Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 124(6): 1914-1922, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33052729

RESUMO

Neural oscillations are routinely analyzed using methods that measure activity in fixed frequency bands (e.g., alpha, 8-12 Hz), although the frequency of neural signals varies within and across individuals based on numerous factors including neuroanatomy, behavioral demands, and species. Furthermore, band-limited activity is an often assumed, typically unmeasured model of neural activity, and band definitions vary considerably across studies. Together, these factors mask individual differences and can lead to noisy spectral estimates and interpretational problems when linking electrophysiology to behavior. We developed the Oscillatory ReConstruction Algorithm ("ORCA"), an unsupervised method to measure the spectral characteristics of neural signals in adaptively identified bands, which incorporates two new methods for frequency band identification. ORCA uses the instantaneous amplitude, phase, and frequency of activity in each band to reconstruct the signal and directly quantify spectral decomposition performance using each of four different models. To reduce researcher bias, ORCA provides spectral estimates derived from the best model and requires minimal hyperparameterization. Analyzing human scalp EEG data during eyes-open and eyes-closed "resting" conditions, we first identify variability in the frequency content of neural signals across subjects and electrodes. We demonstrate that ORCA significantly improves spectral decomposition compared with conventional methods and captures the well-known increase in low-frequency activity during eye closure in electrode- and subject-specific frequency bands. We further illustrate the utility of our method in rodent CA1 recordings. ORCA is a novel analytic tool that allows researchers to investigate how nonstationary neural oscillations vary across behaviors, brain regions, individuals, and species.NEW & NOTEWORTHY Neural oscillations show substantial variability within and across individuals and brain regions, yet most existing studies analyze oscillations using canonical, fixed-frequency bands. Thus, there is an ongoing need for tools that capture oscillatory variability in neural signals. Toward this end, Oscillatory ReConstruction Algorithm is a novel and adaptive analytic tool that allows researchers to measure neural oscillations with more precision and less researcher bias.


Assuntos
Algoritmos , Ondas Encefálicas/fisiologia , Córtex Cerebral/fisiologia , Eletroencefalografia/métodos , Adulto , Ritmo alfa/fisiologia , Animais , Região CA1 Hipocampal/fisiologia , Eletroencefalografia/normas , Humanos , Ratos , Aprendizado de Máquina não Supervisionado
2.
J Neurosci ; 38(13): 3265-3272, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29467145

RESUMO

Environmental boundaries play a crucial role in spatial navigation and memory across a wide range of distantly related species. In rodents, boundary representations have been identified at the single-cell level in the subiculum and entorhinal cortex of the hippocampal formation. Although studies of hippocampal function and spatial behavior suggest that similar representations might exist in humans, boundary-related neural activity has not been identified electrophysiologically in humans until now. To address this gap in the literature, we analyzed intracranial recordings from the hippocampal formation of surgical epilepsy patients (of both sexes) while they performed a virtual spatial navigation task and compared the power in three frequency bands (1-4, 4-10, and 30-90 Hz) for target locations near and far from the environmental boundaries. Our results suggest that encoding locations near boundaries elicited stronger theta oscillations than for target locations near the center of the environment and that this difference cannot be explained by variables such as trial length, speed, movement, or performance. These findings provide direct evidence of boundary-dependent neural activity localized in humans to the subiculum, the homolog of the hippocampal subregion in which most boundary cells are found in rodents, and indicate that this system can represent attended locations that rather than the position of one's own body.SIGNIFICANCE STATEMENT Spatial computations using environmental boundaries are an integral part of the brain's spatial mapping system. In rodents, border/boundary cells in the subiculum and entorhinal cortex reveal boundary coding at the single-neuron level. Although there is good reason to believe that such representations also exist in humans, the evidence has thus far been limited to functional neuroimaging studies that broadly implicate the hippocampus in boundary-based navigation. By combining intracranial recordings with high-resolution imaging of hippocampal subregions, we identified a neural marker of boundary representation in the human subiculum.


Assuntos
Hipocampo/fisiologia , Navegação Espacial , Ritmo Teta , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
3.
J Neurosci ; 38(19): 4471-4481, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29636396

RESUMO

The medial temporal lobe (MTL) is widely implicated in supporting episodic memory and navigation, but its precise functional role in organizing memory across time and space remains elusive. Here we examine the specific cognitive processes implemented by MTL structures (hippocampus and entorhinal cortex) to organize memory by using electrical brain stimulation, leveraging its ability to establish causal links between brain regions and features of behavior. We studied neurosurgical patients of both sexes who performed spatial-navigation and verbal-episodic memory tasks while brain stimulation was applied in various regions during learning. During the verbal memory task, stimulation in the MTL disrupted the temporal organization of encoded memories such that items learned with stimulation tended to be recalled in a more randomized order. During the spatial task, MTL stimulation impaired subjects' abilities to remember items located far away from boundaries. These stimulation effects were specific to the MTL. Our findings thus provide the first causal demonstration in humans of the specific memory processes that are performed by the MTL to encode when and where events occurred.SIGNIFICANCE STATEMENT Numerous studies have implicated the medial temporal lobe (MTL) in encoding spatial and temporal memories, but they have not been able to causally demonstrate the nature of the cognitive processes by which this occurs in real-time. Electrical brain stimulation is able to demonstrate causal links between a brain region and a given function with high temporal precision. By examining behavior in a memory task as subjects received MTL stimulation, we provide the first causal evidence demonstrating the role of the MTL in organizing the spatial and temporal aspects of episodic memory.


Assuntos
Córtex Entorrinal/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Memória Espacial/fisiologia , Percepção do Tempo/fisiologia , Mapeamento Encefálico , Simulação por Computador , Estimulação Elétrica , Eletrodos Implantados , Epilepsia/cirurgia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Memória Episódica , Rememoração Mental/fisiologia , Lobo Temporal/fisiologia
4.
Neuroimage ; 85 Pt 2: 667-77, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23792985

RESUMO

A prominent and replicated finding is the correlation between running speed and increases in low-frequency oscillatory activity in the hippocampal local field potential. A more recent finding concerns low-frequency oscillations that increase in coherence between the hippocampus and neocortical brain areas such as prefrontal cortex during memory-related behaviors (i.e., remembering the correct location to visit). In this review, we tie together movement-related and memory-related low-frequency oscillations in the rodent with similar findings in humans. We argue that although movement-related low-frequency oscillations, in particular, may have slightly different characteristics in humans than rodents, placing important constraints on our thinking about this issue, both phenomena have similar functional foundations. We review four prominent theoretical models that provide partially conflicting accounts of movement-related low-frequency oscillations. We attempt to tie together these theoretical proposals, and existing data in rodents and humans, with memory-related low-frequency oscillations. We propose that movement-related low-frequency oscillations and memory-related low-frequency oscillatory activity, both of which show significant coherence with oscillations in other brain regions, represent different facets of "spectral fingerprints," or different resonant frequencies within the same brain networks underlying different cognitive processes. Together, movement-related and memory-related low-frequency oscillatory coupling may be linked by their distinct contributions to bottom-up, sensorimotor driven processing and top-down, controlled processing characterizing aspects of memory encoding and retrieval.


Assuntos
Ondas Encefálicas/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Movimento/fisiologia , Desempenho Psicomotor/fisiologia , Animais , Humanos
5.
Proc Natl Acad Sci U S A ; 108(26): 10702-7, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21670287

RESUMO

Recent evidence indicates that the processing of a stimulus can be influenced by preceding patterns of brain activity. Here we examine whether prestimulus oscillatory brain activity can influence the ability to retrieve episodic memories. Neural activity in the theta-frequency band (4-8 Hz) was enhanced before presentation of test items which elicited accurate recollection of contextual details of the prior study episode ("source retrieval"), relative to trials for which item recognition was successful but source retrieval failed. Poststimulus theta activity was also related to source retrieval, and the magnitude of poststimulus theta was predicted by the magnitude of the prestimulus theta effects. The results suggest that ongoing neural processes occurring before stimulus onset might play a critical role in readying the brain for successful memory retrieval.


Assuntos
Encéfalo/fisiologia , Estimulação Elétrica , Memória , Adulto , Feminino , Humanos , Masculino
6.
bioRxiv ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38798574

RESUMO

When we speak, we not only make movements with our mouth, lips, and tongue, but we also hear the sound of our own voice. Thus, speech production in the brain involves not only controlling the movements we make, but also auditory and sensory feedback. Auditory responses are typically suppressed during speech production compared to perception, but how this manifests across space and time is unclear. Here we recorded intracranial EEG in seventeen pediatric, adolescent, and adult patients with medication-resistant epilepsy who performed a reading/listening task to investigate how other auditory responses are modulated during speech production. We identified onset and sustained responses to speech in bilateral auditory cortex, with a selective suppression of onset responses during speech production. Onset responses provide a temporal landmark during speech perception that is redundant with forward prediction during speech production. Phonological feature tuning in these "onset suppression" electrodes remained stable between perception and production. Notably, the posterior insula responded at sentence onset for both perception and production, suggesting a role in multisensory integration during feedback control.

7.
J Neurosci Methods ; 405: 110106, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38453060

RESUMO

BACKGROUND: Single-pulse electrical stimulation (SPES) is an established technique used to map functional effective connectivity networks in treatment-refractory epilepsy patients undergoing intracranial-electroencephalography monitoring. While the connectivity path between stimulation and recording sites has been explored through the integration of structural connectivity, there are substantial gaps, such that new modeling approaches may advance our understanding of connectivity derived from SPES studies. NEW METHOD: Using intracranial electrophysiology data recorded from a single patient undergoing stereo-electroencephalography (sEEG) evaluation, we employ an automated detection method to identify early response components, C1, from pulse-evoked potentials (PEPs) induced by SPES. C1 components were utilized for a novel topology optimization method, modeling 3D electrical conductivity to infer neural pathways from stimulation sites. Additionally, PEP features were compared with tractography metrics, and model results were analyzed with respect to anatomical features. RESULTS: The proposed optimization model resolved conductivity paths with low error. Specific electrode contacts displaying high error correlated with anatomical complexities. The C1 component strongly correlated with additional PEP features and displayed stable, weak correlations with tractography measures. COMPARISON WITH EXISTING METHOD: Existing methods for estimating neural signal pathways are imaging-based and thus rely on anatomical inferences. CONCLUSIONS: These results demonstrate that informing topology optimization methods with human intracranial SPES data is a feasible method for generating 3D conductivity maps linking electrical pathways with functional neural ensembles. PEP-estimated effective connectivity is correlated with but distinguished from structural connectivity. Modeled conductivity resolves connectivity pathways in the absence of anatomical priors.


Assuntos
Eletroencefalografia , Potenciais Evocados , Humanos , Potenciais Evocados/fisiologia , Eletroencefalografia/métodos , Eletrocorticografia/métodos , Mapeamento Encefálico/métodos , Estimulação Elétrica/métodos , Encéfalo/diagnóstico por imagem
8.
bioRxiv ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38895233

RESUMO

In daily life, we must recognize others' emotions so we can respond appropriately. This ability may rely, at least in part, on neural responses similar to those associated with our own emotions. We hypothesized that the insula, a cortical region near the junction of the temporal, parietal, and frontal lobes, may play a key role in this process. We recorded local field potential (LFP) activity in human neurosurgical patients performing two tasks, one focused on identifying their own emotional response and one on identifying facial emotional responses in others. We found matching patterns of gamma- and high-gamma band activity for the two tasks in the insula. Three other regions (MTL, ACC, and OFC) clearly encoded both self- and other-emotions, but used orthogonal activity patterns to do so. These results support the hypothesis that the insula plays a particularly important role in mediating between experienced vs. observed emotions.

9.
Nat Hum Behav ; 8(6): 1035-1043, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38907029

RESUMO

Board, card or video games have been played by virtually every individual in the world. Games are popular because they are intuitive and fun. These distinctive qualities of games also make them ideal for studying the mind. By being intuitive, games provide a unique vantage point for understanding the inductive biases that support behaviour in more complex, ecological settings than traditional laboratory experiments. By being fun, games allow researchers to study new questions in cognition such as the meaning of 'play' and intrinsic motivation, while also supporting more extensive and diverse data collection by attracting many more participants. We describe the advantages and drawbacks of using games relative to standard laboratory-based experiments and lay out a set of recommendations on how to gain the most from using games to study cognition. We hope this Perspective will lead to a wider use of games as experimental paradigms, elevating the ecological validity, scale and robustness of research on the mind.


Assuntos
Cognição , Jogos de Vídeo , Humanos , Jogos de Vídeo/psicologia , Jogos Experimentais , Motivação
10.
Neuroimage ; 64: 68-74, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22917987

RESUMO

Oscillatory brain activity in the theta frequency range (4-8 Hz) before the onset of an event has been shown to affect the likelihood of successfully encoding the event into memory. Recent work has also indicated that frontal theta activity might be modulated by reward, but it is not clear how reward expectancy, anticipatory theta activity, and memory formation might be related. Here, we used scalp electroencephalography (EEG) to assess the relationship between these factors. EEG was recorded from healthy adults while they memorized a series of words. Each word was preceded by a cue that indicated whether a high or low monetary reward would be earned if the word was successfully remembered in a later recognition test. Frontal theta power between the presentation of the reward cue and the onset of a word was predictive of later memory for the word, but only in the high reward condition. No theta differences were observed before word onset following low reward cues. The magnitude of prestimulus encoding-related theta activity in the high reward condition was correlated with the number of high reward words that were later confidently recognized. These findings provide strong evidence for a link between reward expectancy, theta activity, and memory encoding. Theta activity before event onset seems to be especially important for the encoding of motivationally significant stimuli. One possibility is that dopaminergic activity during reward anticipation mediates frontal theta activity related to memory.


Assuntos
Antecipação Psicológica/fisiologia , Eletroencefalografia/métodos , Memória/fisiologia , Motivação/fisiologia , Plasticidade Neuronal/fisiologia , Recompensa , Ritmo Teta/fisiologia , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
11.
Hippocampus ; 23(8): 656-661, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23520039

RESUMO

Rhythmic oscillations within the 3-12 Hz theta frequency band manifest in the rodent hippocampus during a variety of behaviors and are particularly well characterized during spatial navigation. In contrast, previous studies of rhythmic hippocampal activity in primates under comparable behavioral conditions suggest it may be less apparent and possibly less prevalent, or even absent, compared with the rodent. We compared the relative presence of low-frequency oscillations in rats and humans during spatial navigation by using an oscillation detection algorithm ("P-episode" or "BOSC") to better characterize their presence in microelectrode local field potential (LFP) recordings. This method quantifies the proportion of time the LFP exceeds both a power and cycle duration threshold at each frequency, characterizing the presence of (1) oscillatory activity compared with background noise, (2) the peak frequency of oscillatory activity, and (3) the duration of oscillatory activity. Results demonstrate that both humans and rodents have hippocampal rhythmic fluctuations lasting, on average, 2.75 and 4.3 cycles, respectively. Analyses further suggest that human hippocampal rhythmicity is centered around ∼3 Hz while that of rats is centered around ∼8 Hz. These results establish that low-frequency rhythms relevant to spatial navigation are present in both the rodent and human hippocampus, albeit with different properties under the behavioral conditions tested.


Assuntos
Ondas Encefálicas/fisiologia , Hipocampo/fisiologia , Periodicidade , Percepção Espacial/fisiologia , Comportamento Espacial/fisiologia , Algoritmos , Análise de Variância , Animais , Mapeamento Encefálico , Eletroencefalografia , Epilepsia/patologia , Humanos , Ratos , Interface Usuário-Computador
12.
bioRxiv ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37986830

RESUMO

Background: Single-pulse electrical stimulation (SPES) is an established technique used to map functional effective connectivity networks in treatment-refractory epilepsy patients undergoing intracranial-electroencephalography monitoring. While the connectivity path between stimulation and recording sites has been explored through the integration of structural connectivity, there are substantial gaps, such that new modeling approaches may advance our understanding of connectivity derived from SPES studies. New Method: Using intracranial electrophysiology data recorded from a single patient undergoing sEEG evaluation, we employ an automated detection method to identify early response components, C1, from pulse-evoked potentials (PEPs) induced by SPES. C1 components were utilized for a novel topology optimization method, modeling 3D conductivity propagation from stimulation sites. Additionally, PEP features were compared with tractography metrics, and model results were analyzed with respect to anatomical features. Results: The proposed optimization model resolved conductivity paths with low error. Specific electrode contacts displaying high error correlated with anatomical complexities. The C1 component strongly correlates with additional PEP features and displayed stable, weak correlations with tractography measures. Comparison with existing methods: Existing methods for estimating conductivity propagation are imaging-based and thus rely on anatomical inferences. Conclusions: These results demonstrate that informing topology optimization methods with human intracranial SPES data is a feasible method for generating 3D conductivity maps linking electrical pathways with functional neural ensembles. PEP-estimated effective connectivity is correlated with but distinguished from structural connectivity. Modeled conductivity resolves connectivity pathways in the absence of anatomical priors.

13.
bioRxiv ; 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37693557

RESUMO

Depression is associated with a cognitive bias towards negative information and away from positive information. This biased emotion processing may underlie core depression symptoms, including persistent feelings of sadness or low mood and a reduced capacity to experience pleasure. The neural mechanisms responsible for this biased emotion processing remain unknown. Here, we had a unique opportunity to record stereotactic electroencephalography (sEEG) signals in the amygdala and prefrontal cortex (PFC) from 5 treatment-resistant depression (TRD) patients and 12 epilepsy patients (as control) while they participated in an affective bias task in which happy and sad faces were rated. First, compared with the control group, patients with TRD showed increased amygdala responses to sad faces in the early stage (around 300 ms) and decreased amygdala responses to happy faces in the late stage (around 600 ms) following the onset of faces. Further, during the late stage of happy face processing, alpha-band activity in PFC as well as alpha-phase locking between the amygdala and PFC were significantly greater in TRD patients compared to the controls. Second, after deep brain stimulation (DBS) delivered to bilateral subcallosal cingulate (SCC) and ventral capsule/ventral striatum (VC/VS), atypical amygdala and PFC processing of happy faces in TRD patients remitted toward the normative pattern. The increased amygdala activation during the early stage of sad face processing suggests an overactive bottom-up processing system in TRD. Meanwhile, the reduced amygdala response during the late stage of happy face processing could be attributed to inhibition by PFC through alpha-band oscillation, which can be released by DBS in SCC and VC/VS.

14.
J Neurophysiol ; 105(4): 1747-55, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21289136

RESUMO

Previous rodent studies demonstrate movement-related increases in theta oscillations, and recent evidence suggests that multiple navigationally relevant variables are reflected in this activity. Human invasive recordings have revealed movement-related modulations in delta and theta activity, although it is unclear whether additional behavioral variables are responsible for modulating this neural activity during navigation. We tested the role of delta and theta oscillations during navigation by addressing whether spatial-related processing, in addition to speed and task variables, modulates delta and theta activity. Recording from 317 hippocampal intracranial electrodes in 10 patients undergoing seizure monitoring, we observed increasing delta and theta power with increasing virtual speed at significantly more electrodes than would be expected by chance, replicating previous findings in nonhuman mammals. Delta and theta power were more consistently modulated, however, as a function of spatial view, including when subjects looked at stores in the virtual environment both to find a relevant goal or for spatial updating. A significantly larger proportion of electrodes showed view-related effects than speed-related modulations. Although speed, task, and spatial view affected delta and theta activity, individual electrodes were most frequently modulated by only one variable, rather than a combination of variables. These electrodes likely sampled independent delta and theta generators, which reflected movement-related and allocentric processing, respectively. These results extend previous findings in nonhuman mammals and humans, expanding our knowledge of the role of human hippocampal low-frequency oscillations in navigation.


Assuntos
Adaptação Psicológica/fisiologia , Ritmo Delta/fisiologia , Hipocampo/fisiologia , Comportamento Espacial/fisiologia , Ritmo Teta/fisiologia , Terapia por Estimulação Elétrica , Eletrodos Implantados , Epilepsia/terapia , Humanos , Desempenho Psicomotor/fisiologia
15.
Front Hum Neurosci ; 15: 726998, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34880738

RESUMO

Intracranial recordings in epilepsy patients are increasingly utilized to gain insight into the electrophysiological mechanisms of human cognition. There are currently several practical limitations to conducting research with these patients, including patient and researcher availability and the cognitive abilities of patients, which limit the amount of task-related data that can be collected. Prior studies have synchronized clinical audio, video, and neural recordings to understand naturalistic behaviors, but these recordings are centered on the patient to understand their seizure semiology and thus do not capture and synchronize audiovisual stimuli experienced by patients. Here, we describe a platform for cognitive monitoring of neurosurgical patients during their hospitalization that benefits both patients and researchers. We provide the full specifications for this system and describe some example use cases in perception, memory, and sleep research. We provide results obtained from a patient passively watching TV as proof-of-principle for the naturalistic study of cognition. Our system opens up new avenues to collect more data per patient using real-world behaviors, affording new possibilities to conduct longitudinal studies of the electrophysiological basis of human cognition under naturalistic conditions.

16.
J Neural Eng ; 18(4)2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34284369

RESUMO

Objective. Complex spatiotemporal neural activity encodes rich information related to behavior and cognition. Conventional research has focused on neural activity acquired using one of many different measurement modalities, each of which provides useful but incomplete assessment of the neural code. Multi-modal techniques can overcome tradeoffs in the spatial and temporal resolution of a single modality to reveal deeper and more comprehensive understanding of system-level neural mechanisms. Uncovering multi-scale dynamics is essential for a mechanistic understanding of brain function and for harnessing neuroscientific insights to develop more effective clinical treatment.Approach. We discuss conventional methodologies used for characterizing neural activity at different scales and review contemporary examples of how these approaches have been combined. Then we present our case for integrating activity across multiple scales to benefit from the combined strengths of each approach and elucidate a more holistic understanding of neural processes.Main results. We examine various combinations of neural activity at different scales and analytical techniques that can be used to integrate or illuminate information across scales, as well the technologies that enable such exciting studies. We conclude with challenges facing future multi-scale studies, and a discussion of the power and potential of these approaches.Significance. This roadmap will lead the readers toward a broad range of multi-scale neural decoding techniques and their benefits over single-modality analyses. This Review article highlights the importance of multi-scale analyses for systematically interrogating complex spatiotemporal mechanisms underlying cognition and behavior.


Assuntos
Cognição
17.
Nat Commun ; 11(1): 2469, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32424312

RESUMO

Based on rodent models, researchers have theorized that the hippocampus supports episodic memory and navigation via the theta oscillation, a ~4-10 Hz rhythm that coordinates brain-wide neural activity. However, recordings from humans have indicated that hippocampal theta oscillations are lower in frequency and less prevalent than in rodents, suggesting interspecies differences in theta's function. To characterize human hippocampal theta, we examine the properties of theta oscillations throughout the anterior-posterior length of the hippocampus as neurosurgical subjects performed a virtual spatial navigation task. During virtual movement, we observe hippocampal oscillations at multiple frequencies from 2 to 14 Hz. The posterior hippocampus prominently displays oscillations at ~8-Hz and the precise frequency of these oscillations correlates with the speed of movement, implicating these signals in spatial navigation. We also observe slower ~3 Hz oscillations, but these signals are more prevalent in the anterior hippocampus and their frequency does not vary with movement speed. Our results converge with recent findings to suggest an updated view of human hippocampal electrophysiology. Rather than one hippocampal theta oscillation with a single general role, high- and low-frequency theta oscillations, respectively, may reflect spatial and non-spatial cognitive processes.


Assuntos
Hipocampo/fisiologia , Ritmo Teta/fisiologia , Adulto , Eletrodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Memória Espacial/fisiologia , Análise e Desempenho de Tarefas , Adulto Jovem
18.
Brain Stimul ; 13(5): 1183-1195, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32446925

RESUMO

BACKGROUND: Researchers have used direct electrical brain stimulation to treat a range of neurological and psychiatric disorders. However, for brain stimulation to be maximally effective, clinicians and researchers should optimize stimulation parameters according to desired outcomes. OBJECTIVE: The goal of our large-scale study was to comprehensively evaluate the effects of stimulation at different parameters and locations on neuronal activity across the human brain. METHODS: To examine how different kinds of stimulation affect human brain activity, we compared the changes in neuronal activity that resulted from stimulation at a range of frequencies, amplitudes, and locations with direct human brain recordings. We recorded human brain activity directly with electrodes that were implanted in widespread regions across 106 neurosurgical epilepsy patients while systematically stimulating across a range of parameters and locations. RESULTS: Overall, stimulation most often had an inhibitory effect on neuronal activity, consistent with earlier work. When stimulation excited neuronal activity, it most often occurred from high-frequency stimulation. These effects were modulated by the location of the stimulating electrode, with stimulation sites near white matter more likely to cause excitation and sites near gray matter more likely to inhibit neuronal activity. CONCLUSION: By characterizing how different stimulation parameters produced specific neuronal activity patterns on a large scale, our results provide an electrophysiological framework that clinicians and researchers may consider when designing stimulation protocols to cause precisely targeted changes in human brain activity.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Estimulação Encefálica Profunda/métodos , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Adulto , Mapeamento Encefálico/métodos , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/terapia , Eletrocorticografia/métodos , Eletrodos Implantados , Feminino , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/fisiologia , Humanos , Masculino , Técnicas Estereotáxicas
19.
Neuron ; 98(6): 1269-1281.e4, 2018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29887341

RESUMO

Human cognition requires the coordination of neural activity across widespread brain networks. Here, we describe a new mechanism for large-scale coordination in the human brain: traveling waves of theta and alpha oscillations. Examining direct brain recordings from neurosurgical patients performing a memory task, we found contiguous clusters of cortex in individual patients with oscillations at specific frequencies within 2 to 15 Hz. These oscillatory clusters displayed spatial phase gradients, indicating that they formed traveling waves that propagated at ∼0.25-0.75 m/s. Traveling waves were relevant behaviorally because their propagation correlated with task events and was more consistent when subjects performed the task well. Human traveling theta and alpha waves can be modeled by a network of coupled oscillators because the direction of wave propagation correlated with the spatial orientation of local frequency gradients. Our findings suggest that oscillations support brain connectivity by organizing neural processes across space and time.


Assuntos
Ritmo alfa/fisiologia , Memória/fisiologia , Neocórtex/fisiologia , Ritmo Teta/fisiologia , Adolescente , Adulto , Criança , Eletrocorticografia , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise e Desempenho de Tarefas , Adulto Jovem
20.
Elife ; 72018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29932417

RESUMO

We previously demonstrated that the phase of oscillations modulates neural activity representing categorical information using human intracranial recordings and high-frequency activity from local field potentials (Watrous et al., 2015b). We extend these findings here using human single-neuron recordings during a virtual navigation task. We identify neurons in the medial temporal lobe with firing-rate modulations for specific navigational goals, as well as for navigational planning and goal arrival. Going beyond this work, using a novel oscillation detection algorithm, we identify phase-locked neural firing that encodes information about a person's prospective navigational goal in the absence of firing rate changes. These results provide evidence for navigational planning and contextual accounts of human MTL function at the single-neuron level. More generally, our findings identify phase-coded neuronal firing as a component of the human neural code.


Assuntos
Potenciais de Ação/fisiologia , Neurônios/fisiologia , Orientação/fisiologia , Percepção Espacial/fisiologia , Navegação Espacial/fisiologia , Lobo Temporal/fisiologia , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/fisiologia , Mapeamento Encefálico , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletrodos Implantados , Eletroencefalografia , Córtex Entorrinal/diagnóstico por imagem , Córtex Entorrinal/fisiologia , Objetivos , Hipocampo/diagnóstico por imagem , Hipocampo/fisiologia , Humanos , Neurônios/citologia , Giro Para-Hipocampal/diagnóstico por imagem , Giro Para-Hipocampal/fisiologia , Análise de Célula Única/métodos , Lobo Temporal/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA