Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(5): e2204427120, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36693105

RESUMO

Physical inactivity is a scourge to human health, promoting metabolic disease and muscle wasting. Interestingly, multiple ecological niches have relaxed investment into physical activity, providing an evolutionary perspective into the effect of adaptive physical inactivity on tissue homeostasis. One such example, the Mexican cavefish Astyanax mexicanus, has lost moderate-to-vigorous activity following cave colonization, reaching basal swim speeds ~3.7-fold slower than their river-dwelling counterpart. This change in behavior is accompanied by a marked shift in body composition, decreasing total muscle mass and increasing fat mass. This shift persisted at the single muscle fiber level via increased lipid and sugar accumulation at the expense of myofibrillar volume. Transcriptomic analysis of laboratory-reared and wild-caught cavefish indicated that this shift is driven by increased expression of pparγ-the master regulator of adipogenesis-with a simultaneous decrease in fast myosin heavy chain expression. Ex vivo and in vivo analysis confirmed that these investment strategies come with a functional trade-off, decreasing cavefish muscle fiber shortening velocity, time to maximal force, and ultimately maximal swimming speed. Despite this, cavefish displayed a striking degree of muscular endurance, reaching maximal swim speeds ~3.5-fold faster than their basal swim speeds. Multi-omic analysis suggested metabolic reprogramming, specifically phosphorylation of Pgm1-Threonine 19, as a key component enhancing cavefish glycogen metabolism and sustained muscle contraction. Collectively, we reveal broad skeletal muscle changes following cave colonization, displaying an adaptive skeletal muscle phenotype reminiscent to mammalian disuse and high-fat models while simultaneously maintaining a unique capacity for sustained muscle contraction via enhanced glycogen metabolism.


Assuntos
Characidae , Animais , Humanos , Characidae/genética , Evolução Biológica , Glicogênio , Músculos , México , Cavernas , Mamíferos
2.
Dev Biol ; 510: 50-65, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38521499

RESUMO

Bilaterian animals have evolved complex sensory organs comprised of distinct cell types that function coordinately to sense the environment. Each sensory unit has a defined architecture built from component cell types, including sensory cells, non-sensory support cells, and dedicated sensory neurons. Whether this characteristic cellular composition is present in the sensory organs of non-bilaterian animals is unknown. Here, we interrogate the cell type composition and gene regulatory networks controlling development of the larval apical sensory organ in the sea anemone Nematostella vectensis. Using single cell RNA sequencing and imaging approaches, we reveal two unique cell types in the Nematostella apical sensory organ, GABAergic sensory cells and a putative non-sensory support cell population. Further, we identify the paired-like (PRD) homeodomain gene prd146 as a specific sensory cell marker and show that Prd146+ sensory cells become post-mitotic after gastrulation. Genetic loss of function approaches show that Prd146 is essential for apical sensory organ development. Using a candidate gene knockdown approach, we place prd146 downstream of FGF signaling in the apical sensory organ gene regulatory network. Further, we demonstrate that an aboral FGF activity gradient coordinately regulates the specification of both sensory and support cells. Collectively, these experiments define the genetic basis for apical sensory organ development in a non-bilaterian animal and reveal an unanticipated degree of complexity in a prototypic sensory structure.


Assuntos
Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/genética , Sistema Nervoso , Gastrulação/genética , Genes Homeobox
3.
J Biol Chem ; 297(1): 100862, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34116057

RESUMO

The Elongin complex was originally identified as an RNA polymerase II (RNAPII) elongation factor and subsequently as the substrate recognition component of a Cullin-RING E3 ubiquitin ligase. More recent evidence indicates that the Elongin ubiquitin ligase assembles with the Cockayne syndrome B helicase (CSB) in response to DNA damage and can target stalled polymerases for ubiquitylation and removal from the genome. In this report, we present evidence that the CSB-Elongin ubiquitin ligase pathway has roles beyond the DNA damage response in the activation of RNAPII-mediated transcription. We observed that assembly of the CSB-Elongin ubiquitin ligase is induced not just by DNA damage, but also by a variety of signals that activate RNAPII-mediated transcription, including endoplasmic reticulum (ER) stress, amino acid starvation, retinoic acid, glucocorticoids, and doxycycline treatment of cells carrying several copies of a doxycycline-inducible reporter. Using glucocorticoid receptor (GR)-regulated genes as a model, we showed that glucocorticoid-induced transcription is accompanied by rapid recruitment of CSB and the Elongin ubiquitin ligase to target genes in a step that depends upon the presence of transcribing RNAPII on those genes. Consistent with the idea that the CSB-Elongin pathway plays a direct role in GR-regulated transcription, mouse cells lacking the Elongin subunit Elongin A exhibit delays in both RNAPII accumulation on and dismissal from target genes following glucocorticoid addition and withdrawal, respectively. Taken together, our findings bring to light a new role for the CSB-Elongin pathway in RNAPII-mediated transcription.


Assuntos
DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Elonguina/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Polimerase II/genética , Ubiquitina-Proteína Ligases/genética , Animais , Síndrome de Cockayne/enzimologia , Síndrome de Cockayne/genética , DNA Helicases/química , DNA Helicases/ultraestrutura , Reparo do DNA/genética , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/ultraestrutura , Elonguina/química , Elonguina/ultraestrutura , Humanos , Camundongos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Proteínas de Ligação a Poli-ADP-Ribose/química , Proteínas de Ligação a Poli-ADP-Ribose/ultraestrutura , RNA Polimerase II/química , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Ubiquitina/química , Ubiquitina/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/ultraestrutura , Ubiquitinação/genética
4.
IEEE ASME Trans Mechatron ; 25(3): 1432-1443, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33746503

RESUMO

Open surgical approaches are still often employed in neurosurgery, despite the availability of neuroendoscopic approaches that reduce invasiveness. The challenge of maneuvering instruments at the tip of the endoscope makes neuroendoscopy demanding for the physician. The only way to aim tools passed through endoscope ports is to tilt the entire endoscope; but, tilting compresses brain tissue through which the endoscope passes and can damage it. Concentric tube robots can provide necessary dexterity without endoscope tilting, while passing through existing ports in the endoscope and carrying surgical tools in their inner lumen. In this paper we describe the mechatronic design of a new concentric tube robot that can deploy two concentric tube manipulators through a standard neuroendoscope. The robot uses a compact differential drive and features embedded motor control electronics and redundant position sensors for safety. In addition to the mechatronic design of this system, this paper contributes experimental validation in the context of colloid cyst removal, comparing our new robotic system to standard manual endoscopy in a brain phantom. The robotic approach essentially eliminated endoscope tilt during the procedure (17.09° for the manual approach vs. 1.16° for the robotic system). The robotic system also enables a single surgeon to perform the procedure - typically in a manual approach one surgeon aims the endoscope and another operates the tools delivered through its ports.

5.
J Neurooncol ; 131(1): 125-133, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27644688

RESUMO

The ventricular-subventricular zone (V-SVZ), which lies in the walls of the lateral ventricles (LV), is the largest neurogenic niche within the adult brain. Whether radiographic contact with the LV influences survival in glioblastoma (GBM) patients remains unclear. We assimilated and analyzed published data comparing survival in GBM patients with (LV+GBM) and without (LV-GBM) radiographic LV contact. PubMed, EMBASE, and Cochrane electronic databases were searched. Fifteen studies with survival data on LV+GBM and LV-GBM patients were identified. Their Kaplan-Meier survival curves were digitized and pooled for generation of median overall (OS) and progression free (PFS) survivals and log-rank hazard ratios (HRs). The log-rank and reported multivariate HRs after accounting for the common predictors of GBM survival were analyzed separately by meta-analyses. The calculated median survivals (months) from pooled data were 12.95 and 16.58 (OS), and 4.54 and 6.25 (PFS) for LV+GBMs and LV-GBMs, respectively, with an overall log-rank HRs of 1.335 [1.204-1.513] (OS) and 1.387 [1.225-1.602] (PFS). Meta-analysis of log-rank HRs resulted in summary HRs of 1.58 [1.35-1.85] (OS, 10 studies) and 1.41 [1.22-1.64] (PFS, 5 studies). Meta-analysis of multivariate HRs resulted in summary HRs of 1.35 [1.14-1.58] (OS, 6 studies) and 1.64 [0.88-3.05] (PFS, 3 studies). Patients with GBM contacting the LV have lower survival. This effect may be independent of the common predictors of GBM survival, suggesting a clinical influence of V-SVZ contact on GBM biology.


Assuntos
Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Glioblastoma/mortalidade , Glioblastoma/patologia , Ventrículos Laterais/patologia , Progressão da Doença , Humanos , Estimativa de Kaplan-Meier
6.
J Neurooncol ; 132(2): 341-349, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28074322

RESUMO

The clinical effect of radiographic contact of glioblastoma (GBM) with neurogenic zones (NZ)-the ventricular-subventricular (VSVZ) and subgranular (SGZ) zones-and the corpus callosum (CC) remains unclear and, in the case of the SGZ, unexplored. We investigated (1) if GBM contact with a NZ correlates with decreased survival; (2) if so, whether this effect is associated with a specific NZ; and (3) if radiographic contact with or invasion of the CC by GBM is associated with decreased survival. We retrospectively identified 207 adult patients who underwent cytoreductive surgery for GBM followed by chemotherapy and/or radiation. Age, preoperative Karnofsky performance status score (KPS), and extent of resection were recorded. Preoperative MRIs were blindly analyzed to calculate tumor volume and assess its contact with VSVZ, SGZ, CC, and cortex. Overall (OS) and progression free (PFS) survivals were calculated and analyzed with multivariate Cox analyses. Among the 207 patients, 111 had GBM contacting VSVZ (VSVZ+GBMs), 23 had SGZ+GBMs, 52 had CC+GBMs, and 164 had cortex+GBMs. VSVZ+, SGZ+, and CC+ GBMs were significantly larger in size relative to their respective non-contacting controls. Multivariate Cox survival analyses revealed GBM contact with the VSVZ, but not SGZ, CC, or cortex, as an independent predictor of lower OS, PFS, and early recurrence. We hypothesize that the VSVZ niche has unique properties that contribute to GBM pathobiology in adults.


Assuntos
Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Corpo Caloso/patologia , Glioblastoma/mortalidade , Glioblastoma/patologia , Ventrículos Laterais/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Corpo Caloso/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Avaliação de Estado de Karnofsky , Ventrículos Laterais/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
7.
PLoS Genet ; 7(11): e1002365, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22125491

RESUMO

The budding yeast spindle pole body (SPB) is anchored in the nuclear envelope so that it can simultaneously nucleate both nuclear and cytoplasmic microtubules. During SPB duplication, the newly formed SPB is inserted into the nuclear membrane. The mechanism of SPB insertion is poorly understood but likely involves the action of integral membrane proteins to mediate changes in the nuclear envelope itself, such as fusion of the inner and outer nuclear membranes. Analysis of the functional domains of the budding yeast SUN protein and SPB component Mps3 revealed that most regions are not essential for growth or SPB duplication under wild-type conditions. However, a novel dominant allele in the P-loop region, MPS3-G186K, displays defects in multiple steps in SPB duplication, including SPB insertion, indicating a previously unknown role for Mps3 in this step of SPB assembly. Characterization of the MPS3-G186K mutant by electron microscopy revealed severe over-proliferation of the inner nuclear membrane, which could be rescued by altering the characteristics of the nuclear envelope using both chemical and genetic methods. Lipid profiling revealed that cells lacking MPS3 contain abnormal amounts of certain types of polar and neutral lipids, and deletion or mutation of MPS3 can suppress growth defects associated with inhibition of sterol biosynthesis, suggesting that Mps3 directly affects lipid homeostasis. Therefore, we propose that Mps3 facilitates insertion of SPBs in the nuclear membrane by modulating nuclear envelope composition.


Assuntos
Pontos de Checagem da Fase M do Ciclo Celular/genética , Proteínas de Membrana/genética , Microtúbulos/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Alelos , Proliferação de Células , Homeostase , Metabolismo dos Lipídeos , Proteínas de Membrana/metabolismo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Neurosurg Focus ; 36(1 Suppl): 1-2, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24380523

RESUMO

In this publication, video format is utilized to review the operative technique of retrosigmoid craniotomy for resection of acoustic neuroma with attempted hearing preservation. Steps of the operative procedure are reviewed and salient principles and technical nuances useful in minimizing complications and maximizing efficacy are discussed. The video can be found here: http://youtu.be/PBE5rQ7B0Ls .


Assuntos
Neoplasias Encefálicas/cirurgia , Craniotomia , Audição/fisiologia , Neuroma Acústico/cirurgia , Adulto , Neoplasias Encefálicas/diagnóstico , Tronco Encefálico/cirurgia , Craniotomia/métodos , Humanos , Masculino , Neuroma Acústico/diagnóstico , Resultado do Tratamento
9.
bioRxiv ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38746337

RESUMO

A key challenge for single cell discovery analysis is to identify new cell types, describe them quantitatively, and seek these novel cells in new studies often using a different platform. Over the last decade, tools were developed to address identification and quantitative description of cells in human tissues and tumors. However, automated validation of populations at the single cell level has struggled due to the cytometry field's reliance on hierarchical, ordered use of features and on platform-specific rules for data processing and analysis. Here we present Velociraptor, a workflow that implements Marker Enrichment Modeling in three cross-platform modules: 1) identification of cells specific to disease states, 2) description of hallmark features for each cell and population, and 3) searching for cells matching one or more hallmark feature sets in a new dataset. A key advance is that Velociraptor registers cells between datasets, including between flow cytometry and quantitative imaging using different, overlapping feature sets. Four datasets were used to challenge Velociraptor and reveal new biological insights. Working at the individual sample level, Velociraptor tracked the abundance of clinically significant glioblastoma brain tumor cell subsets and characterized the cells that predominate in recurrent tumors as a close match for rare, negative prognostic cells originally observed in matched pre-treatment tumors. In patients with inborn errors of immunity, Velociraptor identified genotype-specific cells associated with GATA2 haploinsufficiency. Finally, in cross-platform analysis of immune cells in multiplex imaging of breast cancer, Velociraptor sought and correctly identified memory T cell subsets in tumors. Different phenotypic descriptions generated by algorithms or humans were shown to be effective as search inputs, indicating that cell identity need not be described in terms of per-feature cutoffs or strict hierarchical analyses. Velociraptor thus identifies cells based on hallmark feature sets, such as protein expression signatures, and works effectively with data from multiple sources, including suspension flow cytometry, imaging, and search text based on known or theoretical cell features.

10.
bioRxiv ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38585888

RESUMO

Adult IDH-wildtype glioblastoma (GBM) is a highly aggressive brain tumor with no established immunotherapy or targeted therapy. Recently, CD32+ HLA-DRhi macrophages were shown to have displaced resident microglia in GBM tumors that contact the lateral ventricle stem cell niche. Since these lateral ventricle contacting GBM tumors have especially poor outcomes, identifying the origin and role of these CD32+ macrophages is likely critical to developing successful GBM immunotherapies. Here, we identify these CD32+ cells as M_IL-8 macrophages and establish that IL-8 is sufficient and necessary for tumor cells to instruct healthy macrophages into CD32+ M_IL-8 M2 macrophages. In ex vivo experiments with conditioned medium from primary human tumor cells, inhibitory antibodies to IL-8 blocked the generation of CD32+ M_IL-8 cells. Finally, using a set of 73 GBM tumors, IL-8 protein is shown to be present in GBM tumor cells in vivo and especially common in tumors contacting the lateral ventricle. These results provide a mechanistic origin for CD32+ macrophages that predominate in the microenvironment of the most aggressive GBM tumors. IL-8 and CD32+ macrophages should now be explored as targets in combination with GBM immunotherapies, especially for patients whose tumors present with radiographic contact with the ventricular-subventricular zone stem cell niche.

11.
IEEE ASME Trans Mechatron ; 19(3): 996-1006, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-25089086

RESUMO

Mechanics-based models of concentric tube continuum robots have recently achieved a level of sophistication that makes it possible to begin to apply these robots to a variety of real-world clinical scenarios. Endonasal skull base surgery is one such application, where their small diameter and tentacle like dexterity are particularly advantageous. In this paper we provide the medical motivation for an endonasal surgical robot featuring concentric tube manipulators, and describe our model-based design and teleoperation methods, as well as a complete system incorporating image-guidance. Experimental demonstrations using a laparoscopic training task, a cadaver reachability study, and a phantom tumor resection experiment illustrate that both novice and expert users can effectively teleoperate the system, and that skull base surgeons can use the robot to achieve their objectives in a realistic surgical scenario.

12.
Sci Adv ; 9(42): eadi1562, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37862414

RESUMO

In almost all sexually reproducing organisms, meiotic recombination and cell division require the synapsis of homologous chromosomes by a large proteinaceous structure, the synaptonemal complex (SC). While the SC's overall structure is highly conserved across eukaryotes, its constituent proteins diverge between phyla. Transverse filament protein, SYCP1, spans the width of the SC and undergoes amino-terminal head-to-head self-assembly in vitro through a motif that is unusually highly conserved across kingdoms of life. Here, we report creation of mouse mutants, Sycp1L102E and Sycp1L106E, that target SYCP1's head-to-head interface. L106E resulted in a complete loss of synapsis, while L102E had no apparent effect on synapsis, in agreement with their differential effects on the SYCP1 head-to-head interface in molecular dynamics simulations. In Sycp1L106E mice, homologs aligned and recruited low levels of mutant SYCP1 and other SC proteins, but the absence of synapsis led to failure of crossover formation and meiotic arrest. We conclude that SYCP1's conserved head-to-head interface is essential for meiotic chromosome synapsis in vivo.


Assuntos
Pareamento Cromossômico , Proteínas Nucleares , Animais , Camundongos , Recombinação Homóloga , Meiose/genética , Proteínas Nucleares/metabolismo , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/metabolismo
13.
JCI Insight ; 8(12)2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37192001

RESUMO

Radiographic contact of glioblastoma (GBM) tumors with the lateral ventricle and adjacent stem cell niche correlates with poor patient prognosis, but the cellular basis of this difference is unclear. Here, we reveal and functionally characterize distinct immune microenvironments that predominate in subtypes of GBM distinguished by proximity to the lateral ventricle. Mass cytometry analysis of isocitrate dehydrogenase wild-type human tumors identified elevated T cell checkpoint receptor expression and greater abundance of a specific CD32+CD44+HLA-DRhi macrophage population in ventricle-contacting GBM. Multiple computational analysis approaches, phospho-specific cytometry, and focal resection of GBMs validated and extended these findings. Phospho-flow quantified cytokine-induced immune cell signaling in ventricle-contacting GBM, revealing differential signaling between GBM subtypes. Subregion analysis within a given tumor supported initial findings and revealed intratumor compartmentalization of T cell memory and exhaustion phenotypes within GBM subtypes. Collectively, these results characterize immunotherapeutically targetable features of macrophages and suppressed lymphocytes in GBMs defined by MRI-detectable lateral ventricle contact.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Ventrículos Laterais/diagnóstico por imagem , Ventrículos Laterais/patologia , Glioblastoma/genética , Neoplasias Encefálicas/genética , Linfócitos/patologia , Macrófagos/patologia , Microambiente Tumoral
14.
Bio Protoc ; 12(2): e4301, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35127991

RESUMO

The SARS-CoV-2 pandemic and vaccination campaign has illustrated the need for high throughput serological assays to quantitatively measure antibody levels. Here, we present a protocol for a high-throughput colorimetric ELISA assay to detect IgG antibodies against the SARS-CoV-2 spike protein. The assay robustly distinguishes positive from negative samples, while controlling for potential non-specific binding from serum samples. To further eliminate background contributions, we demonstrate a computational pipeline for fitting ELISA titration curves, that produces an extremely sensitive antibody signal metric for quantitative comparisons across samples and time.

15.
Elife ; 92020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32573435

RESUMO

A goal of cancer research is to reveal cell subsets linked to continuous clinical outcomes to generate new therapeutic and biomarker hypotheses. We introduce a machine learning algorithm, Risk Assessment Population IDentification (RAPID), that is unsupervised and automated, identifies phenotypically distinct cell populations, and determines whether these populations stratify patient survival. With a pilot mass cytometry dataset of 2 million cells from 28 glioblastomas, RAPID identified tumor cells whose abundance independently and continuously stratified patient survival. Statistical validation within the workflow included repeated runs of stochastic steps and cell subsampling. Biological validation used an orthogonal platform, immunohistochemistry, and a larger cohort of 73 glioblastoma patients to confirm the findings from the pilot cohort. RAPID was also validated to find known risk stratifying cells and features using published data from blood cancer. Thus, RAPID provides an automated, unsupervised approach for finding statistically and biologically significant cells using cytometry data from patient samples.


Assuntos
Glioblastoma/fisiopatologia , Aprendizado de Máquina não Supervisionado , Algoritmos , Humanos , Projetos Piloto , Células Tumorais Cultivadas
17.
Int J Comput Assist Radiol Surg ; 14(1): 105-115, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30173334

RESUMO

BACKGROUND: Intracerebral hemorrhage (ICH) is one of the deadliest forms of stroke in the USA. Conventional surgical techniques such as craniotomy or stereotactic aspiration disrupt a large volume of healthy brain tissue in their attempts to reach the surgical site. Consequently, the surviving patients suffer from debilitating complications. METHODS: We fabricated a novel MR-conditional steerable needle robot for ICH treatment. The robot system is powered by a custom-designed high power and low-cost pneumatic motor. We tested the robot's targeting accuracy and MR-conditionality performance, and performed phantom evacuation experiment under MR image guidance. RESULTS: Experiments demonstrate that the robotic hardware is MR-conditional; the robot has the targeting accuracy of 1.26 ± 1.22 mm in bench-top tests. With real-time MRI guidance, the robot successfully reached the desired target and evacuated an 11.3 ml phantom hematoma in 9 min. CONCLUSION: MRI-guided steerable needle robotic system is a potentially feasible approach for ICH treatment by providing accurate needle guidance and intraoperative surgical outcome evaluation.


Assuntos
Encéfalo/cirurgia , Hemorragia Cerebral/cirurgia , Imageamento por Ressonância Magnética/métodos , Procedimentos Cirúrgicos Robóticos/métodos , Encéfalo/diagnóstico por imagem , Hemorragia Cerebral/diagnóstico por imagem , Desenho de Equipamento , Humanos , Imageamento Tridimensional/métodos , Agulhas , Imagens de Fantasmas
18.
Neurosurgery ; 85(6): E1078-E1083, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31215628

RESUMO

BACKGROUND: Fractionated stereotactic radiosurgery (SRS) for vestibular schwannomas (VS) has been theorized to allow for tumor control with higher rates of hearing preservation in selected patients with useful hearing. However, there is a paucity of literature with formal audiologic measures of hearing preservation to support the standard use of fractionated SRS in VS. We hypothesized that fractionation would diminish the amount of hearing damage. OBJECTIVE: To evaluate the relationship between audiologic performance and SRS fractionation scheme. METHODS: We performed an IRB-approved retrospective review of patients treated with 1, 3, or 5 fraction SRS for VS at our institution from 1998 to 2016. Pre- and post-SRS audiograms with speech awareness threshold (SAT) in treated and contralateral ears were obtained. Contralateral ear measurements were used for hearing normalization to account for presbycusis. RESULTS: Fifty-six patients with median audiologic follow-up 2.0 yr (mean 2.66 yr, min-max 0.50-9.45 yr) were included. Patients treated with single fractionation had a significantly worsened SAT (dB) compared to patients treated with 5 fractions (P = .008) and compared to all multifraction patients (P = .009) at 12 to 24 mo follow-up. CONCLUSION: This retrospective analysis supports the use of fractionated SRS to preserve hearing in patients with VS. SAT can be used as an objective metric of hearing response to radiosurgery.


Assuntos
Audiometria/tendências , Fracionamento da Dose de Radiação , Audição/efeitos da radiação , Neuroma Acústico/radioterapia , Radiocirurgia/tendências , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Seguimentos , Audição/fisiologia , Humanos , Estudos Longitudinais , Pessoa de Meia-Idade , Neuroma Acústico/diagnóstico , Neuroma Acústico/fisiopatologia , Radiocirurgia/efeitos adversos , Estudos Retrospectivos , Resultado do Tratamento
19.
Otolaryngol Head Neck Surg ; 158(5): 952-960, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29405885

RESUMO

Objective To determine the factors associated with intra- and postoperative cerebrospinal fluid (CSF) leaks in setting of endoscopic transsphenoidal sellar surgery. Study Design Retrospective cohort. Setting Tertiary referral center. Subjects and Methods This study included 806 patients who underwent endoscopic transsphenoidal sellar surgery between 2004 and 2016. The associations between CSF leaks (intra- and postoperative) and patient demographics, medical history, tumor characteristics, and intraoperative repair techniques were analyzed. Results In sum, 205 (25.4%) patients had a CSF leak: 188 (23.3%) intraoperative leaks and 38 (4.7%) postoperative leaks. Twenty-one (2.6%) patients had postoperative leaks after having repair of an intraoperative leak; 55% of patients with a postoperative leak had an intraoperative leak repaired. On multivariate analysis, body mass index (BMI), hydrocephalus, suprasellar extension, and craniopharyngioma significantly predicted intraoperative CSF leaks, while only BMI and hydrocephalus predicted postoperative CSF leaks. Patients having septal flap repairs of CSF leaks had a higher postoperative leak rate relative to other repair techniques (odds ratio, 6.37; P = .013). Rigid reconstruction did not correlate with leaks. Conclusion For this large cohort of patients undergoing endoscopic transsphenoidal sellar surgery, BMI and hydrocephalus were identified as predictors of postoperative CSF leaks, including those occurring after repair of intraoperative leak. These variables may put stress on the surgical repair of sellar defects, and consideration of these risk factors may help counsel patients and guide perioperative decision making in regard to repair strategies and CSF diversion techniques.


Assuntos
Vazamento de Líquido Cefalorraquidiano/etiologia , Endoscopia/efeitos adversos , Complicações Intraoperatórias/etiologia , Neoplasias Hipofisárias/cirurgia , Complicações Pós-Operatórias/etiologia , Adulto , Idoso , Índice de Massa Corporal , Feminino , Humanos , Hidrocefalia/complicações , Masculino , Pessoa de Meia-Idade , Neoplasias Hipofisárias/complicações , Neoplasias Hipofisárias/patologia , Estudos Retrospectivos , Fatores de Risco
20.
J Neurol Surg B Skull Base ; 79(2): 123-130, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29868316

RESUMO

Objective Machine learning (ML) algorithms are powerful tools for predicting patient outcomes. This study pilots a novel approach to algorithm selection and model creation using prediction of discharge disposition following meningioma resection as a proof of concept. Materials and Methods A diversity of ML algorithms were trained on a single-institution database of meningioma patients to predict discharge disposition. Algorithms were ranked by predictive power and top performers were combined to create an ensemble model. The final ensemble was internally validated on never-before-seen data to demonstrate generalizability. The predictive power of the ensemble was compared with a logistic regression. Further analyses were performed to identify how important variables impact the ensemble. Results Our ensemble model predicted disposition significantly better than a logistic regression (area under the curve of 0.78 and 0.71, respectively, p = 0.01). Tumor size, presentation at the emergency department, body mass index, convexity location, and preoperative motor deficit most strongly influence the model, though the independent impact of individual variables is nuanced. Conclusion Using a novel ML technique, we built a guided ML ensemble model that predicts discharge destination following meningioma resection with greater predictive power than a logistic regression, and that provides greater clinical insight than a univariate analysis. These techniques can be extended to predict many other patient outcomes of interest.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA