Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Nature ; 629(8013): 851-860, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38560995

RESUMO

Despite tremendous efforts in the past decades, relationships among main avian lineages remain heavily debated without a clear resolution. Discrepancies have been attributed to diversity of species sampled, phylogenetic method and the choice of genomic regions1-3. Here we address these issues by analysing the genomes of 363 bird species4 (218 taxonomic families, 92% of total). Using intergenic regions and coalescent methods, we present a well-supported tree but also a marked degree of discordance. The tree confirms that Neoaves experienced rapid radiation at or near the Cretaceous-Palaeogene boundary. Sufficient loci rather than extensive taxon sampling were more effective in resolving difficult nodes. Remaining recalcitrant nodes involve species that are a challenge to model due to either extreme DNA composition, variable substitution rates, incomplete lineage sorting or complex evolutionary events such as ancient hybridization. Assessment of the effects of different genomic partitions showed high heterogeneity across the genome. We discovered sharp increases in effective population size, substitution rates and relative brain size following the Cretaceous-Palaeogene extinction event, supporting the hypothesis that emerging ecological opportunities catalysed the diversification of modern birds. The resulting phylogenetic estimate offers fresh insights into the rapid radiation of modern birds and provides a taxon-rich backbone tree for future comparative studies.


Assuntos
Aves , Evolução Molecular , Genoma , Filogenia , Animais , Aves/genética , Aves/classificação , Aves/anatomia & histologia , Encéfalo/anatomia & histologia , Extinção Biológica , Genoma/genética , Genômica , Densidade Demográfica , Masculino , Feminino
2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042801

RESUMO

Life on Earth has evolved from initial simplicity to the astounding complexity we experience today. Bacteria and archaea have largely excelled in metabolic diversification, but eukaryotes additionally display abundant morphological innovation. How have these innovations come about and what constraints are there on the origins of novelty and the continuing maintenance of biodiversity on Earth? The history of life and the code for the working parts of cells and systems are written in the genome. The Earth BioGenome Project has proposed that the genomes of all extant, named eukaryotes-about 2 million species-should be sequenced to high quality to produce a digital library of life on Earth, beginning with strategic phylogenetic, ecological, and high-impact priorities. Here we discuss why we should sequence all eukaryotic species, not just a representative few scattered across the many branches of the tree of life. We suggest that many questions of evolutionary and ecological significance will only be addressable when whole-genome data representing divergences at all of the branchings in the tree of life or all species in natural ecosystems are available. We envisage that a genomic tree of life will foster understanding of the ongoing processes of speciation, adaptation, and organismal dependencies within entire ecosystems. These explorations will resolve long-standing problems in phylogenetics, evolution, ecology, conservation, agriculture, bioindustry, and medicine.


Assuntos
Sequência de Bases/genética , Eucariotos/genética , Genômica/ética , Animais , Biodiversidade , Evolução Biológica , Ecologia , Ecossistema , Genoma , Genômica/métodos , Humanos , Filogenia
3.
Bioinformatics ; 39(39 Suppl 1): i185-i193, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37387151

RESUMO

MOTIVATION: Branch lengths and topology of a species tree are essential in most downstream analyses, including estimation of diversification dates, characterization of selection, understanding adaptation, and comparative genomics. Modern phylogenomic analyses often use methods that account for the heterogeneity of evolutionary histories across the genome due to processes such as incomplete lineage sorting. However, these methods typically do not generate branch lengths in units that are usable by downstream applications, forcing phylogenomic analyses to resort to alternative shortcuts such as estimating branch lengths by concatenating gene alignments into a supermatrix. Yet, concatenation and other available approaches for estimating branch lengths fail to address heterogeneity across the genome. RESULTS: In this article, we derive expected values of gene tree branch lengths in substitution units under an extension of the multispecies coalescent (MSC) model that allows substitutions with varying rates across the species tree. We present CASTLES, a new technique for estimating branch lengths on the species tree from estimated gene trees that uses these expected values, and our study shows that CASTLES improves on the most accurate prior methods with respect to both speed and accuracy. AVAILABILITY AND IMPLEMENTATION: CASTLES is available at https://github.com/ytabatabaee/CASTLES.


Assuntos
Evolução Biológica , Neoplasias Epiteliais e Glandulares , Humanos , Filogenia , Movimento Celular , Genômica
4.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36625535

RESUMO

MOTIVATION: Multiple sequence alignment (MSA) is a basic step in many bioinformatics pipelines. However, achieving highly accurate alignments on large datasets, especially those with sequence length heterogeneity, is a challenging task. Ultra-large multiple sequence alignment using Phylogeny-aware Profiles (UPP) is a method for MSA estimation that builds an ensemble of Hidden Markov Models (eHMM) to represent an estimated alignment on the full-length sequences in the input, and then adds the remaining sequences into the alignment using selected HMMs in the ensemble. Although UPP provides good accuracy, it is computationally intensive on large datasets. RESULTS: We present UPP2, a direct improvement on UPP. The main advance is a fast technique for selecting HMMs in the ensemble that allows us to achieve the same accuracy as UPP but with greatly reduced runtime. We show that UPP2 produces more accurate alignments compared to leading MSA methods on datasets exhibiting substantial sequence length heterogeneity and is among the most accurate otherwise. AVAILABILITY AND IMPLEMENTATION: https://github.com/gillichu/sepp. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Software , Alinhamento de Sequência , Filogenia
5.
Bioinformatics ; 38(Suppl 1): i109-i117, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35758805

RESUMO

MOTIVATION: Rooted species trees are a basic model with multiple applications throughout biology, including understanding adaptation, biodiversity, phylogeography and co-evolution. Because most species tree estimation methods produce unrooted trees, methods for rooting these trees have been developed. However, most rooting methods either rely on prior biological knowledge or assume that evolution is close to clock-like, which is not usually the case. Furthermore, most prior rooting methods do not account for biological processes that create discordance between gene trees and species trees. RESULTS: We present Quintet Rooting (QR), a method for rooting species trees based on a proof of identifiability of the rooted species tree under the multi-species coalescent model established by Allman, Degnan and Rhodes (J. Math. Biol., 2011). We show that QR is generally more accurate than other rooting methods, except under extreme levels of gene tree estimation error. AVAILABILITY AND IMPLEMENTATION: Quintet Rooting is available in open source form at https://github.com/ytabatabaee/Quintet-Rooting. The simulated datasets used in this study are from a prior study and are available at https://www.ideals.illinois.edu/handle/2142/55319. The biological dataset used in this study is also from a prior study and is available at http://gigadb.org/dataset/101041. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Modelos Genéticos , Filogenia
6.
Bioinformatics ; 38(4): 918-924, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34791036

RESUMO

SUMMARY: Multiple sequence alignment is an initial step in many bioinformatics pipelines, including phylogeny estimation, protein structure prediction and taxonomic identification of reads produced in amplicon or metagenomic datasets, etc. Yet, alignment estimation is challenging on datasets that exhibit substantial sequence length heterogeneity, and especially when the datasets have fragmentary sequences as a result of including reads or contigs generated by next-generation sequencing technologies. Here, we examine techniques that have been developed to improve alignment estimation when datasets contain substantial numbers of fragmentary sequences. We find that MAGUS, a recently developed MSA method, is fairly robust to fragmentary sequences under many conditions, and that using a two-stage approach where MAGUS is used to align selected 'backbone sequences' and the remaining sequences are added into the alignment using ensembles of Hidden Markov Models further improves alignment accuracy. The combination of MAGUS with the ensemble of eHMMs (i.e. MAGUS+eHMMs) clearly improves on UPP, the previous leading method for aligning datasets with high levels of fragmentation. AVAILABILITY AND IMPLEMENTATION: UPP is available on https://github.com/smirarab/sepp, and MAGUS is available on https://github.com/vlasmirnov/MAGUS. MAGUS+eHMMs can be performed by running MAGUS to obtain the backbone alignment, and then using the backbone alignment as an input to UPP. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Proteínas , Alinhamento de Sequência , Proteínas/genética , Proteínas/química , Metagenoma , Filogenia
7.
Syst Biol ; 71(3): 610-629, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-34450658

RESUMO

Species tree inference from gene family trees is a significant problem in computational biology. However, gene tree heterogeneity, which can be caused by several factors including gene duplication and loss, makes the estimation of species trees very challenging. While there have been several species tree estimation methods introduced in recent years to specifically address gene tree heterogeneity due to gene duplication and loss (such as DupTree, FastMulRFS, ASTRAL-Pro, and SpeciesRax), many incur high cost in terms of both running time and memory. We introduce a new approach, DISCO, that decomposes the multi-copy gene family trees into many single copy trees, which allows for methods previously designed for species tree inference in a single copy gene tree context to be used. We prove that using DISCO with ASTRAL (i.e., ASTRAL-DISCO) is statistically consistent under the GDL model, provided that ASTRAL-Pro correctly roots and tags each gene family tree. We evaluate DISCO paired with different methods for estimating species trees from single copy genes (e.g., ASTRAL, ASTRID, and IQ-TREE) under a wide range of model conditions, and establish that high accuracy can be obtained even when ASTRAL-Pro is not able to correctly roots and tags the gene family trees. We also compare results using MI, an alternative decomposition strategy from Yang Y. and Smith S.A. (2014), and find that DISCO provides better accuracy, most likely as a result of covering more of the gene family tree leafset in the output decomposition. [Concatenation analysis; gene duplication and loss; species tree inference; summary method.].


Assuntos
Algoritmos , Duplicação Gênica , Biologia Computacional , Modelos Genéticos , Linhagem , Filogenia
8.
Bioinformatics ; 37(12): 1666-1672, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-33252662

RESUMO

MOTIVATION: The estimation of large multiple sequence alignments (MSAs) is a basic bioinformatics challenge. Divide-and-conquer is a useful approach that has been shown to improve the scalability and accuracy of MSA estimation in established methods such as SATé and PASTA. In these divide-and-conquer strategies, a sequence dataset is divided into disjoint subsets, alignments are computed on the subsets using base MSA methods (e.g. MAFFT), and then merged together into an alignment on the full dataset. RESULTS: We present MAGUS, Multiple sequence Alignment using Graph clUStering, a new technique for computing large-scale alignments. MAGUS is similar to PASTA in that it uses nearly the same initial steps (starting tree, similar decomposition strategy, and MAFFT to compute subset alignments), but then merges the subset alignments using the Graph Clustering Merger, a new method for combining disjoint alignments that we present in this study. Our study, on a heterogeneous collection of biological and simulated datasets, shows that MAGUS produces improved accuracy and is faster than PASTA on large datasets, and matches it on smaller datasets. AVAILABILITY AND IMPLEMENTATION: MAGUS: https://github.com/vlasmirnov/MAGUS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Software , Análise por Conglomerados , Alinhamento de Sequência
9.
Bioinformatics ; 37(24): 4677-4683, 2021 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-34320635

RESUMO

MOTIVATION: BAli-Phy, a popular Bayesian method that co-estimates multiple sequence alignments and phylogenetic trees, is a rigorous statistical method, but due to its computational requirements, it has generally been limited to relatively small datasets (at most about 100 sequences). Here, we repurpose BAli-Phy as a 'phylogeny-aware' alignment method: we estimate the phylogeny from the input of unaligned sequences, and then use that as a fixed tree within BAli-Phy. RESULTS: We show that this approach achieves high accuracy, greatly superior to Prank, the current most popular phylogeny-aware alignment method, and is even more accurate than MAFFT, one of the top performing alignment methods in common use. Furthermore, this approach can be used to align very large datasets (up to 1000 sequences in this study). AVAILABILITY AND IMPLEMENTATION: See https://doi.org/10.13012/B2IDB-7863273_V1 for datasets used in this study. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Filogenia , Teorema de Bayes , Indonésia , Alinhamento de Sequência
10.
Bioinformatics ; 37(16): 2317-2324, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-33576396

RESUMO

MOTIVATION: ASTRAL is the current leading method for species tree estimation from phylogenomic datasets (i.e. hundreds to thousands of genes) that addresses gene tree discord resulting from incomplete lineage sorting (ILS). ASTRAL is statistically consistent under the multi-locus coalescent model (MSC), runs in polynomial time, and is able to run on large datasets. Key to ASTRAL's algorithm is the use of dynamic programming to find an optimal solution to the MQSST (maximum quartet support supertree) within a constraint space that it computes from the input. Yet, ASTRAL can fail to complete within reasonable timeframes on large datasets with many genes and species, because in these cases the constraint space it computes is too large. RESULTS: Here, we introduce FASTRAL, a phylogenomic estimation method. FASTRAL is based on ASTRAL, but uses a different technique for constructing the constraint space. The technique we use to define the constraint space maintains statistical consistency and is polynomial time; thus we prove that FASTRAL is a polynomial time algorithm that is statistically consistent under the MSC. Our performance study on both biological and simulated datasets demonstrates that FASTRAL matches or improves on ASTRAL with respect to species tree topology accuracy (and under high ILS conditions it is statistically significantly more accurate), while being dramatically faster-especially on datasets with large numbers of genes and high ILS-due to using a significantly smaller constraint space. AVAILABILITYAND IMPLEMENTATION: FASTRAL is available in open-source form at https://github.com/PayamDiba/FASTRAL. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

11.
Bioinformatics ; 37(13): 1839-1845, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-33471121

RESUMO

MOTIVATION: Metagenomics has revolutionized microbiome research by enabling researchers to characterize the composition of complex microbial communities. Taxonomic profiling is one of the critical steps in metagenomic analyses. Marker genes, which are single-copy and universally found across Bacteria and Archaea, can provide accurate estimates of taxon abundances in the sample. RESULTS: We present TIPP2, a marker gene-based abundance profiling method, which combines phylogenetic placement with statistical techniques to control classification precision and recall. TIPP2 includes an updated set of reference packages and several algorithmic improvements over the original TIPP method. We find that TIPP2 provides comparable or better estimates of abundance than other profiling methods (including Bracken, mOTUsv2 and MetaPhlAn2), and strictly dominates other methods when there are under-represented (novel) genomes present in the dataset. AVAILABILITY AND IMPLEMENTATION: The code for our method is freely available in open-source form at https://github.com/smirarab/sepp/blob/tipp2/README.TIPP.md. The code and procedure to create new reference packages for TIPP2 are available at https://github.com/shahnidhi/TIPP_reference_package. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

12.
Syst Biol ; 70(2): 268-282, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32692823

RESUMO

Phylogeny estimation is a major step in many biological studies, and has many well known challenges. With the dropping cost of sequencing technologies, biologists now have increasingly large datasets available for use in phylogeny estimation. Here we address the challenge of estimating a tree given large datasets with a combination of full-length sequences and fragmentary sequences, which can arise due to a variety of reasons, including sample collection, sequencing technologies, and analytical pipelines. We compare two basic approaches: (1) computing an alignment on the full dataset and then computing a maximum likelihood tree on the alignment, or (2) constructing an alignment and tree on the full length sequences and then using phylogenetic placement to add the remaining sequences (which will generally be fragmentary) into the tree. We explore these two approaches on a range of simulated datasets, each with 1000 sequences and varying in rates of evolution, and two biological datasets. Our study shows some striking performance differences between methods, especially when there is substantial sequence length heterogeneity and high rates of evolution. We find in particular that using UPP to align sequences and RAxML to compute a tree on the alignment provides the best accuracy, substantially outperforming trees computed using phylogenetic placement methods. We also find that FastTree has poor accuracy on alignments containing fragmentary sequences. Overall, our study provides insights into the literature comparing different methods and pipelines for phylogenetic estimation, and suggests directions for future method development. [Phylogeny estimation, sequence length heterogeneity, phylogenetic placement.].


Assuntos
Algoritmos , Filogenia , Alinhamento de Sequência , Análise de Sequência
13.
Bioinformatics ; 36(Suppl_1): i57-i65, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32657396

RESUMO

MOTIVATION: Species tree estimation is a basic part of biological research but can be challenging because of gene duplication and loss (GDL), which results in genes that can appear more than once in a given genome. All common approaches in phylogenomic studies either reduce available data or are error-prone, and thus, scalable methods that do not discard data and have high accuracy on large heterogeneous datasets are needed. RESULTS: We present FastMulRFS, a polynomial-time method for estimating species trees without knowledge of orthology. We prove that FastMulRFS is statistically consistent under a generic model of GDL when adversarial GDL does not occur. Our extensive simulation study shows that FastMulRFS matches the accuracy of MulRF (which tries to solve the same optimization problem) and has better accuracy than prior methods, including ASTRAL-multi (the only method to date that has been proven statistically consistent under GDL), while being much faster than both methods. AVAILABILITY AND IMPEMENTATION: FastMulRFS is available on Github (https://github.com/ekmolloy/fastmulrfs). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Duplicação Gênica , Biometria , Simulação por Computador , Filogenia
14.
BMC Genomics ; 21(Suppl 2): 235, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32299343

RESUMO

BACKGROUND: Phylogeny estimation is an important part of much biological research, but large-scale tree estimation is infeasible using standard methods due to computational issues. Recently, an approach to large-scale phylogeny has been proposed that divides a set of species into disjoint subsets, computes trees on the subsets, and then merges the trees together using a computed matrix of pairwise distances between the species. The novel component of these approaches is the last step: Disjoint Tree Merger (DTM) methods. RESULTS: We present GTM (Guide Tree Merger), a polynomial time DTM method that adds edges to connect the subset trees, so as to provably minimize the topological distance to a computed guide tree. Thus, GTM performs unblended mergers, unlike the previous DTM methods. Yet, despite the potential limitation, our study shows that GTM has excellent accuracy, generally matching or improving on two previous DTMs, and is much faster than both. CONCLUSIONS: The proposed GTM approach to the DTM problem is a useful new tool for large-scale phylogenomic analysis, and shows the surprising potential for unblended DTM methods.


Assuntos
Genômica/métodos , Filogenia , Algoritmos , Simulação por Computador , Bases de Dados Genéticas , Éxons , Genes , Especiação Genética , Modelos Genéticos , Projetos de Pesquisa , Software
15.
BMC Genomics ; 21(1): 133, 2020 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-32039710

RESUMO

After publication of [1], the authors were informed by John A. Rhodes of a counterexample to Theorem 11 of [1].

16.
Bioinformatics ; 35(14): i417-i426, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31510668

RESUMO

MOTIVATION: At RECOMB-CG 2018, we presented NJMerge and showed that it could be used within a divide-and-conquer framework to scale computationally intensive methods for species tree estimation to larger datasets. However, NJMerge has two significant limitations: it can fail to return a tree and, when used within the proposed divide-and-conquer framework, has O(n5) running time for datasets with n species. RESULTS: Here we present a new method called 'TreeMerge' that improves on NJMerge in two ways: it is guaranteed to return a tree and it has dramatically faster running time within the same divide-and-conquer framework-only O(n2) time. We use a simulation study to evaluate TreeMerge in the context of multi-locus species tree estimation with two leading methods, ASTRAL-III and RAxML. We find that the divide-and-conquer framework using TreeMerge has a minor impact on species tree accuracy, dramatically reduces running time, and enables both ASTRAL-III and RAxML to complete on datasets (that they would otherwise fail on), when given 64 GB of memory and 48 h maximum running time. Thus, TreeMerge is a step toward a larger vision of enabling researchers with limited computational resources to perform large-scale species tree estimation, which we call Phylogenomics for All. AVAILABILITY AND IMPLEMENTATION: TreeMerge is publicly available on Github (http://github.com/ekmolloy/treemerge). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Filogenia , Simulação por Computador , Coleta de Dados
17.
Syst Biol ; 68(3): 396-411, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30329135

RESUMO

The estimation of multiple sequence alignments of protein sequences is a basic step in many bioinformatics pipelines, including protein structure prediction, protein family identification, and phylogeny estimation. Statistical coestimation of alignments and trees under stochastic models of sequence evolution has long been considered the most rigorous technique for estimating alignments and trees, but little is known about the accuracy of such methods on biological benchmarks. We report the results of an extensive study evaluating the most popular protein alignment methods as well as the statistical coestimation method BAli-Phy on 1192 protein data sets from established benchmarks as well as on 120 simulated data sets. Our study (which used more than 230 CPU years for the BAli-Phy analyses alone) shows that BAli-Phy has better precision and recall (with respect to the true alignments) than the other alignment methods on the simulated data sets but has consistently lower recall on the biological benchmarks (with respect to the reference alignments) than many of the other methods. In other words, we find that BAli-Phy systematically underaligns when operating on biological sequence data but shows no sign of this on simulated data. There are several potential causes for this change in performance, including model misspecification, errors in the reference alignments, and conflicts between structural alignment and evolutionary alignments, and future research is needed to determine the most likely explanation. We conclude with a discussion of the potential ramifications for each of these possibilities. [BAli-Phy; homology; multiple sequence alignment; protein sequences; structural alignment.].


Assuntos
Classificação/métodos , Bases de Dados de Proteínas , Modelos Estatísticos , Alinhamento de Sequência/normas , Simulação por Computador , Conjuntos de Dados como Assunto
18.
Syst Biol ; 68(2): 281-297, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30247732

RESUMO

With advances in sequencing technologies, there are now massive amounts of genomic data from across all life, leading to the possibility that a robust Tree of Life can be constructed. However, "gene tree heterogeneity", which is when different genomic regions can evolve differently, is a common phenomenon in multi-locus data sets, and reduces the accuracy of standard methods for species tree estimation that do not take this heterogeneity into account. New methods have been developed for species tree estimation that specifically address gene tree heterogeneity, and that have been proven to converge to the true species tree when the number of loci and number of sites per locus both increase (i.e., the methods are said to be "statistically consistent"). Yet, little is known about the biologically realistic condition where the number of sites per locus is bounded. We show that when the sequence length of each locus is bounded (by any arbitrarily chosen value), the most common approaches to species tree estimation that take heterogeneity into account (i.e., traditional fully partitioned concatenated maximum likelihood and newer approaches, called summary methods, that estimate the species tree by combining estimated gene trees) are not statistically consistent, even when the heterogeneity is extremely constrained. The main challenge is the presence of conditions such as long branch attraction that create biased tree estimation when the number of sites is restricted. Hence, our study uncovers a fundamental challenge to species tree estimation using both traditional and new methods.


Assuntos
Classificação/métodos , Filogenia , Funções Verossimilhança , Modelos Genéticos
19.
Bioinformatics ; 34(22): 3939-3941, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29931282

RESUMO

Summary: PASTA is a multiple sequence method that uses divide-and-conquer plus iteration to enable base alignment methods to scale with high accuracy to large sequence datasets. By default, PASTA included MAFFT L-INS-i; our new extension of PASTA enables the use of MAFFT G-INS-i, MAFFT Homologs, CONTRAlign and ProbCons. We analyzed the performance of each base method and PASTA using these base methods on 224 datasets from BAliBASE 4 with at least 50 sequences. We show that PASTA enables the most accurate base methods to scale to larger datasets at reduced computational effort, and generally improves alignment and tree accuracy on the largest BAliBASE datasets. Availability and implementation: PASTA is available at https://github.com/kodicollins/pasta and has also been integrated into the original PASTA repository at https://github.com/smirarab/pasta. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Proteínas/química , Alinhamento de Sequência , Software , Biologia Computacional , Bases de Dados de Proteínas
20.
Syst Biol ; 67(2): 285-303, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29029338

RESUMO

With the increasing availability of whole genome data, many species trees are being constructed from hundreds to thousands of loci. Although concatenation analysis using maximum likelihood is a standard approach for estimating species trees, it does not account for gene tree heterogeneity, which can occur due to many biological processes, such as incomplete lineage sorting. Coalescent species tree estimation methods, many of which are statistically consistent in the presence of incomplete lineage sorting, include Bayesian methods that coestimate the gene trees and the species tree, summary methods that compute the species tree by combining estimated gene trees, and site-based methods that infer the species tree from site patterns in the alignments of different loci. Due to concerns that poor quality loci will reduce the accuracy of estimated species trees, many recent phylogenomic studies have removed or filtered genes on the basis of phylogenetic signal and/or missing data prior to inferring species trees; little is known about the performance of species tree estimation methods when gene filtering is performed. We examine how incomplete lineage sorting, phylogenetic signal of individual loci, and missing data affect the absolute and the relative accuracy of species tree estimation methods and show how these properties affect methods' responses to gene filtering strategies. In particular, summary methods (ASTRAL-II, ASTRID, and MP-EST), a site-based coalescent method (SVDquartets within PAUP*), and an unpartitioned concatenation analysis using maximum likelihood (RAxML) were evaluated on a heterogeneous collection of simulated multilocus data sets, and the following trends were observed. Filtering genes based on gene tree estimation error improved the accuracy of the summary methods when levels of incomplete lineage sorting were low to moderate but did not benefit the summary methods under higher levels of incomplete lineage sorting, unless gene tree estimation error was also extremely high (a model condition with few replicates). Neither SVDquartets nor concatenation analysis using RAxML benefited from filtering genes on the basis of gene tree estimation error. Finally, filtering genes based on missing data was either neutral (i.e., did not impact accuracy) or else reduced the accuracy of all five methods. By providing insight into the consequences of gene filtering, we offer recommendations for estimating species tree in the presence of incomplete lineage sorting and reconcile seemingly conflicting observations made in prior studies regarding the impact of gene filtering.


Assuntos
Classificação/métodos , Especiação Genética , Modelos Genéticos , Filogenia , Simulação por Computador , Genômica , Análise de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA