Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 584(7819): 87-92, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32699412

RESUMO

The initial colonization of the Americas remains a highly debated topic1, and the exact timing of the first arrivals is unknown. The earliest archaeological record of Mexico-which holds a key geographical position in the Americas-is poorly known and understudied. Historically, the region has remained on the periphery of research focused on the first American populations2. However, recent investigations provide reliable evidence of a human presence in the northwest region of Mexico3,4, the Chiapas Highlands5, Central Mexico6 and the Caribbean coast7-9 during the Late Pleistocene and Early Holocene epochs. Here we present results of recent excavations at Chiquihuite Cave-a high-altitude site in central-northern Mexico-that corroborate previous findings in the Americas10-17of cultural evidence that dates to the Last Glacial Maximum (26,500-19,000 years ago)18, and which push back dates for human dispersal to the region possibly as early as 33,000-31,000 years ago. The site yielded about 1,900 stone artefacts within a 3-m-deep stratified sequence, revealing a previously unknown lithic industry that underwent only minor changes over millennia. More than 50 radiocarbon and luminescence dates provide chronological control, and genetic, palaeoenvironmental and chemical data document the changing environments in which the occupants lived. Our results provide new evidence for the antiquity of humans in the Americas, illustrate the cultural diversity of the earliest dispersal groups (which predate those of the Clovis culture) and open new directions of research.


Assuntos
Migração Humana/história , Camada de Gelo , Altitude , Arqueologia , Teorema de Bayes , Cavernas , Diversidade Cultural , DNA Antigo/análise , História Antiga , Humanos , México
2.
New Phytol ; 229(3): 1728-1739, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32965029

RESUMO

Stem hemiparasites are dependent on their hosts for water and nitrogen. Most studies, however, have assessed the influence of one factor on parasite : host associations, thus limiting our mechanistic understanding of their performance in nature. We investigated the combined effects of water and nitrogen (N) availability on both a host (Ulex europaeus) and its parasite (Cassytha pubescens). Parasite infection significantly decreased host shoot biomass and shoot : root ratio more severely in high water than low water, irrespective of N supply. Parasite stem [N] was significantly higher in high water than low water treatments, regardless of N supply, but parasite biomass did not vary among treatments. Irrespective of water and N supply, infected plants had significantly lower total, root and nodule biomass, predawn and midday quantum yields, maximum electron transport rates, water potentials and nitrogen concentration [N]. Parasite δ13 C was significantly higher than that of the host. Our results suggested that stem hemiparasites can better extract resources from hosts when water availability is high, resulting in a greater impact on the host under these conditions. When hemiparasitic plants are being investigated as a biocontrol for invasive weeds, they may be more effective in wetter habitats than in drier ones.


Assuntos
Nitrogênio , Parasitos , Animais , Biomassa , Interações Hospedeiro-Parasita , Água
3.
J Exp Bot ; 71(12): 3725-3734, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32185377

RESUMO

Many studies have investigated the effect of parasitic plants on their hosts; however, few have examined how parasite impact is affected by host size. In a glasshouse experiment, we investigated the impact of the Australian native hemiparasitic vine, Cassytha pubescens, on a major invasive shrub, Ulex europaeus, of different sizes. Infected plants had significantly lower total, shoot, and root biomass, but the parasite's impact was more severe on small than on large hosts. When infected, small but not large hosts had significantly lower nodule biomass. Irrespective of size, infection significantly decreased the host shoot/root ratio, pre-dawn and midday quantum yields, maximum electron transport rates, and carbon isotope composition, and the host nodule biomass per gram of root biomass significantly increased in response to infection. Infection did not affect host foliar nitrogen concentration or midday shoot water potential. Parasite biomass was significantly lower on small relative to large hosts, but was similar when expressed on a per gram of host total biomass basis. Parasite stem nitrogen, phosphorus, and potassium concentrations were significantly greater when C. pubescens was growing on small than on large hosts. Our results clearly show that C. pubescens strongly decreases performance of this major invasive shrub, especially when hosts are small. This suggests that C. pubescens could be used most effectively as a native biocontrol when deployed on smaller hosts.


Assuntos
Interações Hospedeiro-Parasita , Parasitos , Animais , Austrália , Biomassa , Ulex
4.
Proc Natl Acad Sci U S A ; 114(8): 1868-1873, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28167791

RESUMO

Over 450 pre-Columbian (pre-AD 1492) geometric ditched enclosures ("geoglyphs") occupy ∼13,000 km2 of Acre state, Brazil, representing a key discovery of Amazonian archaeology. These huge earthworks were concealed for centuries under terra firme (upland interfluvial) rainforest, directly challenging the "pristine" status of this ecosystem and its perceived vulnerability to human impacts. We reconstruct the environmental context of geoglyph construction and the nature, extent, and legacy of associated human impacts. We show that bamboo forest dominated the region for ≥6,000 y and that only small, temporary clearings were made to build the geoglyphs; however, construction occurred within anthropogenic forest that had been actively managed for millennia. In the absence of widespread deforestation, exploitation of forest products shaped a largely forested landscape that survived intact until the late 20th century.


Assuntos
Arqueologia , Conservação dos Recursos Naturais , Floresta Úmida , Brasil , Humanos
5.
New Phytol ; 213(2): 812-821, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27717020

RESUMO

Associations between plants and nitrogen (N)-fixing rhizobia intensify with decreasing N supply and come at a carbon cost to the host. However, what additional impact parasitic plants have on their leguminous hosts' carbon budget in terms of effects on host physiology and growth is unknown. Under glasshouse conditions, Ulex europaeus and Acacia paradoxa either uninfected or infected with the hemiparasite Cassytha pubescens were supplied (high nitrogen (HN)) or not (low nitrogen (LN)) with extra N. The photosynthetic performance and growth of the association were measured. Cassytha pubescens significantly reduced the maximum electron transport rates and total biomass of U. europaeus but not those of A. paradoxa, regardless of N. Infection significantly decreased the root biomass of A. paradoxa only at LN, while the significant negative effect of infection on roots of U. europaeus was less severe at LN. Infection had a significant negative impact on host nodule biomass. Ulex europaeus supported significantly greater parasite biomass (also per unit host biomass) than A. paradoxa, regardless of N. We concluded that rhizobia do not influence the effect of a native parasite on overall growth of leguminous hosts. Our results suggest that C. pubescens will have a strong impact on U. europaeus but not A. paradoxa, regardless of N in the field.


Assuntos
Fabaceae/parasitologia , Interações Hospedeiro-Parasita/efeitos dos fármacos , Espécies Introduzidas , Nitrogênio/farmacologia , Parasitos/fisiologia , Análise de Variância , Animais , Biomassa , Transporte de Elétrons/efeitos dos fármacos , Modelos Biológicos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Nodulação/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/fisiologia , Especificidade da Espécie
6.
Proc Natl Acad Sci U S A ; 111(29): 10497-502, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25002502

RESUMO

There is considerable controversy over whether pre-Columbian (pre-A.D. 1492) Amazonia was largely "pristine" and sparsely populated by slash-and-burn agriculturists, or instead a densely populated, domesticated landscape, heavily altered by extensive deforestation and anthropogenic burning. The discovery of hundreds of large geometric earthworks beneath intact rainforest across southern Amazonia challenges its status as a pristine landscape, and has been assumed to indicate extensive pre-Columbian deforestation by large populations. We tested these assumptions using coupled local- and regional-scale paleoecological records to reconstruct land use on an earthwork site in northeast Bolivia within the context of regional, climate-driven biome changes. This approach revealed evidence for an alternative scenario of Amazonian land use, which did not necessitate labor-intensive rainforest clearance for earthwork construction. Instead, we show that the inhabitants exploited a naturally open savanna landscape that they maintained around their settlement despite the climatically driven rainforest expansion that began ∼2,000 y ago across the region. Earthwork construction and agriculture on terra firme landscapes currently occupied by the seasonal rainforests of southern Amazonia may therefore not have necessitated large-scale deforestation using stone tools. This finding implies far less labor--and potentially lower population density--than previously supposed. Our findings demonstrate that current debates over the magnitude and nature of pre-Columbian Amazonian land use, and its impact on global biogeochemical cycling, are potentially flawed because they do not consider this land use in the context of climate-driven forest-savanna biome shifts through the mid-to-late Holocene.


Assuntos
Ecossistema , Meio Ambiente , Árvores/fisiologia , Bolívia , Carvão Vegetal , Geografia , Lagos , Pólen , Chuva , Fatores de Tempo
7.
J Exp Bot ; 67(5): 1567-75, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26703920

RESUMO

Environmental factors alter the impacts of parasitic plants on their hosts. However, there have been no controlled studies on how water availability modulates stem hemiparasites' effects on hosts. A glasshouse experiment was conducted to investigate the association between the Australian native stem hemiparasite Cassytha pubescens and the introduced host Ulex europaeus under high (HW) and low (LW) water supply. Cassytha pubescens had a significant, negative effect on the total biomass of U. europaeus, which was more severe in HW than LW. Regardless of watering treatment, infection significantly decreased shoot and root biomass, nodule biomass, nodule biomass per unit root biomass, F v/F m, and nitrogen concentration of U. europaeus. Host spine sodium concentration significantly increased in response to infection in LW but not HW conditions. Host water potential was significantly higher in HW than in LW, which may have allowed the parasite to maintain higher stomatal conductances in HW. In support of this, the δ(13)C of the parasite was significantly lower in HW than in LW (and significantly higher than the host). C. pubescens also had significantly higher F v/F m and 66% higher biomass per unit host in the HW compared with the LW treatment. The data suggest that the enhanced performance of C. pubescens in HW resulted in higher parasite growth rates and thus a larger demand for resources from the host, leading to poorer host performance in HW compared with LW. C. pubescens should more negatively affect U. europaeus growth under wet conditions rather than under dry conditions in the field.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Lauraceae/fisiologia , Parasitos/fisiologia , Ulex/parasitologia , Água/metabolismo , Análise de Variância , Animais , Biomassa , Isótopos de Carbono , Nitrogênio/metabolismo , Raízes de Plantas/parasitologia , Brotos de Planta/parasitologia , Sódio/metabolismo
8.
Ann Bot ; 117(3): 521-31, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26832961

RESUMO

BACKGROUND AND AIMS: There have been very few studies investigating the influence of light on the effects of hemiparasitic plants on their hosts, despite the fact that hemiparasites are capable of photosynthesis but also access carbon (C) from their host. In this study we manipulated light availability to limit photosynthesis in an established hemiparasite and its hosts, and determined whether this affected the parasite's impact on growth and performance of two different hosts. We expected that limiting light and reducing autotrophic C gain in the parasite (and possibly increasing its heterotrophic C gain) would lead to an increased impact on host growth and/or host photosynthesis in plants grown in low (LL) relative to high light (HL). METHODS: The Australian native host Leptospermum myrsinoides and the introduced host Ulex europaeus were either infected or not infected with the native stem hemiparasite Cassytha pubescens and grown in either HL or LL. Photosynthetic performance, nitrogen status and growth of hosts and parasite were quantified. Host water potentials were also measured. KEY RESULTS: In situ midday electron transport rates (ETRs) of C. pubescens on both hosts were significantly lower in LL compared with HL, enabling us to investigate the impact of the reduced level of parasite autotrophy on growth of hosts. Despite the lower levels of photosynthesis in the parasite, the relative impact of infection on host biomass was the same in both LL and HL. In fact, biomass of L. myrsinoides was unaffected by infection in either HL or LL, while biomass of U. europaeus was negatively affected by infection in both treatments. This suggests that although photosynthesis of the parasite was lower in LL, there was no additional impact on host biomass in LL. In addition, light did not affect the amount of parasite biomass supported per unit host biomass in either host, although this parameter was slightly lower in LL than HL for U. europaeus (P = 0·073). We also found no significant enhancement of host photosynthesis in response to infection in either host, regardless of light treatment. CONCLUSIONS: Despite lower photosynthetic rates in LL, C. pubescens did not increase its dependency on host C to the point where it affected host growth or photosynthesis. The impact of C. pubescens on host growth would be similar in areas of high and low light availability in the field, but the introduced host is more negatively affected by infection.


Assuntos
Interações Hospedeiro-Parasita/efeitos da radiação , Espécies Introduzidas , Luz , Parasitos/fisiologia , Caules de Planta/parasitologia , Caules de Planta/efeitos da radiação , Análise de Variância , Animais , Biomassa , Transporte de Elétrons/efeitos da radiação , Leptospermum/parasitologia , Leptospermum/efeitos da radiação , Nitrogênio/metabolismo , Parasitos/crescimento & desenvolvimento , Parasitos/efeitos da radiação , Fotossíntese/efeitos da radiação , Brotos de Planta/fisiologia , Brotos de Planta/efeitos da radiação , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Ulex/parasitologia , Ulex/efeitos da radiação
9.
Proc Natl Acad Sci U S A ; 109(17): 6473-8, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22493248

RESUMO

The nature and scale of pre-Columbian land use and the consequences of the 1492 "Columbian Encounter" (CE) on Amazonia are among the more debated topics in New World archaeology and paleoecology. However, pre-Columbian human impact in Amazonian savannas remains poorly understood. Most paleoecological studies have been conducted in neotropical forest contexts. Of studies done in Amazonian savannas, none has the temporal resolution needed to detect changes induced by either climate or humans before and after A.D. 1492, and only a few closely integrate paleoecological and archaeological data. We report a high-resolution 2,150-y paleoecological record from a French Guianan coastal savanna that forces reconsideration of how pre-Columbian savanna peoples practiced raised-field agriculture and how the CE impacted these societies and environments. Our combined pollen, phytolith, and charcoal analyses reveal unexpectedly low levels of biomass burning associated with pre-A.D. 1492 savanna raised-field agriculture and a sharp increase in fires following the arrival of Europeans. We show that pre-Columbian raised-field farmers limited burning to improve agricultural production, contrasting with extensive use of fire in pre-Columbian tropical forest and Central American savanna environments, as well as in present-day savannas. The charcoal record indicates that extensive fires in the seasonally flooded savannas of French Guiana are a post-Columbian phenomenon, postdating the collapse of indigenous populations. The discovery that pre-Columbian farmers practiced fire-free savanna management calls into question the widely held assumption that pre-Columbian Amazonian farmers pervasively used fire to manage and alter ecosystems and offers fresh perspectives on an emerging alternative approach to savanna land use and conservation that can help reduce carbon emissions.

11.
Nat Ecol Evol ; 8(5): 866-879, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38503867

RESUMO

The expansion of globalized industrial societies is causing global warming, ecosystem degradation, and species and language extinctions worldwide. Mainstream conservation efforts still focus on nature protection strategies to revert this crisis, often overlooking the essential roles of Indigenous Peoples and Local Communities (IP&LC) in protecting biodiversity and ecosystems globally. Here we assess the scientific literature to identify relationships between biodiversity (including ecosystem diversity) and cultural diversity, and investigate how these connections may affect conservation outcomes in tropical lowland South America. Our assessment reveals a network of interactions and feedbacks between biodiversity and diverse IP&LC, suggesting interconnectedness and interdependencies from which multiple benefits to nature and societies emerge. We illustrate our findings with five case studies of successful conservation models, described as consolidated or promising 'social-ecological hope spots', that show how engagement with IP&LC of various cultures may be the best hope for biodiversity and ecosystem conservation, particularly when aligned with science and technology. In light of these five inspiring cases, we argue that conservation science and policies need to recognize that protecting and promoting both biological and cultural diversities can provide additional co-benefits and solutions to maintain ecosystems resilient in the face of global changes.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Humanos , América do Sul , Ecossistema , Povos Indígenas , Diversidade Cultural
12.
Sci Adv ; 9(38): eadh8499, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37729404

RESUMO

Fertile soil known as Amazonian dark earth is central to the debate over the size and ecological impact of ancient human populations in the Amazon. Dark earth is typically associated with human occupation, but it is uncertain whether it was created intentionally. Dark earth may also be a substantial carbon sink, but its spatial extent and carbon inventory are unknown. We demonstrate spatial and compositional similarities between ancient and modern dark earth and document modern Indigenous practices that enrich soil, which we use to propose a model for the formation of ancient dark earth. This comparison suggests that ancient Amazonians managed soil to improve fertility and increase crop productivity. These practices also sequestered and stored carbon in the soil for centuries, and we show that some ancient sites contain as much carbon as the above-ground rainforest biomass. Our results demonstrate the intentional creation of dark earth and highlight the value of Indigenous knowledge for sustainable rainforest management.


Assuntos
Carbono , Solo , Humanos , Biomassa , Sequestro de Carbono , Produção Agrícola
14.
New Phytol ; 189(4): 1013-1026, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21118259

RESUMO

• Philodendron bipinnatifidum inflorescences heat up to 42 °C and thermoregulate. We investigated whether they generate heat via the cytochrome oxidase pathway uncoupled by uncoupling proteins (pUCPs), or the alternative oxidase (AOX). • Contribution of AOX and pUCPs to heating in fertile (FM) and sterile (SM) male florets was determined using a combination of oxygen isotope discrimination, protein and substrate analyses. • Both FM and SM florets thermoregulated independently for up to 30 h ex planta. In both floret types, AOX contributed > 90% of respiratory flux during peak heating. The AOX protein increased fivefold with the onset of thermogenesis in both floret types, whereas pUCP remained low throughout development. These data indicate that AOX is primarily responsible for heating, despite FM and SM florets potentially using different substrates, carbohydrates or lipids, respectively. Measurements of discrimination between O2 isotopes in strongly respiring SM florets were affected by diffusion; however, this diffusional limitation was largely overcome using elevated O2. • The first in vivo respiratory flux measurements in an arum show AOX contributes the bulk of heating in P. bipinnatifidum. Fine-scale regulation of AOX activity is post-translational. We also demonstrate that elevated O2 can aid measurement of respiratory pathway fluxes in dense tissues.


Assuntos
Escuridão , Temperatura Alta , Philodendron/fisiologia , Metabolismo dos Carboidratos , Respiração Celular , Densitometria , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Flores/fisiologia , Canais Iônicos/metabolismo , Metabolismo dos Lipídeos , Medições Luminescentes , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Philodendron/citologia , Philodendron/enzimologia , Infertilidade das Plantas , Proteínas de Plantas , Amido/metabolismo , Especificidade por Substrato , Termogênese , Triglicerídeos/metabolismo , Proteína Desacopladora 1
15.
Sci Rep ; 10(1): 15105, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934262

RESUMO

In this work, several attributes of the internal morphology of drupaceous fruits found in the archaeological site Monte Castelo (Rondonia, Brazil) are analyzed by means of two different imaging methods. The aim is to explore similarities and differences in the visualization and analytical properties of the images obtained via High Resolution Light Microscopy and X-ray micro-computed tomography (X-ray MicroCT) methods. Both provide data about the three-layered pericarp (exo-, meso- and endocarp) of the studied exemplars, defined by cell differentiation, vascularisation, cellular contents, presence of sclerenchyma cells and secretory cavities. However, it is possible to identify a series of differences between the information that can be obtained through each of the methods. These variations are related to the definition of contours and fine details of some characteristics, their spatial distribution, size attributes, optical properties and material preservation. The results obtained from both imaging methods are complementary, contributing to a more exhaustive morphological study of the plant remains. X-ray MicroCT in phase-contrast mode represents a suitable non-destructive analytic technique when sample preservation is required.


Assuntos
Frutas/fisiologia , Imageamento Tridimensional/métodos , Olea/fisiologia , Microtomografia por Raio-X/métodos , Brasil , Frutas/anatomia & histologia , Microscopia de Contraste de Fase , Olea/anatomia & histologia
16.
Front Plant Sci ; 11: 1178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922412

RESUMO

The terrestrial flora of Antarctica's frozen continent is restricted to sparse ice-free areas and dominated by lichens and bryophytes. These plants frequently battle sub-zero temperatures, extreme winds and reduced water availability; all influencing their ability to survive and grow. Antarctic mosses, however, can have canopy temperatures well above air temperature. At midday, canopy temperatures can exceed 15°C, depending on moss turf water content. In this study, the optimum temperature of photosynthesis was determined for six Antarctic moss species: Bryum pseudotriquetrum, Ceratodon purpureus, Chorisodontium aciphyllum, Polytrichastrum alpinum, Sanionia uncinata, and Schistidium antarctici collected from King George Island (maritime Antarctica) and/or the Windmill Islands, East Antarctica. Both chlorophyll fluorescence and gas exchange showed maximum values of electron transport rate occurred at canopy temperatures higher than 20°C. The optimum temperature for both net assimilation of CO2 and photoprotective heat dissipation of three East Antarctic species was 20-30°C and at temperatures below 10°C, mesophyll conductance did not significantly differ from 0. Maximum mitochondrial respiration rates occurred at temperatures higher than 35°C and were lower by around 80% at 5°C. Despite the extreme cold conditions that Antarctic mosses face over winter, the photosynthetic apparatus appears optimised to warm temperatures. Our estimation of the total carbon balance suggests that survival in this cold environment may rely on a capacity to maximize photosynthesis for brief periods during summer and minimize respiratory carbon losses in cold conditions.

17.
Ann Bot ; 103(1): 107-15, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19001426

RESUMO

BACKGROUND AND AIMS: While invasive species may escape from natural enemies in the new range, the establishment of novel biotic interactions with species native to the invaded range can determine their success. Biological control of plant populations can be achieved by manipulation of a species' enemies in the invaded range. Interactions were therefore investigated between a native parasitic plant and an invasive legume in Mediterranean-type woodlands of South Australia. METHODS: The effects of the native stem parasite, Cassytha pubescens, on the introduced host, Cytisus scoparius, and a co-occurring native host, Leptospermum myrsinoides, were compared. The hypothesis that the parasitic plant would have a greater impact on the introduced host than the native host was tested. In a field study, photosynthesis, growth and survival of hosts and parasite were examined. KEY RESULTS: As predicted, Cassytha had greater impacts on the introduced host than the native host. Dead Cytisus were associated with dense Cassytha infections but mortality of Leptospermum was not correlated with parasite infection. Cassytha infection reduced the photosynthetic rates of both hosts. Infected Cytisus showed slower recovery of photosystem II efficiency, lower transpiration rates and reduced photosynthetic biomass in comparison with uninfected plants. Parasite photosynthetic rates and growth rates were higher when growing on the introduced host Cytisus, than on Leptospermum. CONCLUSIONS: Infection by a native parasitic plant had strong negative effects on the physiology and above-ground biomass allocation of an introduced species and was correlated with increased plant mortality. The greater impact of the parasite on the introduced host may be due to either the greater resources that this host provides or increased resistance to infection by the native host. This disparity of effects between introduced host and native host indicates the potential for Cassytha to be exploited as a control tool.


Assuntos
Cytisus/crescimento & desenvolvimento , Lauraceae/fisiologia , Leptospermum/fisiologia , Dinâmica Populacional , Austrália do Sul
18.
J Exp Bot ; 59(3): 705-14, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18252702

RESUMO

The relationships between heat production, alternative oxidase (AOX) pathway flux, AOX protein, and carbohydrates during floral development in Nelumbo nucifera (Gaertn.) were investigated. Three distinct physiological phases were identified: pre-thermogenic, thermogenic, and post-thermogenic. The shift to thermogenic activity was associated with a rapid, 10-fold increase in AOX protein. Similarly, a rapid decrease in AOX protein occurred post-thermogenesis. This synchronicity between AOX protein and thermogenic activity contrasts with other thermogenic plants where AOX protein increases some days prior to heating. AOX protein in thermogenic receptacles was significantly higher than in post-thermogenic and leaf tissues. Stable oxygen isotope measurements confirmed that the increased respiratory flux supporting thermogenesis was largely via the AOX, with little or no contribution from the cytochrome oxidase pathway. During the thermogenic phase, no significant relationship was found between AOX protein content and either heating or AOX flux, suggesting that regulation is likely to be post-translational. Further, no evidence of substrate limitation was found; starch accumulated during the early stages of floral development, peaking in thermogenic receptacles, before declining by 89% in post-thermogenic receptacles. Whilst coarse regulation of AOX flux occurs via protein synthesis, the ability to thermoregulate probably involves precise regulation of AOX protein, most probably by effectors such as alpha-keto acids.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Flores/crescimento & desenvolvimento , Nelumbo/crescimento & desenvolvimento , Oxirredutases/biossíntese , Respiração Celular/fisiologia , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Flores/enzimologia , Flores/fisiologia , Temperatura Alta , Proteínas Mitocondriais , Nelumbo/enzimologia , Nelumbo/fisiologia , Proteínas de Plantas , Processamento de Proteína Pós-Traducional , Amido/metabolismo , Temperatura
19.
Funct Plant Biol ; 45(11): 1128-1137, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32290974

RESUMO

Increasing evidence from glasshouse studies shows that native hemiparasitic plants can significantly impact the performance and growth of introduced host plants. We investigated the effect of the native Australian hemiparasite Cassytha pubescens R.Br. on the introduced shrub Ulex europaeus L. at three field sites in South Australia. Parasite infection significantly decreased midday PSII efficiency (ΦPSII) and the maximum electron transport rates (ETRmax) of U. europaeus across sites. The impact of C. pubescens on the photosynthetic performance of U. europaeus may have been caused by infected plants having significantly lower N and K, but higher Fe and Al than uninfected plants at all sites. Significant Al and Fe enrichment in infected plants may be possibly due to the parasite indirectly inducing rhizosphere acidification. At two sites, C. pubescens significantly affected host Fv/Fm, indicating chronic photoinhibition in response to infection. The impact of infection on Fv/Fm was greatest at the wettest site, in line with an experiment where C. pubescens had more impact under high water availability. At this site, infected plants also had the highest foliar Fe and Al. The C isotope (δ13C) of infected plants was significantly lower than that of uninfected plants at only one site. Unusually, the δ13C of the parasite was the same as or significantly higher than that of the hosts. There were no site effects on parasite Fv/Fm or ΦPSII; however, ETRmax and δ13C varied across sites. The results suggest that this native parasite has negative effects on U. europaeus in the field, as was found for glasshouse studies. The abundance of this introduced weed in Australia could be negatively affected by C. pubescens infection.

20.
PLoS One ; 13(7): e0199868, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30044799

RESUMO

Southwestern Amazonia is considered an early centre of plant domestication in the New World, but most of the evidence for this hypothesis comes from genetic data since systematic archaeological fieldwork in the area is recent. This paper provides first-hand archaeobotanical evidence of food production from early and middle Holocene (ca. 9,000-5000 cal. BP) deposits at Teotonio, an open-air site located on a 40 m-high bluff on the south bank of the Madeira river. Such evidence includes the presence of local and exotic domesticates such as manioc (Manihot esculenta), squash (Cucurbita sp.) and beans (Phaseolus sp.), alongside edible fruits such as pequiá (Caryocar sp.) and guava (Psidium sp.) that point to the beginnings of landscape domestication. The results contribute to an ever-growing number of studies that posit southwest Amazonia as an important centre for early crop domestication and experimentation, and which highlight the longue-durée of human impacts on tropical forest biodiversity around the world.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Fósseis/anatomia & histologia , Melhoramento Vegetal/métodos , Brasil , Produtos Agrícolas/história , Fósseis/história , História Antiga , Melhoramento Vegetal/história
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA