Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Pathog ; 10(6): e1004158, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24945274

RESUMO

The [Het-s] prion of the fungus Podospora anserina represents a good model system for studying the structure-function relationship in amyloid proteins because a high resolution solid-state NMR structure of the amyloid prion form of the HET-s prion forming domain (PFD) is available. The HET-s PFD adopts a specific ß-solenoid fold with two rungs of ß-strands delimiting a triangular hydrophobic core. A C-terminal loop folds back onto the rigid core region and forms a more dynamic semi-hydrophobic pocket extending the hydrophobic core. Herein, an alanine scanning mutagenesis of the HET-s PFD was conducted. Different structural elements identified in the prion fold such as the triangular hydrophobic core, the salt bridges, the asparagines ladders and the C-terminal loop were altered and the effect of these mutations on prion function, fibril structure and stability was assayed. Prion activity and structure were found to be very robust; only a few key mutations were able to corrupt structure and function. While some mutations strongly destabilize the fold, many substitutions in fact increase stability of the fold. This increase in structural stability did not influence prion formation propensity in vivo. However, if an Ala replacement did alter the structure of the core or did influence the shape of the denaturation curve, the corresponding variant showed a decreased prion efficacy. It is also the finding that in addition to the structural elements of the rigid core region, the aromatic residues in the C-terminal semi-hydrophobic pocket are critical for prion propagation. Mutations in the latter region either positively or negatively affected prion formation. We thus identify a region that modulates prion formation although it is not part of the rigid cross-ß core, an observation that might be relevant to other amyloid models.


Assuntos
Peptídeos beta-Amiloides/química , Amiloide/química , Proteínas Fúngicas/química , Modelos Moleculares , Príons/química , Alanina/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Sequência Conservada , Transferência de Energia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Cinética , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Príons/genética , Príons/metabolismo , Dobramento de Proteína , Estabilidade Proteica , Estrutura Secundária de Proteína , Desdobramento de Proteína , Alinhamento de Sequência
2.
PLoS Biol ; 10(12): e1001451, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300377

RESUMO

The HET-s protein from the filamentous fungus Podospora anserina is a prion involved in a cell death reaction termed heterokaryon incompatibility. This reaction is observed at the point of contact between two genetically distinct strains when one harbors a HET-s prion (in the form of amyloid aggregates) and the other expresses a soluble HET-S protein (96% identical to HET-s). How the HET-s prion interaction with HET-S brings about cell death remains unknown; however, it was recently shown that this interaction leads to a relocalization of HET-S from the cytoplasm to the cell periphery and that this change is associated with cell death. Here, we present detailed insights into this mechanism in which a non-toxic HET-s prion converts a soluble HET-S protein into an integral membrane protein that destabilizes membranes. We observed liposomal membrane defects of approximately 10 up to 60 nm in size in transmission electron microscopy images of freeze-fractured proteoliposomes that were formed in mixtures of HET-S and HET-s amyloids. In liposome leakage assays, HET-S has an innate ability to associate with and disrupt lipid membranes and that this activity is greatly enhanced when HET-S is exposed to HET-s amyloids. Solid-state nuclear magnetic resonance (NMR) analyses revealed that HET-s induces the prion-forming domain of HET-S to adopt the ß-solenoid fold (previously observed in HET-s) and this change disrupts the globular HeLo domain. These data indicate that upon interaction with a HET-s prion, the HET-S HeLo domain partially unfolds, thereby exposing a previously buried ∼34-residue N-terminal transmembrane segment. The liberation of this segment targets HET-S to the membrane where it further oligomerizes, leading to a loss of membrane integrity. HET-S thus appears to display features that are reminiscent of pore-forming toxins.


Assuntos
Proteínas Fúngicas/toxicidade , Micotoxinas/toxicidade , Podospora/metabolismo , Príons/toxicidade , Sequência de Aminoácidos , Amiloide/ultraestrutura , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Escherichia coli/citologia , Escherichia coli/efeitos dos fármacos , Técnica de Fratura por Congelamento , Proteínas Fúngicas/química , Lipossomos/metabolismo , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Dados de Sequência Molecular , Fenótipo , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacologia , Podospora/ultraestrutura , Príons/ultraestrutura , Multimerização Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Termodinâmica
3.
J Biomol NMR ; 51(3): 235-43, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21805376

RESUMO

We present the de novo resonance assignments for the crystalline 33 kDa C-terminal domain of the Ure2 prion using an optimized set of five 3D solid-state NMR spectra. We obtained, using a single uniformly (13)C, (15)N labeled protein sample, sequential chemical-shift information for 74% of the N, Cα, Cß triples, and for 80% of further side-chain resonances for these spin systems. We describe the procedures and protocols devised, and discuss possibilities and limitations of the assignment of this largest protein assigned today by solid-state NMR, and for which no solution-state NMR shifts were available. A comparison of the NMR chemical shifts with crystallographic data reveals that regions with high crystallographic B-factors are particularly difficult to assign. While the secondary structure elements derived from the chemical shift data correspond mainly to those present in the X-ray crystal structure, we detect an additional helical element and structural variability in the protein crystal, most probably originating from the different molecules in the asymmetric unit, with the observation of doubled resonances in several parts, including entire stretches, of the protein. Our results provide the point of departure towards an atomic-resolution structural analysis of the C-terminal Ure2p domain in the context of the full-length prion fibrils.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Príons/química , Cristalografia por Raios X , Modelos Moleculares , Peso Molecular , Estrutura Secundária de Proteína
4.
J Am Chem Soc ; 132(39): 13765-75, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20828131

RESUMO

We present a strategy to solve the high-resolution structure of amyloid fibrils by solid-state NMR and use it to determine the atomic-resolution structure of the prion domain of the fungal prion HET-s in its amyloid form. On the basis of 134 unambiguous distance restraints, we recently showed that HET-s(218-289) in its fibrillar state forms a left-handed ß-solenoid, and an atomic-resolution NMR structure of the triangular core was determined from unambiguous restraints only. In this paper, we go considerably further and present a comprehensive protocol using six differently labeled samples, a collection of optimized solid-state NMR experiments, and adapted structure calculation protocols. The high-resolution structure obtained includes the less ordered but biologically important C-terminal part and improves the overall accuracy by including a large number of ambiguous distance restraints.


Assuntos
Proteínas Fúngicas/química , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica
5.
Chembiochem ; 11(11): 1543-51, 2010 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-20572250

RESUMO

The sequence-specific resonance assignment of a protein forms the basis for studies of molecular structure and dynamics, as well as to functional assay studies by NMR spectroscopy. Here we present a protocol for the sequential 13C and 15N resonance assignment of uniformly [15N,13C]-labeled proteins, based on a suite of complementary three-dimensional solid-state NMR spectroscopy experiments. It is directed towards the application to proteins with more than about 100 amino acid residues. The assignments rely on a walk along the backbone by using a combination of three experiments that correlate nitrogen and carbon spins, including the well-dispersed Cbeta resonances. Supplementary spectra that correlate further side-chain resonances can be important for identifying the amino acid type, and greatly assist the assignment process. We demonstrate the application of this assignment protocol for a crystalline preparation of the N-terminal globular domain of the HET-s prion, a 227-residue protein.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Proteínas/química , Sequência de Aminoácidos , Isótopos de Carbono , Isótopos de Nitrogênio , Príons/química , Projetos de Pesquisa
6.
Chembiochem ; 10(10): 1657-65, 2009 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-19504509

RESUMO

The three-dimensional structure of amyloid fibrils of the prion-forming part of the HET-s protein [HET-s(218-289)], as determined by solid-state NMR, contains rigid and remarkably well-ordered parts, as witnessed by the narrow solid-state NMR line widths for this system. On the other hand, high-resolution magic-angle-spinning (HRMAS) NMR results have shown that HET-s(218-289) amyloid fibrils contain highly flexible parts as well. Here, we further explore this unexpected behaviour using solid-state NMR and molecular dynamics (MD). The NMR data provide new information on order and dynamics in the rigid and flexible parts of HET-s(218-289), respectively. The MD study addresses whether or not small multimers, in an amyloid conformation, are stable on the 10 ns timescale of the MD run and provides insight into the dynamic parameters on the nanosecond timescale. The atom-positional, root-mean-squared fluctuations (RMSFs) and order parameters S(2) obtained are in agreement with the NMR data. A flexible loop and the N terminus exhibit dynamics on the ps-ns timescale, whereas the hydrophobic core of HET-s(218-289) is rigid. The high degree of order in the core region of HET-s(218-289) amyloids, as observed in the MD simulations, is in agreement with the narrow, solid-state, NMR lines. Finally, we employed MD to predict the behaviour of the salt-bridge network in HET-s(218-289), which cannot be obtained easily by experiment. Simulations at different temperatures indicated that the network is highly dynamic and that it contributes to the thermostability of the HET-s(218-289) amyloids.


Assuntos
Amiloide/química , Proteínas Fúngicas/química , Peptídeos/química , Príons/química , Simulação por Computador , Ressonância Magnética Nuclear Biomolecular , Proteínas Recombinantes/química
7.
Angew Chem Int Ed Engl ; 48(26): 4858-60, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19472238

RESUMO

Protein deposition frequently occurs as inclusion bodies (IBs) during heterologous protein expression in E. coli. The structure of these E. coli IBs of the prion-forming domain from the fungal prion HET-s is the same as that previously determined for fibrils assembled in vitro, and show prion infectivity. These results demonstrate that the IBs of HET-s(218-289) are amyloids.


Assuntos
Amiloide/química , Escherichia coli/metabolismo , Proteínas Fúngicas/química , Corpos de Inclusão/química , Amiloide/metabolismo , Escherichia coli/genética , Proteínas Fúngicas/metabolismo , Corpos de Inclusão/metabolismo , Ressonância Magnética Nuclear Biomolecular , Príons/química , Príons/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
9.
J Mol Biol ; 405(3): 765-72, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21094164

RESUMO

Despite the importance of protein fibrils in the context of conformational diseases, information on their structure is still sparse. Hydrogen/deuterium exchange measurements of backbone amide protons allow the identification hydrogen-bonding patterns and reveal pertinent information on the amyloid ß-sheet architecture. However, they provide only little information on the identity of residues exposed to solvent or buried inside the fibril core. NMR spectroscopy is a potent method for identifying solvent-accessible residues in proteins via observation of polarization transfer between chemically exchanging side-chain protons and water protons. We show here that the combined use of highly deuterated samples and fast magic-angle spinning greatly attenuates unwanted spin diffusion and allows identification of polarization exchange with the solvent in a site-specific manner. We apply this measurement protocol to HET-s(218-289) prion fibrils under different conditions (including physiological pH, where protofibrils assemble together into thicker fibrils) and demonstrate that each protofibril of HET-s(218-289), is surrounded by water, thus excluding the existence of extended dry interfibril contacts. We also show that exchangeable side-chain protons inside the hydrophobic core of HET-s(218-289) do not exchange over time intervals of weeks to months. The experiments proposed in this study can provide insight into the detailed structural features of amyloid fibrils in general.


Assuntos
Amiloide/química , Proteínas Fúngicas/química , Príons/química , Água/química , Medição da Troca de Deutério , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular/métodos
10.
J Mol Biol ; 402(2): 311-25, 2010 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-20600104

RESUMO

We describe a distant homologue of the fungal HET-s prion, which is found in the fungus Fusarium graminearum. The domain FgHET-s(218-289), which corresponds to the prion domain in HET-s from Podospora anserina, forms amyloid fibrils in vitro and is able to efficiently cross-seed HET-s(218-289) prion formation. We structurally characterize FgHET-s(218-289), which displays 38% sequence identity with HET-s(218-289). Solid-state NMR and hydrogen/deuterium exchange detected by NMR show that the fold and a number of structural details are very similar for the prion domains of the two proteins. This structural similarity readily explains why cross-seeding occurs here in spite of the sequence divergence.


Assuntos
Amiloide/metabolismo , Proteínas Fúngicas/química , Fusarium/química , Podospora/química , Príons/química , Sequência de Aminoácidos , Amiloide/ultraestrutura , Proteínas Fúngicas/genética , Fusarium/genética , Substâncias Macromoleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Podospora/genética , Príons/genética , Dobramento de Proteína , Multimerização Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
11.
J Mol Biol ; 394(1): 119-27, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19748509

RESUMO

The prion hypothesis states that it is solely the three-dimensional structure of the polypeptide chain that distinguishes the prion and nonprion forms of the protein. For HET-s, the atomic-resolution structure of the isolated prion domain HET-s(218-289), consisting of a highly ordered triangular cross-beta arrangement, is known. Here we present a solid-state NMR study of fibrils of the full-length HET-s prion in which we compare their spectra with spectra from isolated C-terminal prion domain fibrils and the crystalline N-terminal globular domain HET-s(1-227). The spectra reveal unequivocally that the highly ordered structure of the isolated prion domain HET-s(218-289) is conserved in the context of the full-length fibrils investigated here. However, the globular domain loses much of its tertiary structure while partly retaining its secondary structure, thus exhibiting behavior reminiscent of a molten globule. Flexible residues that may constitute the linker connecting the two domains are detected using INEPT (insensitive nuclei enhanced by polarization transfer) spectroscopy. Based on our data, we propose a structural model that is in line with a general model developed for amyloid fibrils built from a cross-beta core decorated with globular domains. The loss of structure in the HET-s globular domain sharply contrasts with the behavior observed for fibrils of Ure2p and suggests that there is considerable structural diversity in the fibrils of globular-domain-containing prions despite their similar appearances at the microscopic level.


Assuntos
Amiloide/química , Modelos Moleculares , Príons/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Sequência Conservada , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Estrutura Terciária de Proteína
12.
J Mol Biol ; 394(1): 108-18, 2009 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-19748512

RESUMO

The difference between the prion and the non-prion form of a protein is given solely by its three-dimensional structure, according to the prion hypothesis. It has been shown that solid-state NMR can unravel the atomic-resolution three-dimensional structure of prion fragments but, in the case of Ure2p, no highly resolved spectra are obtained from the isolated prion domain. Here, we demonstrate that the spectra of full-length fibrils of Ure2p interestingly lead to highly resolved solid-state NMR spectra. Prion fibrils formed under physiological conditions are therefore well-ordered objects on the molecular level. Comparing the full-length NMR spectra with the corresponding spectra of the prion and globular domains in isolation reveals that the globular part in particular shows almost perfect structural order. The NMR linewidths in these spectra are as narrow as the ones observed in crystals of the isolated globular domain. For the prion domain, the spectra reflect partial disorder, suggesting structural heterogeneity, both in isolation and in full-length Ure2p fibrils, although to different extents. The spectral quality is surprising in the light of existing structural models for Ure2p and in comparison to the corresponding spectra of the only other full-length prion fibrils (HET-s) investigated so far. This opens the exciting perspective of an atomic-resolution structure determination of the fibrillar form of a prion whose assembly is not accompanied by significant conformational changes and documents the structural diversity underlying prion propagation.


Assuntos
Príons/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Aminoácidos , Cristalização , Glutationa Peroxidase , Temperatura Alta , Espectroscopia de Ressonância Magnética , Maleabilidade , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
13.
Science ; 319(5869): 1523-6, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18339938

RESUMO

Prion and nonprion forms of proteins are believed to differ solely in their three-dimensional structure, which is therefore of paramount importance for the prion function. However, no atomic-resolution structure of the fibrillar state that is likely infectious has been reported to date. We present a structural model based on solid-state nuclear magnetic resonance restraints for amyloid fibrils from the prion-forming domain (residues 218 to 289) of the HET-s protein from the filamentous fungus Podospora anserina. On the basis of 134 intra- and intermolecular experimental distance restraints, we find that HET-s(218-289) forms a left-handed beta solenoid, with each molecule forming two helical windings, a compact hydrophobic core, at least 23 hydrogen bonds, three salt bridges, and two asparagine ladders. The structure is likely to have broad implications for understanding the infectious amyloid state.


Assuntos
Amiloide/química , Proteínas Fúngicas/química , Podospora/química , Príons/química , Sequência de Aminoácidos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Conformação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
14.
J Am Chem Soc ; 129(35): 10823-8, 2007 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-17691781

RESUMO

Based on sequence-specific resonance assignments, NMR is the method of choice for obtaining atomic-resolution experimental data on soluble nonglobular proteins. So far, however, NMR assignment of unfolded polypeptides in solution has been a time-consuming task, mainly due to the small chemical shift dispersion, which has limited practical applications of the NMR approach. This paper presents an efficient, fully automated method for sequence-specific backbone and beta-carbon NMR assignment of soluble nonglobular proteins with sizes up to at least 150 residues. The procedure is based on new APSY (automated projection spectroscopy) experiments which benefit from the short effective rotational correlation times in soluble nonglobular polypeptides to record five- to seven-dimensional NMR data sets, which reliably resolves chemical shift degeneracies. Fully automated sequence-specific resonance assignments of the backbone nuclei and C(beta) are described for the uniformly (13)C,(15)N-labeled urea-denatured 148-residue outer membrane protein X (OmpX) from E. coli. The method is generally applicable to systems with similar spectroscopic properties as unfolded OmpX, and we anticipate that this paper may open the door for extensive atomic-resolution studies of chemical denaturant-unfolded proteins, as well as some classes of functional nonglobular polypeptides in solution.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Escherichia coli/química , Hidrolases/química , Ressonância Magnética Nuclear Biomolecular/métodos , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Aminoácidos/química , Dados de Sequência Molecular , Dobramento de Proteína , Ureia/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA