Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 57(1): 72-81, 2018 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-29257681

RESUMO

The composition dependence of the short-range order (SRO) structure in highly modified mixed glass former sodium thiosilicophosphate glasses, yNa2S + (1 - y)[xSiS2 + (1 - x)PS5/2], were investigated using infrared (IR), Raman, and 29Si and 31P magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopies. Both the y = 0.5 and 0.67 glasses undergo disproportionation reactions among the Si and P SRO structures, which lead to various and complex SRO structural units for the Si and P, as shown via the spectra used to characterize the glasses. In the y = 0.5 series, the compositionally expected and experimentally observed SRO units are the P1 and Si2 units in the two binary end-member glasses, where the superscript is the number of bridging sulfur atoms on the P or Si units. However, in the ternary mixed glasses, 0 < x < 1, these units were found to react to form P0 (more highly modified, y = 0.60) and Si3 (less highly modified, y = 0.33) units, indicating preferential association of Na+ ions with the P SRO structures. The Raman spectra were used to resolve the heretofore incompletely studied Si3 SRO unit, which was otherwise difficult to elucidate using 29Si MAS NMR alone. In the y = 0.67 series glasses, the expected P0 and Si0 SRO units were observed for the end-member binary glasses. Like in the y = 0.5 series, the 29Si MAS NMR showed that edge-sharing Si2 (ESi2, y = 0.5) structures were also present in these highly modified glasses, which meant Na2S was not completely incorporated in the network. Evidence of this was shown in the Raman spectra in the form of polysulfide structures Na2Sx (x = 2, 4).

2.
J Phys Chem B ; 122(46): 10637-10646, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30375879

RESUMO

The glass-transition temperature, Tg, and molar volume, V̅, are two physical properties known to exhibit the mixed glass former effect (MGFE), a nonlinear nonadditive increase or decrease from a linear ideal mixing behavior, in ternary glass systems, where the two glass forming species are varied, whereas the glass modifier content remains constant across the system. In the next of our continuing studies of the MGFE in ternary glasses, the Tg and molar volumes of two ternary glass forming series, 0.5Na2S + 0.5[ xSiS2 + (1 - x)PS5/2], the 0.50 NSP series, and 0.67Na2S + 0.33[ xSiS2 + (1 - x)PS5/2], the 0.67 NSP series, have been determined across the full glass forming range in both series, 0 ≤ x ≤ 1. The 0.50 NSP glasses were found to have a strongly negative MGFE in the Tg and a weaker MGFE in the molar volume. The 0.67 NSP series of glasses exhibited weak negative and strong positive MGFEs in the Tg and molar volumes, respectively. Using the short-range order (SRO) structure model for each glass series that was previously developed, the number of bridging sulfurs (BS) and nonbridging sulfurs (NBS) was determined and analyzed for each of these two series of glasses. A clear linear correlation was observed between the Tg and both the fraction of BSs, BS/(BS + NBS), and the number of BS per glass former, BS/GF in both series. The molar volumes of both series of glasses were analyzed using both ideal and real solution models of mixing. The molar volumes of the glasses were best fit to the molar volumes of all of the individual molar volumes of the various SRO units. In the ideal solution model, the molar volumes of the SRO units were only fit to molar volumes of the end member glasses, x = 0 and 1. In the real solution model, the molar volumes were best fit to the full composition dependence of the molar volume of all of the glasses. In both cases, the same molar volumes for the SRO units were used to fit both sets of molar volumes of both glass series. It was found that the best-fit molar volumes of both the P and Si SRO units were essentially the same at the same number of NBS/GF. In this study, therefore, it was observed that the MGFE in the Tg of the glass was linearly correlated with the number of BS per glass former, BS/GF, whereas the MGFE in the molar volumes of the glasses was correlated with the number of NBS per glass former, NBS/GF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA