Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Agric Food Chem ; 55(13): 5267-76, 2007 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-17536820

RESUMO

Relationships among alpha-farnesene synthesis and oxidation, ethylene production and perception, antioxidative enzyme activities, and superficial scald development in fruit of three commercial apple cultivars were investigated at the biochemical and gene transcriptional levels. Scald-susceptible Cortland and Law Rome and scald-resistant Idared apples were untreated or treated with the ethylene action inhibitor 1-methylcyclopropene (1-MCP) and stored for up to 25 weeks at 0.5 degrees C. Separate blushed (red) and unblushed (green) peel tissue samples were taken at harvest and after 2, 4, 6, 10, 15, 20, and 25 weeks of storage. Large increases in peel tissue concentrations of alpha-farnesene and its conjugated trienol (CTol) oxidation products occurred in untreated Cortland and Law Rome and were about 4-9-fold greater than those in Idared. In both Cortland and Law Rome, accumulation of CTols in green peel was nearly twice that in red peel. 1-MCP treatment delayed and attenuated alpha-farnesene and CTol accumulation in each cultivar. Activities of peroxidase (POX) and catalase (CAT) were lower in red peel than in green peel, with the exception of CAT in Law Rome, whereas no effects of 1-MCP on enzyme activities were detected except for Cortland. In control fruit, internal ethylene concentrations (IECs) increased during the first 4-6 weeks to reach highest levels in Cortland, intermediate levels in Law Rome, and low levels in Idared. In 1-MCP-treated fruit, IECs increased gradually to modest levels by 25 weeks in Cortland and Law Rome but were almost nil in Idared. Expression patterns of the alpha-farnesene synthase gene MdAFS1, the ethylene receptor gene MdERS1, and the ethylene biosynthetic genes MdACS1 and MdACO1 were generally in accord with the patterns of alpha-farnesene and ethylene production. In particular, MdAFS1 and MdACS1 showed similar patterns of expression in each cultivar. Among the controls, transcript levels increased more rapidly in Cortland and Law Rome than in Idared during the first few weeks of storage. In 1-MCP-treated fruit, transcript abundance in Cortland and Law Rome rose to untreated control levels after 10-15 weeks but remained low in Idared. Scald symptoms were restricted to unblushed skin, and the incidence in controls after 25 weeks was nearly 100% in Cortland and Law Rome compared with 1% in Idared. 1-MCP treatment reduced scald incidence to 14, 3, and 0% in Cortland, Law Rome, and Idared, respectively. Overall, the results support the proposed role of CTols in scald induction and indicate that alpha-farnesene synthesis is tightly regulated by ethylene. However, gene transcription alone does not account for the big differences in ethylene and alpha-farnesene production in Cortland, Law Rome, and Idared apples.


Assuntos
Ciclopropanos/farmacologia , Etilenos/metabolismo , Frutas/efeitos dos fármacos , Frutas/metabolismo , Malus/metabolismo , Sesquiterpenos/metabolismo , Frutas/genética , Expressão Gênica/efeitos dos fármacos
2.
Biotechnol Adv ; 24(4): 389-409, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16530376

RESUMO

The recent availability of the inhibitor of ethylene perception, 1-methylcyclopropene (1-MCP), has resulted in an explosion of research on its effects on fruits and vegetables, both as a tool to further investigate the role of ethylene in ripening and senescence, and as a commercial technology to improve maintenance of product quality. The commercialization of 1-MCP was followed by rapid adoption by many apple industries around the world, and strengths and weaknesses of the new technology have been identified. However, use of 1-MCP remains limited for other products, and therefore it is still necessary to speculate on its commercial potential for most fruits and vegetables. In this review, the effects of 1-MCP on fruits and vegetables are considered from two aspects. First, a selected number of fruit (apple, avocado, banana, pear, peaches and nectarines, plums and tomato) are used to illustrate the range of responses to 1-MCP, and indicate possible benefits and limitations for commercialization of 1-MCP-based technology. Second, an outline of general physiological and biochemical responses of fruits and vegetables to the chemical is provided to illustrate the potential for use of 1-MCP to better understand the role of ethylene in ripening and senescence processes.


Assuntos
Ciclopropanos/farmacologia , Etilenos/metabolismo , Frutas/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Verduras/fisiologia , Frutas/efeitos dos fármacos , Verduras/efeitos dos fármacos
3.
J Agric Food Chem ; 61(46): 11076-81, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24093618

RESUMO

The effects of nitric oxide (NO) and nitrite treatment on alcohol dehydrogenase activity and the shelf life of apple tissue were investigated. Fresh-cut apple slices were stored for 2 days at 6 °C in 0.25-1% NO (v/v, balance N2) or 100% N2 atmospheres. Slices were also treated with 1% NO or 2 mM sodium nitrite (NaNO2) for 20 min, stored for 6 weeks in 100% N2 at 6 °C, and analyzed for acetaldehyde, ethanol, and ethyl acetate accumulation, firmness, and color. Compared with N2 or deionized water controls, treatment with 1% NO or 2 mM NaNO2 inhibited ethanol accumulation, whereas that of acetaldehyde increased. Ethyl acetate accumulation was inhibited only by NO. Slice firmness was not affected by NO or NaNO2 treatment, but slices were darker than the untreated controls. NO and nitrite may extend the shelf life of fresh-cut produce with low concentrations of phenolic compounds.


Assuntos
Álcool Desidrogenase/antagonistas & inibidores , Conservação de Alimentos/métodos , Malus/química , Óxido Nítrico/farmacologia , Proteínas de Plantas/antagonistas & inibidores , Álcool Desidrogenase/metabolismo , Frutas/química , Frutas/efeitos dos fármacos , Frutas/enzimologia , Malus/efeitos dos fármacos , Malus/enzimologia , Proteínas de Plantas/metabolismo
4.
AoB Plants ; 5: plt021, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23671787

RESUMO

Several apple cultivars are susceptible to CO2 injury, a physiological disorder that can be expressed either externally or internally, and which can cause major losses of fruit during controlled atmosphere (CA) storage. Disorder development can also be enhanced using SmartFresh™ technology, based on the inhibition of ethylene perception by 1-methylcyclopropene (1-MCP). Injury development is associated with less mature fruit with lower ethylene production, but the aetiology of the disorder is poorly understood. Here we report on the progress made using mRNAseq approaches to explore the transcriptome during the development of external CO2 injury. Next-generation sequencing was used to mine the apple transcriptome for gene expression changes that are associated with the development of external CO2 injury. 'Empire' apples from a single orchard were treated with either 1 µL L(-1) 1-MCP or 1 g L(-1) diphenylamine or left untreated, and then stored in a CA of 5 kPa CO2 and 2 kPa O2. In addition, susceptibility to the disorder in the 'Empire' apples from five different orchards was investigated and the methylation state of the ACS1 promoter investigated using McrBC endonuclease digestion and real-time quantitative polymerase chain reaction. Expression of over 30 000 genes, aligned to the apple genome, was monitored, with clear divergence of expression among treatments after 1 day of CA storage. Symptom development, internal ethylene concentrations (IECs) and methylation state of the ACS1 promoter were different for each of five orchards. With transcriptomic changes affected by treatment, this dataset will be useful in discovering biomarkers that assess disorder susceptibility. An inverse correlation between the frequency of this disorder and the IEC was detected in a multiple orchard trial. Differential methylation state of the ACS1 promoter correlated with both IEC and injury occurrence, indicating epigenetic regulation of ethylene biosynthesis and possibly events leading to disorder development.

5.
Plant Physiol ; 144(2): 1012-28, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17449643

RESUMO

The softening of fleshy fruits, such as tomato (Solanum lycopersicum), during ripening is generally reported to result principally from disassembly of the primary cell wall and middle lamella. However, unsuccessful attempts to prolong fruit firmness by suppressing the expression of a range of wall-modifying proteins in transgenic tomato fruits do not support such a simple model. 'Delayed Fruit Deterioration' (DFD) is a previously unreported tomato cultivar that provides a unique opportunity to assess the contribution of wall metabolism to fruit firmness, since DFD fruits exhibit minimal softening but undergo otherwise normal ripening, unlike all known nonsoftening tomato mutants reported to date. Wall disassembly, reduced intercellular adhesion, and the expression of genes associated with wall degradation were similar in DFD fruit and those of the normally softening 'Ailsa Craig'. However, ripening DFD fruit showed minimal transpirational water loss and substantially elevated cellular turgor. This allowed an evaluation of the relative contribution and timing of wall disassembly and water loss to fruit softening, which suggested that both processes have a critical influence. Biochemical and biomechanical analyses identified several unusual features of DFD cuticles and the data indicate that, as with wall metabolism, changes in cuticle composition and architecture are an integral and regulated part of the ripening program. A model is proposed in which the cuticle affects the softening of intact tomato fruit both directly, by providing a physical support, and indirectly, by regulating water status.


Assuntos
Parede Celular/metabolismo , Frutas/metabolismo , Epiderme Vegetal/metabolismo , Polissacarídeos/metabolismo , Solanum lycopersicum/metabolismo , Fenômenos Biomecânicos , Botrytis/fisiologia , Frutas/crescimento & desenvolvimento , Frutas/microbiologia , Frutas/ultraestrutura , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Solanum lycopersicum/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Epiderme Vegetal/ultraestrutura , Água/metabolismo , Ceras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA