Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(25): 17075-17083, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38864712

RESUMO

The selective electrocatalytic hydrogenation of organics with transition metal hydrides is a promising strategy for electrosynthesis and energy storage. We report the electrocatalytic hydrogenation of acetone with a cyclopentadienone-iridium complex in a tandem electrocatalytic cycle with a cobaltocene mediator. The reductive protonation of cobaltocenium with mild acids generates (C5H5)CoI(C5H6) (CpCoI(CpH)), which functions as an electrocatalytic hydride mediator to deliver a hydride to cationic Ir(III) without generating hydrogen. Electrocatalytic hydride transfer by CpCoI(CpH) to a cationic Ir species leads to the efficient (Faradaic efficiency > 90%) electrohydrogenation of acetone, a valuable hydrogenation target as a liquid organic hydrogen carrier (LOHC). Hydride-transfer mediation presents a powerful strategy to generate metal hydrides that are inaccessible by stepwise electron/proton transfer.

2.
J Am Chem Soc ; 146(21): 14785-14798, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38743019

RESUMO

Selective RNA delivery is required for the broad implementation of RNA clinical applications, including prophylactic and therapeutic vaccinations, immunotherapies for cancer, and genome editing. Current polyanion delivery relies heavily on cationic amines, while cationic guanidinium systems have received limited attention due in part to their strong polyanion association, which impedes intracellular polyanion release. Here, we disclose a general solution to this problem in which cationic guanidinium groups are used to form stable RNA complexes upon formulation but at physiological pH undergo a novel charge-neutralization process, resulting in RNA release. This new delivery system consists of guanidinylated serinol moieties incorporated into a charge-altering releasable transporter (GSer-CARTs). Significantly, systematic variations in structure and formulation resulted in GSer-CARTs that exhibit highly selective mRNA delivery to the lung (∼97%) and spleen (∼98%) without targeting ligands. Illustrative of their breadth and translational potential, GSer-CARTs deliver circRNA, providing the basis for a cancer vaccination strategy, which in a murine model resulted in antigen-specific immune responses and effective suppression of established tumors.


Assuntos
Guanidina , RNA Mensageiro , Animais , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/química , Guanidina/química , Humanos , Serina/química
3.
Biomacromolecules ; 25(7): 4305-4316, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38814265

RESUMO

The delivery of oligonucleotides across biological barriers is a challenge of unsurpassed significance at the interface of materials science and medicine, with emerging clinical utility in prophylactic and therapeutic vaccinations, immunotherapies, genome editing, and cell rejuvenation. Here, we address the role of readily available branched lipids in the design, synthesis, and evaluation of isoprenoid charge-altering releasable transporters (CARTs), a pH-responsive oligomeric nanoparticle delivery system for RNA. Systematic variation of the lipid block reveals an emergent relationship between the lipid block and the neutralization kinetics of the polycationic block. Unexpectedly, iA21A11, a CART with the smallest lipid side chain, isoamyl-, was identified as the lead isoprenoid CART for the in vitro transfection of immortalized lymphoblastic cell lines. When administered intramuscularly in a murine model, iA21A11-mRNA complexes induce higher protein expression levels than our previous lead CART, ONA. Isoprenoid CARTs represent a new delivery platform for RNA vaccines and other polyanion-based therapeutics.


Assuntos
Lipídeos , RNA Mensageiro , Animais , Camundongos , RNA Mensageiro/genética , Lipídeos/química , Humanos , Terpenos/química , Archaea/genética , Archaea/química , Nanopartículas/química
4.
Inorg Chem ; 63(2): 954-960, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38153690

RESUMO

Coordination of the leucoverdazyl ligand 2,4-diisopropyl-6-(pyridin-2-yl)-1,4-dihydro-1,2,4,5-tetrazin-3(2H)-one VdH to Ru significantly weakens the ligand's N-H bond. Electrochemical measurements show that the metalated leucoverdazyl Ru(VdH)(acetylacetonate)2 RuVdH has a lower pKa (-5 units), BDFE (-7 kcal/mol), and hydricity (-22 kcal/mol) than the free ligand. DFT calculations suggest that the increased acidity is in part attributable to stabilization of the conjugate base Vd-. When free, Vd- distorts to avoid an 8πe- antiaromatic state, but it remains planar when bound to Ru. Proton-coupled electron transfer (PCET) behavior is observed for both the free and metalated leucoverdazyls. PCET equilibrium between the Vd radical and TEMPOH affords a VdH BDFE that is in good agreement with that obtained from electrochemical methods. RuVd exhibits electrocatalytic PCET donor behavior. Under acidic conditions, it reduces the persistent trityl radical ·CAr3 (Ar = p-tert-butylphenyl) to the corresponding triarylmethane HCAr3 via net 1e-/1H+ transfer from RuVdH.

5.
J Am Chem Soc ; 145(4): 2282-2293, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36657018

RESUMO

The palladium complex [(L1)Pd(µ-OAc)]2[OTf]2 (L1 = neocuproine) is a selective catalyst for the aerobic oxidation of vicinal polyols to α-hydroxyketones, but competitive oxidation of the ligand methyl groups limits the turnover number and necessitates high Pd loadings. Replacement of the neocuproine ligand with 2,2'-biquinoline ligands was investigated as a strategy to improve catalyst performance and explore the relationship between ligand structure and reactivity. Evaluation of [(L2)Pd(µ-OAc)]2[OTf]2 (L2 = 2,2'-biquinoline) as a catalyst for aerobic alcohol oxidation revealed a threefold enhancement in turnover number relative to the neocuproine congener, but a much slower rate. Mechanistic studies indicated that the slow rates observed with L2 were a consequence of precipitation of an insoluble trinuclear palladium species─(L2Pd)3(µ-O)22+─formed during catalysis and characterized by high-resolution electrospray ionization mass spectrometry. Density functional theory was used to predict that a sterically modified biquinoline ligand, L3 = 7,7'-di-tert-butyl-2,2'-biquinoline, would disfavor the formation of the trinuclear (LPd)3(µ-O)22+ species. This design strategy was validated as catalytic aerobic oxidation with [(L3)Pd(µ-OAc)]2[OTf]2 is both robust and rapid, marrying the kinetics of the parent L1-supported system with the high aerobic turnover numbers of the L2-supported system. Changes in ligand structure were also found to modulate regioselectivity in the oxidation of complex glycoside substrates, providing new insights into structure-selectivity relationships with this class of catalysts.

6.
Bioconjug Chem ; 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36996808

RESUMO

Targeted delivery of nucleic acid therapeutics to the lungs could transform treatment options for pulmonary disease. We have previously developed oligomeric charge-altering releasable transporters (CARTs) for in vivo mRNA transfection and demonstrated their efficacy for use in mRNA-based cancer vaccination and local immunomodulatory therapies against murine tumors. While our previously reported glycine-based CART-mRNA complexes (G-CARTs/mRNA) show selective protein expression in the spleen (mouse, >99%), here, we report a new lysine-derived CART-mRNA complex (K-CART/mRNA) that, without additives or targeting ligands, shows selective protein expression in the lungs (mouse, >90%) following systemic IV administration. We further show that by delivering siRNA using the K-CART, we can significantly decrease expression of a lung-localized reporter protein. Blood chemistry and organ pathology studies demonstrate that K-CARTs are safe and well-tolerated. We report on the new step economical, organocatalytic synthesis (two steps) of functionalized polyesters and oligo-carbonate-co-α-aminoester K-CARTs from simple amino acid and lipid-based monomers. The ability to direct protein expression selectively in the spleen or lungs by simple, modular changes to the CART structure opens fundamentally new opportunities in research and gene therapy.

7.
Proc Natl Acad Sci U S A ; 117(49): 30934-30941, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229543

RESUMO

It was previously shown [J. K. Lee et al., Proc. Natl. Acad. Sci. U.S.A, 116, 19294-19298 (2019)] that hydrogen peroxide (H2O2) is spontaneously produced in micrometer-sized water droplets (microdroplets), which are generated by atomizing bulk water using nebulization without the application of an external electric field. Here we report that H2O2 is spontaneously produced in water microdroplets formed by dropwise condensation of water vapor on low-temperature substrates. Because peroxide formation is induced by a strong electric field formed at the water-air interface of microdroplets, no catalysts or external electrical bias, as well as precursor chemicals, are necessary. Time-course observations of the H2O2 production in condensate microdroplets showed that H2O2 was generated from microdroplets with sizes typically less than ∼10 µm. The spontaneous production of H2O2 was commonly observed on various different substrates, including silicon, plastic, glass, and metal. Studies with substrates with different surface conditions showed that the nucleation and the growth processes of condensate water microdroplets govern H2O2 generation. We also found that the H2O2 production yield strongly depends on environmental conditions, including relative humidity and substrate temperature. These results show that the production of H2O2 occurs in water microdroplets formed by not only atomizing bulk water but also condensing water vapor, suggesting that spontaneous water oxidation to form H2O2 from water microdroplets is a general phenomenon. These findings provide innovative opportunities for green chemistry at heterogeneous interfaces, self-cleaning of surfaces, and safe and effective disinfection. They also may have important implications for prebiotic chemistry.

8.
J Am Chem Soc ; 144(19): 8439-8443, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35504294

RESUMO

A new organocatalyst for the ring-opening polymerization of lactones has been identified. Under the tested conditions, the anions of 2,2'-bisindole promote fast, living polymerizations (as short as 10 ms) which are selective for chain elongation over transesterification (D ≤ 1.1). While structurally related to (thio)urea anion catalysts, anions of 2,2'-bisindole activate the monomer via the counterion rather than through hydrogen bonding. This new activation motif enables modulation of the polymerization rate by 2 orders of magnitude by changing the counterion.


Assuntos
Ésteres , Lactonas , Ânions , Cátions , Polimerização
9.
J Am Chem Soc ; 144(10): 4345-4364, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35230833

RESUMO

Previous studies have shown that the critical transmetalation step in the Suzuki-Miyaura cross-coupling proceeds through a mechanism wherein an arylpalladium hydroxide complex reacts with an aryl boronic acid, termed the oxo-palladium pathway. Moreover, these same studies have established that the reaction between an aryl boronate and an arylpalladium halide complex (the boronate pathway) is prohibitively slow. Herein, studies on isolated intermediates, along with kinetic analysis, have demonstrated that the Suzuki-Miyaura reaction promoted by potassium trimethylsilanolate (TMSOK) proceeds through the boronate pathway, in contrast with other, established systems. Furthermore, an unprecedented, binuclear palladium(I) complex containing a µ-phenyl bridging ligand was characterized by NMR spectroscopy, mass spectrometry, and computational methods. Density functional theory (DFT) calculations suggest that the binuclear complex exhibits an open-shell ground electronic state, and reaction kinetics implicate the complex in the catalytic cycle. These results expand the breadth of potential mechanisms by which the Suzuki-Miyaura reaction can occur, and the novel binuclear palladium complex discovered has broad implications for palladium-mediated cross-coupling reactions of aryl halides.


Assuntos
Paládio , Compostos de Trimetilsilil , Catálise , Cinética , Paládio/química
10.
Biomacromolecules ; 23(7): 2976-2988, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35748182

RESUMO

Charge-altering releasable transporters (CARTs) are a class of oligonucleotide delivery vehicles shown to be effective for delivery of messenger RNA (mRNA) both in vitro and in vivo. Here, we exploited the chemical versatility of the CART synthesis to generate CARTs containing the small-molecule drug fingolimod (FTY720) as a strategy to increase mRNA delivery and expression in lymphocytes through a specific ligand-receptor interaction. Fingolimod is an FDA-approved small-molecule drug that, upon in vivo phosphorylation, binds to the sphingosine-1-phosphate receptor 1 (S1P1), which is highly expressed on lymphocytes. Compared to its non-fingolimod-conjugated analogue, the fingolimod-conjugated CART achieved superior transfection of activated human and murine T and B lymphocytes in vitro. The higher transfection of the fingolimod-conjugated CARTs was lost when cells were exposed to a free fingolimod before transfection. In vivo, the fingolimod-conjugated CART showed increased mRNA delivery to marginal zone B cells and NK cells in the spleen, relative to CARTs lacking fingolimod. Moreover, fingolimod-CART-mediated mRNA delivery induces peripheral blood T-cell depletion similar to free fingolimod. Thus, we show that functionalization of CARTs with a pharmacologically validated small molecule can increase transfection of a cellular population of interest while conferring some of the targeting properties of the conjugated small molecule to the CARTs.


Assuntos
Cloridrato de Fingolimode , Linfócitos , Animais , Cloridrato de Fingolimode/farmacologia , Humanos , Imunossupressores/farmacologia , Camundongos , Propilenoglicóis/farmacologia , RNA Mensageiro/genética , Baço , Transfecção
11.
Proc Natl Acad Sci U S A ; 116(39): 19294-19298, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31451646

RESUMO

We show H2O2 is spontaneously produced from pure water by atomizing bulk water into microdroplets (1 µm to 20 µm in diameter). Production of H2O2, as assayed by H2O2-sensitve fluorescence dye peroxyfluor-1, increased with decreasing microdroplet size. Cleavage of 4-carboxyphenylboronic acid and conversion of phenylboronic acid to phenols in microdroplets further confirmed the generation of H2O2 The generated H2O2 concentration was ∼30 µM (∼1 part per million) as determined by titration with potassium titanium oxalate. Changing the spray gas to O2 or bubbling O2 decreased the yield of H2O2 in microdroplets, indicating that pure water microdroplets directly generate H2O2 without help from O2 either in air surrounding the droplet or dissolved in water. We consider various possible mechanisms for H2O2 formation and report a number of different experiments exploring this issue. We suggest that hydroxyl radical (OH) recombination is the most likely source, in which OH is generated by loss of an electron from OH- at or near the surface of the water microdroplet. This catalyst-free and voltage-free H2O2 production method provides innovative opportunities for green production of hydrogen peroxide.

12.
Proc Natl Acad Sci U S A ; 115(26): E5859-E5866, 2018 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-29891683

RESUMO

We report a strategy for generating a combinatorial library of oligonucleotide transporters with varied lipid domains and their use in the efficient transfection of lymphocytes with mRNA in vitro and in vivo. This library is based on amphiphilic charge-altering releasable transporters (CARTs) that contain a lipophilic block functionalized with various side-chain lipids and a polycationic α-amino ester mRNA-binding block that undergoes rearrangement to neutral small molecules, resulting in mRNA release. We show that certain binary mixtures of these lipid-varied CARTs provide up to a ninefold enhancement in mRNA translation in lymphocytes in vitro relative to either a single-lipid CART component alone or the commercial reagent Lipofectamine 2000, corresponding to a striking increase in percent transfection from 9-12% to 80%. Informed by the results with binary mixtures, we further show that CARTs consisting of optimized ratios of the two lead lipids incorporated into a single hybrid-lipid transporter molecule maintain the same delivery efficacy as the noncovalent mixture of two CARTs. The lead lipid CART mixtures and hybrid-lipid CARTs show enhanced lymphocyte transfection in primary T cells and in vivo in mice. This combinatorial approach for rapidly screening mRNA delivery vectors has provided lipid-varied CART mixtures and hybrid-lipid CARTs that exhibit significant improvement in mRNA delivery to lymphocytes, a finding of potentially broad value in research and clinical applications.


Assuntos
Proteínas de Transporte , Biblioteca Gênica , Lipídeos , Linfócitos/metabolismo , RNA Mensageiro , Transfecção/métodos , Animais , Proteínas de Transporte/química , Proteínas de Transporte/farmacologia , Humanos , Células Jurkat , Lipídeos/química , Lipídeos/farmacologia , Linfócitos/citologia , Camundongos Endogâmicos BALB C , RNA Mensageiro/química , RNA Mensageiro/farmacologia
13.
Proc Natl Acad Sci U S A ; 115(39): E9153-E9161, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30201728

RESUMO

In vivo delivery of antigen-encoding mRNA is a promising approach to personalized cancer treatment. The therapeutic efficacy of mRNA vaccines is contingent on safe and efficient gene delivery, biological stability of the mRNA, and the immunological properties of the vaccine. Here we describe the development and evaluation of a versatile and highly efficient mRNA vaccine-delivery system that employs charge-altering releasable transporters (CARTs) to deliver antigen-coding mRNA to antigen-presenting cells (APCs). We demonstrate in human peripheral blood mononuclear cells that CART vaccines can activate a robust antigen-specific immune response against mRNA-encoded viral epitopes. In an established mouse model, we demonstrate that CARTs preferentially target professional APCs in secondary lymphoid organs upon i.v. injections and target local APCs upon s.c. injection. Finally, we show that CARTs coformulated with mRNA and a Toll-like receptor ligand simultaneously transfect and activate target cells to generate an immune response that can treat and cure mice with large, established tumors.


Assuntos
Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Imunidade Celular , Neoplasias Experimentais/terapia , RNA Mensageiro/imunologia , Linfócitos T/imunologia , Linfócitos T/transplante , Vacinação , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/patologia , Antígenos de Neoplasias/genética , Vacinas Anticâncer/genética , Vacinas Anticâncer/farmacologia , Linhagem Celular Tumoral , Feminino , Células HeLa , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Neoplasias Experimentais/genética , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , RNA Mensageiro/genética , RNA Mensageiro/farmacologia , Linfócitos T/patologia
14.
J Am Chem Soc ; 142(45): 19368-19378, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33138365

RESUMO

Electron-rich phenols, including α-rac-tocopherol Ar1OH, 2,4,6,-tri-tert-butylphenol Ar3OH, and butylated hydroxy-toluene Ar4OH, are effective electrochemical mediators for the electrocatalytic oxidation of alcohols by an iridium amido dihyride complex (PNP)Ir(H)2 (IrN 1, PNP = bis[2-diisopropylphosphino)ethyl]amide). Addition of phenol mediators leads to a decrease in the onset potential of catalysis from -0.65 V vs Fc+/0 under unmediated conditions to -1.07 V vs Fc+/0 in the presence of phenols. Mechanistic analysis suggests that oxidative turnover of the iridium amino trihydride (PNHP)Ir(H)3 (IrH 2, PNHP = bis[2-diisopropylphosphino)ethyl]amine) to IrN 1 proceeds through two successive hydrogen atom transfers (HAT) to 2 equiv of phenoxyl that are generated transiently at the anode. Isotope studies and comparison to known systems are consistent with initial homolysis of an Ir-H bond being rate-determining. Turnover frequencies up to 14.6 s-1 and an average Faradaic efficiency of 93% are observed. The mediated system shows excellent chemoselectivity in bulk oxidations of 2-propanol and 1,2-benzenedimethanol in THF and is also viable in neat 2-propanol.

15.
Inorg Chem ; 59(2): 1453-1460, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31886655

RESUMO

Electrochemical and chemical studies reveal that the amido complex (PNHxP)Fe(CO)(H)(X) (FeN 1, x = 0, X = 0; Fe(H)(NH) 2, x = 1, X = H; PNHP = bis[2-(diisopropylphosphino)ethyl]amine) is active for the electrocatalytic oxidation of isopropanol. At room temperature, the amido FeN 1 dehydrogenates isopropanol to form acetone. The resulting amino hydride complex Fe(H)(NH) 2 is subsequently oxidized by one electron at a low potential (-0.74 V versus ferrocene/ferrocenium, Fc0/+) in tetrahydrofuran. In the presence of strong base (phosphazene base P2-Et, Et-N = P2(dma)5, P2), this oxidation process becomes a two-electron, two-proton process that regenerates FeN 1. FeN 1 is active for the electrooxidation of isopropanol in the presence of strong base (i.e., P2) with an onset potential near -1 V versus Fc0/+. By cyclic voltammetry, fast turnover frequencies of 1.7 s-1 for isopropanol oxidation are achieved with FeN 1. Controlled potential electrolysis studies confirm that the product of isopropanol electrooxidation is acetone, generated with high Faradaic efficiency (∼100%).

16.
Chem Rev ; 118(2): 839-885, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29048888

RESUMO

The replacement of current petroleum-based plastics with sustainable alternatives is a crucial but formidable challenge for the modern society. Catalysis presents an enabling tool to facilitate the development of sustainable polymers. This review provides a system-level analysis of sustainable polymers and outlines key criteria with respect to the feedstocks the polymers are derived from, the manner in which the polymers are generated, and the end-of-use options. Specifically, we define sustainable polymers as a class of materials that are derived from renewable feedstocks and exhibit closed-loop life cycles. Among potential candidates, aliphatic polyesters and polycarbonates are promising materials due to their renewable resources and excellent biodegradability. The development of renewable monomers, the versatile synthetic routes to convert these monomers to polyesters and polycarbonate, and the different end-of-use options for these polymers are critically reviewed, with a focus on recent advances in catalytic transformations that lower the technological barriers for developing more sustainable replacements for petroleum-based plastics.

17.
Proc Natl Acad Sci U S A ; 114(4): E448-E456, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28069945

RESUMO

Functional delivery of mRNA to tissues in the body is key to implementing fundamentally new and potentially transformative strategies for vaccination, protein replacement therapy, and genome editing, collectively affecting approaches for the prevention, detection, and treatment of disease. Broadly applicable tools for the efficient delivery of mRNA into cultured cells would advance many areas of research, and effective and safe in vivo mRNA delivery could fundamentally transform clinical practice. Here we report the step-economical synthesis and evaluation of a tunable and effective class of synthetic biodegradable materials: charge-altering releasable transporters (CARTs) for mRNA delivery into cells. CARTs are structurally unique and operate through an unprecedented mechanism, serving initially as oligo(α-amino ester) cations that complex, protect, and deliver mRNA and then change physical properties through a degradative, charge-neutralizing intramolecular rearrangement, leading to intracellular release of functional mRNA and highly efficient protein translation. With demonstrated utility in both cultured cells and animals, this mRNA delivery technology should be broadly applicable to numerous research and therapeutic applications.


Assuntos
Materiais Biocompatíveis/administração & dosagem , Técnicas de Transferência de Genes , RNA Mensageiro/administração & dosagem , Animais , Carbocianinas , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Proteínas de Fluorescência Verde/genética , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos BALB C
18.
J Am Chem Soc ; 141(22): 8921-8927, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31117549

RESUMO

The critical role of composition, architecture, molecular weight, and molecular weight distribution on the functional properties of macromolecular materials underscores the need for reproducible, robust, scalable, and programmable synthetic methods to generate macromolecules that span a systematic and wide range of structure-property space. Herein, we describe the marriage of tunable and highly active organic catalysts with programmed continuous-flow reactors to rapidly generate libraries of polyester and polycarbonate homopolymers and block copolymers with exquisite efficiency and control. Under continuous-flow conditions, highly controlled polymerizations occur with residence times as low as 6 ms (TOF = 24 000 000 h-1) and can be readily scaled-up to generate polymers at a rate of tens of grams per minute. We describe an in-flow catalyst switch strategy to enable the rapid generation of block copolymer libraries (100 distinct polymers in 9 min) from monomers with drastically different reactivity profiles.

19.
J Am Chem Soc ; 141(21): 8416-8421, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31083999

RESUMO

RNA technology is transforming life science research and medicine, but many applications are limited by the accessibility, cost, efficacy, and tolerability of delivery systems. Here we report the first members of a new class of dynamic RNA delivery vectors, oligo(serine ester)-based charge-altering releasable transporters (Ser-CARTs). Composed of lipid-containing oligocarbonates and cationic oligo(serine esters), Ser-CARTs are readily prepared (one flask) by a mild ring-opening polymerization using thiourea anions and, upon simple mixing with mRNA, readily form complexes that degrade to neutral serine-based products, efficiently releasing their mRNA cargo. mRNA/Ser-CART transfection efficiencies of >95% are achieved in vitro. Intramuscular or intravenous (iv) injections of mRNA/Ser-CARTs into living mice result in in vivo expression of a luciferase reporter protein, with spleen localization observed after iv injection.


Assuntos
Ésteres/química , RNA Mensageiro/genética , Serina/química , Tioureia/química , Animais , Ânions/química , Ésteres/administração & dosagem , Feminino , Vetores Genéticos/administração & dosagem , Vetores Genéticos/química , Células HeLa , Humanos , Luciferases/química , Luciferases/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Polimerização , RNA Mensageiro/administração & dosagem , RNA Mensageiro/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Serina/administração & dosagem , Baço/química , Baço/metabolismo
20.
J Am Chem Soc ; 141(2): 972-980, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30601662

RESUMO

We have recently disclosed [(dtbpy)2RuCl2] as an effective precatalyst for chemoselective C-H hydroxylation of C(sp3)-H bonds and have noted a marked disparity in reaction performance between 4,4'-di- tert-butyl-2,2'-bipyridine (dtbpy)- and 2,2'-bipyridine (bpy)-derived complexes. A desire to understand the origin of this difference and to further advance this catalytic method has motivated the comprehensive mechanistic investigation described herein. Details of this reaction have been unveiled through evaluation of ligand structure-activity relationships, electrochemical and kinetic studies, and pressurized sample infusion high-resolution mass spectrometry (PSI-MS). Salient findings from this investigation include the identification of more than one active oxidant and three disparate mechanisms for catalyst decomposition/arrest. Catalyst efficiency, as measured by turnover number, has a strong inverse correlation with the rate and extent of ligand dissociation, which is dependent on the identity of bipyridyl 4,4'-substituent groups. Dissociated bipyridyl ligand is oxidized to mono- and bis- N-oxide species under the reaction conditions, the former of which is found to act as a potent catalyst poison, yielding a catalytically inactive tris-ligated [Ru(dtbpy)2(dtbpy N-oxide)]2+ complex. Insights gained through this work highlight the power of PSI-MS for studies of complex reaction processes and are guiding ongoing efforts to develop high-performance, next-generation catalyst systems for C-H hydroxylation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA