%).


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Incêndios Florestais , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Ozônio/análise , Fotoquímica
13.
Environ Sci Technol ; 55(23): 15646-15657, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34817984

RESUMO

We present a novel method, the Gaussian observational model for edge to center heterogeneity (GOMECH), to quantify the horizontal chemical structure of plumes. GOMECH fits observations of short-lived emissions or products against a long-lived tracer (e.g., CO) to provide relative metrics for the plume width (wi/wCO) and center (bi/wCO). To validate GOMECH, we investigate OH and NO3 oxidation processes in smoke plumes sampled during FIREX-AQ (Fire Influence on Regional to Global Environments and Air Quality, a 2019 wildfire smoke study). An analysis of 430 crosswind transects demonstrates that nitrous acid (HONO), a primary source of OH, is narrower than CO (wHONO/wCO = 0.73-0.84 ± 0.01) and maleic anhydride (an OH oxidation product) is enhanced on plume edges (wmaleicanhydride/wCO = 1.06-1.12 ± 0.01). By contrast, NO3 production [P(NO3)] occurs mainly at the plume center (wP(NO3)/wCO = 0.91-1.00 ± 0.01). Phenolic emissions, highly reactive to OH and NO3, are narrower than CO (wphenol/wCO = 0.96 ± 0.03, wcatechol/wCO = 0.91 ± 0.01, and wmethylcatechol/wCO = 0.84 ± 0.01), suggesting that plume edge phenolic losses are the greatest. Yet, nitrophenolic aerosol, their oxidation product, is the greatest at the plume center (wnitrophenolicaerosol/wCO = 0.95 ± 0.02). In a large plume case study, GOMECH suggests that nitrocatechol aerosol is most associated with P(NO3). Last, we corroborate GOMECH with a large eddy simulation model which suggests most (55%) of nitrocatechol is produced through NO3 in our case study.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Biomassa , Fumaça/análise
14.
Environ Sci Technol ; 54(2): 714-725, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31851821

RESUMO

Mobile sampling studies have revealed enhanced levels of secondary organic aerosol (SOA) in source-rich urban environments. While these enhancements can be from rapidly reacting vehicular emissions, it was recently hypothesized that nontraditional emissions (volatile chemical products and upstream emissions) are emerging as important sources of urban SOA. We tested this hypothesis by using gas and aerosol mass spectrometry coupled with an oxidation flow reactor (OFR) to characterize pollution levels and SOA potentials in environments influenced by traditional emissions (vehicular, biogenic), and nontraditional emissions (e.g., paint fumes). We used two SOA models to assess contributions of vehicular and biogenic emissions to our observed SOA. The largest gap between observed and modeled SOA potential occurs in the morning-time urban street canyon environment, for which our model can only explain half of our observation. Contributions from VCP emissions (e.g., personal care products) are highest in this environment, suggesting that VCPs are an important missing source of precursors that would close the gap between modeled and observed SOA potential. Targeted OFR oxidation of nontraditional emissions shows that these emissions have SOA potentials that are similar, if not larger, compared to vehicular emissions. Laboratory experiments reveal large differences in SOA potentials of VCPs, implying the need for further characterization of these nontraditional emissions.


Assuntos
Poluentes Atmosféricos , Aerossóis , Oxirredução , Emissões de Veículos
15.
Environ Sci Technol ; 54(23): 14923-14935, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33205951

RESUMO

Despite the central role of reactive organic carbon (ROC) in the formation of secondary species that impact global air quality and climate, our assessment of ROC abundance and impacts is challenged by the diversity of species that contribute to it. We revisit measurements of ROC species made during two field campaigns in the United States: the 2013 SOAS campaign in forested Centreville, AL, and the 2010 CalNex campaign in urban Pasadena, CA. We find that average measured ROC concentrations are about twice as high in Pasadena (73.8 µgCsm-3) than in Centreville (36.5 µgCsm-3). However, the OH reactivity (OHR) measured at these sites is similar (20.1 and 19.3 s-1). The shortfall in OHR when summing up measured contributions is 31%, at Pasadena and 14% at Centreville, suggesting that there may be a larger reservoir of unmeasured ROC at the former site. Estimated O3 production and SOA potential (defined as concentration × yield) are both higher during CalNex than SOAS. This analysis suggests that the ROC in urban California is less reactive, but due to higher concentrations of oxides of nitrogen and hydroxyl radicals, is more efficient in terms of O3 and SOA production, than in the forested southeastern U.S.


Assuntos
Poluentes Atmosféricos , Ozônio , Aerossóis/análise , Poluentes Atmosféricos/análise , California , Carbono , Ozônio/análise , Sudeste dos Estados Unidos
16.
Environ Sci Technol ; 54(14): 8568-8579, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32559089

RESUMO

Biomass burning is the largest combustion-related source of volatile organic compounds (VOCs) to the atmosphere. We describe the development of a state-of-the-science model to simulate the photochemical formation of secondary organic aerosol (SOA) from biomass-burning emissions observed in dry (RH <20%) environmental chamber experiments. The modeling is supported by (i) new oxidation chamber measurements, (ii) detailed concurrent measurements of SOA precursors in biomass-burning emissions, and (iii) development of SOA parameters for heterocyclic and oxygenated aromatic compounds based on historical chamber experiments. We find that oxygenated aromatic compounds, including phenols and methoxyphenols, account for slightly less than 60% of the SOA formed and help our model explain the variability in the organic aerosol mass (R2 = 0.68) and O/C (R2 = 0.69) enhancement ratios observed across 11 chamber experiments. Despite abundant emissions, heterocyclic compounds that included furans contribute to ∼20% of the total SOA. The use of pyrolysis-temperature-based or averaged emission profiles to represent SOA precursors, rather than those specific to each fire, provide similar results to within 20%. Our findings demonstrate the necessity of accounting for oxygenated aromatics from biomass-burning emissions and their SOA formation in chemical mechanisms.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Aerossóis/análise , Poluentes Atmosféricos/análise , Atmosfera , Biomassa , Processos Fotoquímicos , Compostos Orgânicos Voláteis/análise
17.
Nature ; 514(7522): 351-4, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25274311

RESUMO

The United States is now experiencing the most rapid expansion in oil and gas production in four decades, owing in large part to implementation of new extraction technologies such as horizontal drilling combined with hydraulic fracturing. The environmental impacts of this development, from its effect on water quality to the influence of increased methane leakage on climate, have been a matter of intense debate. Air quality impacts are associated with emissions of nitrogen oxides (NOx = NO + NO2) and volatile organic compounds (VOCs), whose photochemistry leads to production of ozone, a secondary pollutant with negative health effects. Recent observations in oil- and gas-producing basins in the western United States have identified ozone mixing ratios well in excess of present air quality standards, but only during winter. Understanding winter ozone production in these regions is scientifically challenging. It occurs during cold periods of snow cover when meteorological inversions concentrate air pollutants from oil and gas activities, but when solar irradiance and absolute humidity, which are both required to initiate conventional photochemistry essential for ozone production, are at a minimum. Here, using data from a remote location in the oil and gas basin of northeastern Utah and a box model, we provide a quantitative assessment of the photochemistry that leads to these extreme winter ozone pollution events, and identify key factors that control ozone production in this unique environment. We find that ozone production occurs at lower NOx and much larger VOC concentrations than does its summertime urban counterpart, leading to carbonyl (oxygenated VOCs with a C = O moiety) photolysis as a dominant oxidant source. Extreme VOC concentrations optimize the ozone production efficiency of NOx. There is considerable potential for global growth in oil and gas extraction from shale. This analysis could help inform strategies to monitor and mitigate air quality impacts and provide broader insight into the response of winter ozone to primary pollutants.

18.
Chem Rev ; 117(21): 13187-13229, 2017 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-28976748

RESUMO

Proton-transfer-reaction mass spectrometry (PTR-MS) has been widely used to study the emissions, distributions, and chemical evolution of volatile organic compounds (VOCs) in the atmosphere. The applications of PTR-MS have greatly promoted understanding of VOC sources and their roles in air-quality issues. In the past two decades, many new mass spectrometric techniques have been applied in PTR-MS instruments, and the performance of PTR-MS has improved significantly. This Review summarizes these developments and recent applications of PTR-MS in the atmospheric sciences. We discuss the latest instrument development and characterization work on PTR-MS instruments, including the use of time-of-flight mass analyzers and new types of ion guiding interfaces. Here we review what has been learned about the specificity of different product ion signals for important atmospheric VOCs. We present some of the recent highlights of VOC research using PTR-MS including new observations in urban air, biomass-burning plumes, forested regions, oil and natural gas production regions, agricultural facilities, the marine environment, laboratory studies, and indoor air. Finally, we will summarize some further instrument developments that are aimed at improving the sensitivity and specificity of PTR-MS and extending its use to other applications in atmospheric sciences, e.g., aerosol measurements and OH reactivity measurements.

19.
Environ Sci Technol ; 53(5): 2529-2538, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30698424

RESUMO

Biomass burning (BB) is a large source of reactive compounds in the atmosphere. While the daytime photochemistry of BB emissions has been studied in some detail, there has been little focus on nighttime reactions despite the potential for substantial oxidative and heterogeneous chemistry. Here, we present the first analysis of nighttime aircraft intercepts of agricultural BB plumes using observations from the NOAA WP-3D aircraft during the 2013 Southeast Nexus (SENEX) campaign. We use these observations in conjunction with detailed chemical box modeling to investigate the formation and fate of oxidants (NO3, N2O5, O3, and OH) and BB volatile organic compounds (BBVOCs), using emissions representative of agricultural burns (rice straw) and western wildfires (ponderosa pine). Field observations suggest NO3 production was approximately 1 ppbv hr-1, while NO3 and N2O5 were at or below 3 pptv, indicating rapid NO3/N2O5 reactivity. Model analysis shows that >99% of NO3/N2O5 loss is due to BBVOC + NO3 reactions rather than aerosol uptake of N2O5. Nighttime BBVOC oxidation for rice straw and ponderosa pine fires is dominated by NO3 (72, 53%, respectively) but O3 oxidation is significant (25, 43%), leading to roughly 55% overnight depletion of the most reactive BBVOCs and NO2.


Assuntos
Atmosfera , Incêndios , Aerossóis , Aeronaves , Biomassa
20.
Anal Chem ; 90(20): 12011-12018, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30220198

RESUMO

We evaluate the performance of a new chemical ionization source called Vocus, consisting of a discharge reagent-ion source and focusing ion-molecule reactor (FIMR) for use in proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOF) measurements of volatile organic compounds (VOCs) in air. The reagent ion source uses a low-pressure discharge. The FIMR consists of a glass tube with a resistive coating, mounted inside a radio frequency (RF) quadrupole. The axial electric field is used to enhance ion collision energies and limit cluster ion formation. The RF field focuses ions to the central axis of the reactor and improves the detection efficiency of product ions. Ion trajectory calculations demonstrate the mass-dependent focusing of ions and enhancement of the ion collision energy by the RF field, in particular for the lighter ions. Product ion signals are increased by a factor of 10 when the RF field is applied (5000-18 000 cps ppbv-1), improving measurement precision and detection limits while operating at very similar reaction conditions as traditional PTR instruments. Because of the high water mixing ratio in the FIMR, we observe no dependence of the sensitivity on ambient sample humidity. In this work, the Vocus is interfaced to a TOF mass analyzer with a mass resolving power up to 12 000, which allows clear separation of isobaric ions, observed at nearly every nominal mass when measuring ambient air. Measurement response times are determined for a range of ketones with saturation vapor concentrations down to 5 × 104 µg m-3 and compare favorably with previously published results for a PTR-MS instrument.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA