Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 628(8009): 844-853, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570685

RESUMO

Mitochondria are critical modulators of antiviral tolerance through the release of mitochondrial RNA and DNA (mtDNA and mtRNA) fragments into the cytoplasm after infection, activating virus sensors and type-I interferon (IFN-I) response1-4. The relevance of these mechanisms for mitochondrial diseases remains understudied. Here we investigated mitochondrial recessive ataxia syndrome (MIRAS), which is caused by a common European founder mutation in DNA polymerase gamma (POLG1)5. Patients homozygous for the MIRAS variant p.W748S show exceptionally variable ages of onset and symptoms5, indicating that unknown modifying factors contribute to disease manifestation. We report that the mtDNA replicase POLG1 has a role in antiviral defence mechanisms to double-stranded DNA and positive-strand RNA virus infections (HSV-1, TBEV and SARS-CoV-2), and its p.W748S variant dampens innate immune responses. Our patient and knock-in mouse data show that p.W748S compromises mtDNA replisome stability, causing mtDNA depletion, aggravated by virus infection. Low mtDNA and mtRNA release into the cytoplasm and a slow IFN response in MIRAS offer viruses an early replicative advantage, leading to an augmented pro-inflammatory response, a subacute loss of GABAergic neurons and liver inflammation and necrosis. A population databank of around 300,000 Finnish individuals6 demonstrates enrichment of immunodeficient traits in carriers of the POLG1 p.W748S mutation. Our evidence suggests that POLG1 defects compromise antiviral tolerance, triggering epilepsy and liver disease. The finding has important implications for the mitochondrial disease spectrum, including epilepsy, ataxia and parkinsonism.


Assuntos
Alelos , DNA Polimerase gama , Vírus da Encefalite Transmitidos por Carrapatos , Herpesvirus Humano 1 , Tolerância Imunológica , SARS-CoV-2 , Animais , Feminino , Humanos , Masculino , Camundongos , Idade de Início , COVID-19/imunologia , COVID-19/virologia , COVID-19/genética , DNA Polimerase gama/genética , DNA Polimerase gama/imunologia , DNA Polimerase gama/metabolismo , DNA Mitocondrial/imunologia , DNA Mitocondrial/metabolismo , Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/genética , Encefalite Transmitida por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/virologia , Efeito Fundador , Técnicas de Introdução de Genes , Herpes Simples/genética , Herpes Simples/imunologia , Herpes Simples/virologia , Herpesvirus Humano 1/imunologia , Tolerância Imunológica/genética , Tolerância Imunológica/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/imunologia , Mutação , RNA Mitocondrial/imunologia , RNA Mitocondrial/metabolismo , SARS-CoV-2/imunologia
2.
Am J Hum Genet ; 111(4): 714-728, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579669

RESUMO

Argininosuccinate lyase deficiency (ASLD) is a recessive metabolic disorder caused by variants in ASL. In an essential step in urea synthesis, ASL breaks down argininosuccinate (ASA), a pathognomonic ASLD biomarker. The severe disease forms lead to hyperammonemia, neurological injury, and even early death. The current treatments are unsatisfactory, involving a strict low-protein diet, arginine supplementation, nitrogen scavenging, and in some cases, liver transplantation. An unmet need exists for improved, efficient therapies. Here, we show the potential of a lipid nanoparticle-mediated CRISPR approach using adenine base editors (ABEs) for ASLD treatment. To model ASLD, we first generated human-induced pluripotent stem cells (hiPSCs) from biopsies of individuals homozygous for the Finnish founder variant (c.1153C>T [p.Arg385Cys]) and edited this variant using the ABE. We then differentiated the hiPSCs into hepatocyte-like cells that showed a 1,000-fold decrease in ASA levels compared to those of isogenic non-edited cells. Lastly, we tested three different FDA-approved lipid nanoparticle formulations to deliver the ABE-encoding RNA and the sgRNA targeting the ASL variant. This approach efficiently edited the ASL variant in fibroblasts with no apparent cell toxicity and minimal off-target effects. Further, the treatment resulted in a significant decrease in ASA, to levels of healthy donors, indicating restoration of the urea cycle. Our work describes a highly efficient approach to editing the disease-causing ASL variant and restoring the function of the urea cycle. This method relies on RNA delivered by lipid nanoparticles, which is compatible with clinical applications, improves its safety profile, and allows for scalable production.


Assuntos
Argininossuccinato Liase , Acidúria Argininossuccínica , Humanos , Argininossuccinato Liase/genética , Acidúria Argininossuccínica/genética , Acidúria Argininossuccínica/terapia , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , RNA Guia de Sistemas CRISPR-Cas , Ureia , Edição de Genes/métodos
3.
Mol Ther ; 32(8): 2535-2548, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38867450

RESUMO

Stem and progenitor cells hold great promise for regenerative medicine and gene therapy approaches. However, transplantation of living cells entails a fundamental risk of unwanted growth, potentially exacerbated by CRISPR-Cas9 or other genetic manipulations. Here, we describe a safety system to control cell proliferation while allowing robust and efficient cell manufacture, without any added genetic elements. Inactivating TYMS, a key nucleotide metabolism enzyme, in several cell lines resulted in cells that proliferate only when supplemented with exogenous thymidine. Under supplementation, TYMS-/--pluripotent stem cells proliferate, produce teratomas, and successfully differentiate into potentially therapeutic cell types such as pancreatic ß cells. Our results suggest that supplementation with exogenous thymidine affects stem cell proliferation, but not the function of stem cell-derived cells. After differentiation, postmitotic cells do not require thymidine in vitro or in vivo, as shown by the production of functional human insulin in mice up to 5 months after implantation of stem cell-derived pancreatic tissue.


Assuntos
Diferenciação Celular , Proliferação de Células , Timidina , Timidilato Sintase , Humanos , Animais , Camundongos , Timidina/metabolismo , Timidilato Sintase/genética , Timidilato Sintase/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Linhagem Celular , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/citologia , Sistemas CRISPR-Cas
4.
Bioethics ; 34(1): 16-32, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31877579

RESUMO

Potential applications of genome editing in assisted reproductive technology (ART) raise a vast array of strong opinions, emotional reactions and divergent perceptions. Acknowledging the need for caution and respecting such reactions, we observe that at least some are based on either a misunderstanding of the science or misconceptions about the content and flexibility of the existing legal frameworks. Combining medical, legal and ethical expertise, we present and discuss regulatory responses at the national, European and international levels. The discussion has an EU starting point and is meant as a contribution to the general international regulatory debate. Overall, this paper concludes that gene editing technologies should not be regulated autonomously. Rather, potential uses should be regulated under general, existing frameworks and where applicable by reference to sufficiently equivalent technologies and techniques already subject to specific regulation. To be clear, we do not argue for the hasty introduction of gene editing as a reproductive treatment option in the immediate future. We call for caution with regard to overreaching moratoria and prohibitions that will also affect basic research. We recommend flexible regulations that allow for further responsible research into the potential development of the technology. We call for an open and inclusive debate and argue that scientific communication should claim a more prominent role to counter the danger of widespread misinformation. A high level of transparency and accuracy should guide scientific communication while simultaneously global-scale responsibility and governance should be fostered by promoting cross-disciplinary thinking and multi-level stakeholder involvement in legal and regulatory processes.


Assuntos
Edição de Genes/ética , Edição de Genes/legislação & jurisprudência , Células Germinativas , Técnicas de Reprodução Assistida/ética , Técnicas de Reprodução Assistida/legislação & jurisprudência , Difusão de Inovações , Pesquisas com Embriões/ética , União Europeia , Edição de Genes/tendências , Humanos , Direito Internacional , Técnicas de Reprodução Assistida/tendências
5.
Sci Rep ; 14(1): 4306, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383731

RESUMO

Rare or novel missense variants in large genes such as TTN and NEB are frequent in the general population, which hampers the interpretation of putative disease-causing biallelic variants in patients with sporadic neuromuscular disorders. Often, when the first initial genetic analysis is performed, the reconstructed haplotype, i.e. phasing information of the variants is missing. Segregation analysis increases the diagnostic turnaround time and is not always possible if samples from family members are lacking. To overcome this difficulty, we investigated how well the linked-read technology succeeded to phase variants in these large genes, and whether it improved the identification of structural variants. Linked-read sequencing data of nemaline myopathy, distal myopathy, and proximal myopathy patients were analyzed for phasing, single nucleotide variants, and structural variants. Variant phasing was successful in the large muscle genes studied. The longest continuous phase blocks were gained using high-quality DNA samples with long DNA fragments. Homozygosity increased the number of phase blocks, especially in exome sequencing samples lacking intronic variation. In our cohort, linked-read sequencing added more information about the structural variation but did not lead to a molecular genetic diagnosis. The linked-read technology can support the clinical diagnosis of neuromuscular and other genetic disorders.


Assuntos
Doenças Musculares , Miopatias da Nemalina , Doenças Neuromusculares , Humanos , Haplótipos/genética , Doenças Neuromusculares/diagnóstico , Doenças Neuromusculares/genética , DNA , Sequenciamento de Nucleotídeos em Larga Escala
6.
Cell Rep Med ; 5(4): 101503, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38593810

RESUMO

In monogenic autoinflammatory diseases, mutations in genes regulating innate immune responses often lead to uncontrolled activation of inflammasome pathways or the type I interferon (IFN-I) response. We describe a mechanism of autoinflammation potentially predisposing patients to life-threatening necrotizing soft tissue inflammation. Six unrelated families are identified in which affected members present with necrotizing fasciitis or severe soft tissue inflammations. Exome sequencing reveals truncating monoallelic loss-of-function variants of nuclear factor κ light-chain enhancer of activated B cells (NFKB1) in affected patients. In patients' macrophages and in NFKB1-variant-bearing THP-1 cells, activation increases both interleukin (IL)-1ß secretion and IFN-I signaling. Truncation of NF-κB1 impairs autophagy, accompanied by the accumulation of reactive oxygen species and reduced degradation of inflammasome receptor nucleotide-binding oligomerization domain, leucine-rich repeat-containing protein 3 (NLRP3), and Toll/IL-1 receptor domain-containing adaptor protein inducing IFN-ß (TRIF), thus leading to combined excessive inflammasome and IFN-I activity. Many of the patients respond to anti-inflammatory treatment, and targeting IL-1ß and/or IFN-I signaling could represent a therapeutic approach for these patients.


Assuntos
Fasciite Necrosante , Interferon Tipo I , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Imunidade Inata , Inflamação/metabolismo , Subunidade p50 de NF-kappa B
7.
Mol Genet Metab Rep ; 31: 100863, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35782600

RESUMO

Hyperornithinemia with gyrate atrophy of the choroid and retina (HOGA) is a severe recessive inherited disease, causing muscular degeneration and retinochoroidal atrophy that progresses to blindness. HOGA arises from mutations in the ornithine aminotransferase (OAT) gene, and nearly one-third of the known patients worldwide are homozygous for the Finnish founder mutation OAT c.1205 T > C p.(Leu402Pro). We have corrected this loss-of-function OAT mutation in patient-derived induced pluripotent stem cells (iPSCs) using CRISPR/Cas9. The correction restored OAT expression in stem cells and normalized the elevated ornithine levels in cell lysates and cell media. These results show an efficient recovery of OAT function in iPSC, encouraging the possibility of autologous cell therapy for the HOGA disease.

8.
Differentiation ; 80(1): 68-77, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20447748

RESUMO

The oncogenic transcription factor Myc has an established role in the regulation of stem cell self-renewal and differentiation. However, the regulation of Myc activity or expression in stem and progenitor cells is not thoroughly understood. We studied the expression and function of the Myc stabilizing protein and a newly found oncogene, cancerous inhibitor of protein phosphatase 2A (CIP2A) in mouse neural progenitor cells (NPCs). We found intensive CIP2A expression in the neurogenic areas of the developing E13 as well as of the adult mouse brain. Here we also show that retroviral overexpression of CIP2A increases and siRNA silencing of CIP2A decreases NPC self-renewal and proliferation. Differentiation of the NPCs correlates with diminished CIP2A expression although overexpression of CIP2A does not prevent differentiation of neurons and astrocytes. Lastly, we demonstrate that both Myc and CIP2A enhance each other's expression and siRNA against CIP2A in Myc-overexpressing NPCs significantly reduces the ability of Myc to increase self-renewal and proliferation thus indicating a functional connection between CIP2A and Myc in NPCs.


Assuntos
Autoantígenos/metabolismo , Diferenciação Celular , Embrião de Mamíferos/citologia , Células-Tronco Embrionárias/citologia , Proteínas de Membrana/metabolismo , Neurônios/citologia , Proteínas Proto-Oncogênicas c-myc/fisiologia , Animais , Autoantígenos/genética , Western Blotting , Ciclo Celular , Proliferação de Células , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Células-Tronco Embrionárias/metabolismo , Citometria de Fluxo , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/farmacologia , Regeneração , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
J Community Genet ; 12(2): 267-276, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32803721

RESUMO

Diseases caused by alterations in the DNA can be overcome by providing the cells or tissues with a functional copy of the mutated gene. The most common form of gene therapy implies adding an extra genetic unit into the cell. However, new genome engineering techniques also allow the modification or correction of the existing allele, providing new possibilities, especially for dominant diseases. Gene therapies have been tested for 30 years in thousands of clinical trials, but presently, we have only three authorised gene therapy products for the treatment of inherited diseases in European Union. Here, we describe the gene therapy alternatives already on the market in the European Union and expand the scope to some clinical trials. Additionally, we discuss the ethical and regulatory issues raised by the development of these new kinds of therapies.

10.
Stem Cell Reports ; 16(12): 3064-3075, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34822772

RESUMO

Human induced pluripotent stem cells (hiPSCs) allow in vitro study of genetic diseases and hold potential for personalized stem cell therapy. Gene editing, precisely modifying specifically targeted loci, represents a valuable tool for different hiPSC applications. This is especially useful in monogenic diseases to dissect the function of unknown mutations or to create genetically corrected, patient-derived hiPSCs. Here we describe a highly efficient method for simultaneous base editing and reprogramming of fibroblasts employing a CRISPR-Cas9 adenine base editor. As a proof of concept, we apply this approach to generate gene-edited hiPSCs from skin biopsies of four patients carrying a Finnish-founder pathogenic point mutation in either NOTCH3 or LDLR genes. We also show LDLR activity restoration after the gene correction. Overall, this method yields tens of gene-edited hiPSC monoclonal lines with unprecedented efficiency and robustness while considerably reducing the cell culture time and thus the risk for in vitro alterations.


Assuntos
Reprogramação Celular/genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Edição de Genes , Sequência de Bases , Células Cultivadas , Endoderma/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Fenótipo , RNA/genética , Receptor Notch3/genética , Receptores de LDL/genética , Transgenes
11.
J Neurooncol ; 97(2): 217-24, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19779861

RESUMO

Medulloblastomas (MB) and primitive neuroectodermal tumors (PNET) are the most common malignant brain tumors in children. These two tumor types are histologically similar, but have different genetic backgrounds and clinical outcomes. Other brain tumors, such as gliomas, frequently have coamplification and overexpression of receptor tyrosine kinases KIT, platelet-derived growth factor receptor alpha (PDGFRA), and vascular endothelial growth factor receptor 2 (VEGFR2). We investigated protein expression and gene copy numbers of KIT, PDGFRA, and VEGFR2 in 41 MB and 11 PNET samples by immunohistochemistry (IHC) and chromogenic in situ hybridization (CISH). KIT and PDGFRA expression was detected in both MBs and PNETs, whereas VEGFR2 expression was weak in these tumors. KIT, PDGFRA, and VEGFR2 amplifications were all present in 4% of MBs/PNETs, and KIT amplification was associated with concurrent PDGFRA and VEGFR2 amplifications (P

Assuntos
Neoplasias Encefálicas/metabolismo , Meduloblastoma/metabolismo , Tumores Neuroectodérmicos Primitivos/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/biossíntese , Fator de Células-Tronco/biossíntese , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/biossíntese , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidade , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/mortalidade , Dosagem de Genes , Humanos , Imuno-Histoquímica , Hibridização In Situ , Estimativa de Kaplan-Meier , Masculino , Meduloblastoma/genética , Tumores Neuroectodérmicos Primitivos/genética , Tumores Neuroectodérmicos Primitivos/mortalidade , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Fator de Células-Tronco/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
12.
Eur J Hum Genet ; 27(3): 484-487, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30568241

RESUMO

Clinical trials using somatic gene editing (e.g., CRISPR-Cas9) have started in Europe and the United States and may provide safe and effective treatment and cure, not only for cancers but also for some monogenic conditions. In a workshop at the 2018 European Human Genetics Conference, the challenges of bringing somatic gene editing therapies to the clinic were discussed. The regulatory process needs to be considered early in the clinical development pathway to produce the data necessary to support the approval by the European Medicines Agency. The roles and responsibilities for geneticists may include counselling to explain the treatment possibilities and safety interpretation.


Assuntos
Congressos como Assunto , Terapia Genética/métodos , Genética Médica/métodos , Sistemas CRISPR-Cas , Ensaios Clínicos como Assunto , Edição de Genes/métodos , Humanos
13.
PLoS One ; 14(1): e0208237, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30645582

RESUMO

Sickle Cell Disease and ß-thalassemia, which are caused by defective or deficient adult ß-globin (HBB) respectively, are the most common serious genetic blood diseases in the world. Persistent expression of the fetal ß-like globin, also known as 𝛾-globin, can ameliorate both disorders by serving in place of the adult ß-globin as a part of the fetal hemoglobin tetramer (HbF). Here we use CRISPR-Cas9 gene editing to explore a potential 𝛾-globin silencer region upstream of the δ-globin gene identified by comparison of naturally-occurring deletion mutations associated with up-regulated 𝛾-globin. We find that deletion of a 1.7 kb consensus element or select 350 bp sub-regions from bulk populations of cells increases levels of HbF. Screening of individual sgRNAs in one sub-region revealed three single guides that caused increases in 𝛾-globin expression. Deletion of the 1.7 kb region in HUDEP-2 clonal sublines, and in colonies derived from CD34+ hematopoietic stem/progenitor cells (HSPCs), does not cause significant up-regulation of 𝛾-globin. These data suggest that the 1.7 kb region is not an autonomous 𝛾-globin silencer, and thus by itself is not a suitable therapeutic target for gene editing treatment of ß-hemoglobinopathies.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Células Eritroides/metabolismo , Hemoglobina Fetal/metabolismo , Proteínas Repressoras/metabolismo , Linhagem Celular , DNA Intergênico/genética , Edição de Genes , Inativação Gênica , Genótipo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Fenótipo , Deleção de Sequência/genética , Regulação para Cima/genética , gama-Globinas/genética
14.
Int J Cancer ; 123(4): 793-800, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18506689

RESUMO

Activating gene mutations, gene amplifications and overexpressed proteins may be useful as targets for novel therapies. Alterations at chromosome locus 4q12 are associated with gliomas and the region harbors the receptor tyrosine kinase gene KIT, which is frequently amplified in gliomas, and also overexpressed in a subset of gliomas. KIT and its ligand stem cell factor are widely expressed in embryonic and adult mouse brain, and they play a role in many signal transduction pathways involved in cellular proliferation, differentiation and cancer cell metastasis. However, the function of KIT in gliomagenesis or disease progression remains unresolved as well as its role in neural and brain tumor development. In this study, we utilized lentivirus-mediated gene transfer to deliver the KIT gene into mouse astrocytes. The growth properties of KIT overexpressing cells were analyzed using several in vitro functional assays. The effect of receptor tyrosine kinase inhibitor imatinib on astrocyte growth was also investigated. Our results indicate that overexpression of KIT in mouse astrocytes promotes cell proliferation, and the increased proliferation is partly inhibited by imatinib treatment. Furthermore, KIT overexpression induces phenotypic changes in the cells suggesting that KIT may play a role in astrocyte growth regulation.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/enzimologia , Glioma/enzimologia , Glioma/patologia , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-kit/biossíntese , Pirimidinas/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose/fisiologia , Astrócitos/patologia , Benzamidas , Processos de Crescimento Celular , Ativação Enzimática , Glioma/tratamento farmacológico , Glioma/genética , Humanos , Mesilato de Imatinib , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Células-Tronco Neoplásicas , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-kit/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transfecção
15.
Elife ; 72018 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-30412052

RESUMO

Insulin gene mutations are a leading cause of neonatal diabetes. They can lead to proinsulin misfolding and its retention in endoplasmic reticulum (ER). This results in increased ER-stress suggested to trigger beta-cell apoptosis. In humans, the mechanisms underlying beta-cell failure remain unclear. Here we show that misfolded proinsulin impairs developing beta-cell proliferation without increasing apoptosis. We generated induced pluripotent stem cells (iPSCs) from people carrying insulin (INS) mutations, engineered isogenic CRISPR-Cas9 mutation-corrected lines and differentiated them to beta-like cells. Single-cell RNA-sequencing analysis showed increased ER-stress and reduced proliferation in INS-mutant beta-like cells compared with corrected controls. Upon transplantation into mice, INS-mutant grafts presented reduced insulin secretion and aggravated ER-stress. Cell size, mTORC1 signaling, and respiratory chain subunits expression were all reduced in INS-mutant beta-like cells, yet apoptosis was not increased at any stage. Our results demonstrate that neonatal diabetes-associated INS-mutations lead to defective beta-cell mass expansion, contributing to diabetes development.


Assuntos
Diabetes Mellitus/genética , Estresse do Retículo Endoplasmático/genética , Células-Tronco Pluripotentes Induzidas/química , Proinsulina/genética , Animais , Apoptose/genética , Sistemas CRISPR-Cas/genética , Diferenciação Celular/genética , Proliferação de Células/genética , Diabetes Mellitus/patologia , Retículo Endoplasmático/genética , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Recém-Nascido , Células Secretoras de Insulina/química , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Mutação , Proinsulina/química , Dobramento de Proteína , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única
16.
BMC Mol Biol ; 8: 77, 2007 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-17868482

RESUMO

BACKGROUND: Most molecular biology experiments, and the techniques associated with this field of study, involve a great deal of engineering in the form of molecular cloning. Like all forms of engineering, perfect information about the starting material is crucial for successful completion of design and strategies. RESULTS: We have generated a program that allows complete in silico simulation of the cloning experiment. Starting with a primary DNA sequence, PlasmaDNA looks for restriction sites, open reading frames, primer annealing sequences, and various common domains. The databases are easily expandable by the user to fit his most common cloning needs. PlasmaDNA can manage and graphically represent multiple sequences at the same time, and keeps in memory the overhangs at the end of the sequences if any. This means that it is possible to virtually digest fragments, to add the digestion products to the project, and to ligate together fragments with compatible ends to generate the new sequences. Polymerase Chain Reaction (PCR) fragments can also be virtually generated using the primer database, automatically adding to the fragments any 5' extra sequences present in the primers. CONCLUSION: PlasmaDNA is a program available both on Windows and Apple operating systems, designed to facilitate molecular cloning experiments by building a visual map of the DNA. It then allows the complete planning and simulation of the cloning experiment. It also automatically updates the new sequences generated in the process, which is an important help in practice. The capacity to maintain multiple sequences in the same file can also be used to archive the various steps and strategies involved in the cloning of each construct. The program is freely available for download without charge or restriction.


Assuntos
Clonagem Molecular/métodos , Biologia Molecular/métodos , Plasmídeos , Software , Sequência de Bases , Simulação por Computador , Bases de Dados de Ácidos Nucleicos , Laboratórios , Plasmídeos/genética , Reação em Cadeia da Polimerase
17.
Stem Cell Res ; 23: 105-108, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28925359

RESUMO

OCT4 is a crucial transcription factor in the pluripotent stem cell gene regulatory network and an essential factor for pluripotent reprogramming. We engineered the previously reported HEL24.3 hiPSC to generate an OCT4 reporter cell line by knocking-in a T2A nuclear EmGFP reporter cassette before the OCT4 gene STOP codon sequence. To enhance targeted insertion, homologous recombination was stimulated using targeted cutting at the OCT4 STOP codon with CRISPR/SpCas9. This HEL24.3-OCT4-nEmGFP cell line faithfully reports endogenous OCT4 expression, serving as a useful tool to examine temporal changes in OCT4 expression in live cells during hiPSC culture, differentiation and somatic cell reprogramming.


Assuntos
Sistemas CRISPR-Cas/genética , Técnicas de Cultura de Células/métodos , Genes Reporter , Células-Tronco Pluripotentes Induzidas/citologia , Fator 3 de Transcrição de Octâmero/metabolismo , Linhagem Celular , Humanos
18.
Stem Cell Res ; 22: 16-19, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28952927

RESUMO

SOX2 is an important transcription factor involved in pluripotency maintenance, pluripotent reprogramming and differentiation towards neural lineages. Here we engineered the previously described HEL24.3 hiPSC to generate a SOX2 reporter by knocking-in a T2A fused nuclear tdTomato reporter cassette before the STOP codon of the SOX2 gene coding sequence. CRISPR/SaCas9-mediated stimulation of homologous recombination was utilized to facilitate faithful targeted insertion. This line accurately reports the expression of endogenous SOX2 and therefore constitutes a useful tool to study the SOX2 expression dynamics upon hiPSC culture, differentiation and somatic cell reprogramming.


Assuntos
Sistemas CRISPR-Cas , Células-Tronco Pluripotentes Induzidas/fisiologia , Fatores de Transcrição SOXB1/genética , Diferenciação Celular/genética , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Fatores de Transcrição SOXB1/biossíntese
19.
Cell Rep ; 19(2): 281-294, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28402852

RESUMO

Activating germline mutations in STAT3 were recently identified as a cause of neonatal diabetes mellitus associated with beta-cell autoimmunity. We have investigated the effect of an activating mutation, STAT3K392R, on pancreatic development using induced pluripotent stem cells (iPSCs) derived from a patient with neonatal diabetes and pancreatic hypoplasia. Early pancreatic endoderm differentiated similarly from STAT3K392R and healthy-control cells, but in later stages, NEUROG3 expression was upregulated prematurely in STAT3K392R cells together with insulin (INS) and glucagon (GCG). RNA sequencing (RNA-seq) showed robust NEUROG3 downstream targets upregulation. STAT3 mutation correction with CRISPR/Cas9 reversed completely the disease phenotype. STAT3K392R-activating properties were not explained fully by altered DNA-binding affinity or increased phosphorylation. Instead, reporter assays demonstrated NEUROG3 promoter activation by STAT3 in pancreatic cells. Furthermore, proteomic and immunocytochemical analyses revealed increased nuclear translocation of STAT3K392R. Collectively, our results demonstrate that the STAT3K392R mutation causes premature endocrine differentiation through direct induction of NEUROG3 expression.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/biossíntese , Diferenciação Celular/genética , Diabetes Mellitus/genética , Proteínas do Tecido Nervoso/biossíntese , Fator de Transcrição STAT3/genética , Autoimunidade/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sistemas CRISPR-Cas , Linhagem Celular , Diabetes Mellitus/etiologia , Diabetes Mellitus/patologia , Regulação da Expressão Gênica no Desenvolvimento , Glucagon/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Insulina/genética , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Mutação , Proteínas do Tecido Nervoso/genética , Regiões Promotoras Genéticas , Fator de Transcrição STAT3/biossíntese
20.
Mech Dev ; 122(6): 765-80, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15905075

RESUMO

Glial-Cell-Line-Derived Neurotrophic Factor (GDNF) is the major mesenchyme-derived regulator of ureteric budding and branching during nephrogenesis. The ligand activates on the ureteric bud epithelium a receptor complex composed of Ret and GFRalpha1. The upstream regulators of the GDNF receptors are poorly known. A Notch ligand, Jagged1 (Jag1), co-localises with GDNF and its receptors during early kidney morphogenesis. In this study we utilized both in vitro and in vivo models to study the possible regulatory relationship of Ret and Notch pathways. Urogenital blocks were exposed to exogenous GDNF, which promotes supernumerary ureteric budding from the Wolffian duct. GDNF-induced ectopic buds expressed Jag1, which suggests that GDNF can, directly or indirectly, up-regulate Jag1 through Ret/GFRalpha1 signalling. We then studied the role of Jag1 in nephrogenesis by transgenic mice constitutively expressing human Jag1 in Wolffian duct and its derivatives under HoxB7 promoter. Jag1 transgenic mice showed a spectrum of renal defects ranging from aplasia to hypoplasia. Ret and GFRalpha1 are normally downregulated in the Wolffian duct, but they were persistently expressed in the entire transgenic duct. Simultaneously, GDNF expression remained unexpectedly low in the metanephric mesenchyme. In vitro, exogenous GDNF restored the budding and branching defects in transgenic urogenital blocks. Renal differentiation apparently failed because of perturbed stimulation of primary ureteric budding and subsequent branching. Thus, the data provide evidence for a novel crosstalk between Notch and Ret/GFRalpha1 signalling during early nephrogenesis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Rim/embriologia , Proteínas de Membrana/fisiologia , Fatores de Crescimento Neural/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Ureter/embriologia , Animais , Proteínas de Ligação ao Cálcio , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial , Humanos , Imuno-Histoquímica , Hibridização In Situ , Peptídeos e Proteínas de Sinalização Intercelular , Proteína Jagged-1 , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-ret , Receptores Notch , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas Serrate-Jagged , Transdução de Sinais , Fatores de Tempo , Transgenes , Regulação para Cima , Ductos Mesonéfricos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA