Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
J Cell Sci ; 135(9)2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35393618

RESUMO

In the trunk of developing zebrafish embryos, adjacent myotome blocks transmit contractile force via myoseptal junctions (MJs), which are dynamic structures that connect the actin cytoskeleton of skeletal muscle cells to extracellular matrix components via transmembrane protein complexes in the sarcolemma. Here, we report that the endolysosomal ion channel, two-pore channel type 1 (TPC1, encoded by tpcn1), generates highly localized non-propagating Ca2+ transients that play a distinct and required role in the capture and attachment of superficial slow skeletal muscle cells at MJs. Use of antisense morpholinos or CRISPR/Cas9 gene editing to disrupt tpcn1 gene expression resulted in abnormal MJ phenotypes, including slow skeletal muscle cells detaching from or crossing the myosepta. We also report that TPC1-decorated endolysosomes are dynamically associated with MJs in a microtubule-dependent manner, and that attenuating tpcn1 expression or TPC1 function disrupted endolysosomal trafficking and resulted in an abnormal distribution of ß-dystroglycan (encoded by dag1; a key transmembrane component of the dystrophin-associated protein complex). Taken together, our data suggest that localized TPC1-generated Ca2+ signals facilitate essential endolysosomal trafficking and membrane contact events, which help form and maintain MJs following the onset of slow skeletal muscle cell contractile activity. This article has an associated First Person interview with the first author of the paper.


Assuntos
Cálcio , Peixe-Zebra , Animais , Humanos , Cálcio/metabolismo , Distroglicanas/metabolismo , Morfolinos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Molecules ; 29(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38893512

RESUMO

COVID-19 continues to spread around the world. This is mainly because new variants of the SARS-CoV-2 virus emerge due to genomic mutations, evade the immune system and result in the effectiveness of current therapeutics being reduced. We previously established a series of detection platforms, comprising computational docking analysis, S-protein-based ELISA, pseudovirus entry, and 3CL protease activity assays, which allow us to screen a large library of phytochemicals from natural products and to determine their potential in blocking the entry of SARS-CoV-2. In this new screen, rutaecarpine (an alkaloid from Evodia rutaecarpa) was identified as exhibiting anti-SARS-CoV-2 activity. Therefore, we conducted multiple rounds of structure-activity-relationship (SAR) studies around this phytochemical and generated several rutaecarpine analogs that were subjected to in vitro evaluations. Among these derivatives, RU-75 and RU-184 displayed remarkable inhibitory activity when tested in the 3CL protease assay, S-protein-based ELISA, and pseudovirus entry assay (for both wild-type and omicron variants), and they attenuated the inflammatory response induced by SARS-CoV-2. Interestingly, RU-75 and RU-184 both appeared to be more potent than rutaecarpine itself, and this suggests that they might be considered as lead candidates for future pharmacological elaboration.


Assuntos
Antivirais , Desenho de Fármacos , Alcaloides Indólicos , Simulação de Acoplamento Molecular , Quinazolinas , SARS-CoV-2 , Alcaloides Indólicos/farmacologia , Alcaloides Indólicos/química , SARS-CoV-2/efeitos dos fármacos , Quinazolinas/farmacologia , Quinazolinas/química , Humanos , Antivirais/farmacologia , Antivirais/química , Relação Estrutura-Atividade , Tratamento Farmacológico da COVID-19 , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , Internalização do Vírus/efeitos dos fármacos , Quinazolinonas
3.
Nurs Crit Care ; 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233201

RESUMO

BACKGROUND: Paediatric critical care (PCC) is a high-pressure working environment. Staff experience high levels of burnout, symptoms of post-traumatic stress, and moral distress. AIM: To understand challenges to workplace well-being in PCC to help inform the development of staff interventions to improve and maintain well-being. STUDY DESIGN: The Enhanced Critical Incident Technique (ECIT) was used. ECIT encompasses semi-structured interviews and thematic analysis. We identified 'critical incidents', challenges to well-being, categorized them in a meaningful way, and identified factors which helped and hindered in those moments. Fifty-three nurses and doctors from a large UK quaternary PCC unit were consented to take part. RESULTS: Themes generated are: Context of working in PCC, which examined staff's experiences of working in PCC generally and during COVID-19; Patient care and moral distress explored significant challenges to well-being faced by staff caring for increasingly complex and chronically ill patients; Teamwork and leadership demonstrated the importance of team-belonging and clear leadership; Changing workforce explored the impact of staffing shortages and the ageing workforce on well-being; and Satisfying basic human needs, which identified absences in basic requirements of food and rest. CONCLUSIONS: Staff's experiential accounts demonstrated a clear need for psychologically informed environments to enable the sharing of vulnerabilities, foster support, and maintain workplace well-being. Themes resonated with the self-determination theory and Maslow's hierarchy of needs, which outline requirements for fulfilment (self-actualization). RELEVANCE TO CLINICAL PRACTICE: Well-being interventions must be informed by psychological theory and evidence. Recommendations are flexible rostering, advanced communication training, psychologically-informed support, supervision/mentoring training, adequate accommodation and hot food. Investment is required to develop successful interventions to improve workplace well-being.

4.
J Virol ; 96(24): e0141822, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36448804

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the acute respiratory disease coronavirus disease 2019 (COVID-19), which has resulted in millions of deaths globally. Here, we explored the mechanism of host cell entry of a luciferase-ZsGreen spike (SARS-CoV-2)-pseudotyped lentivirus using zebrafish embryos/larvae as an in vivo model. Successful pseudovirus entry was demonstrated via the expression of the luciferase (luc) gene, which was validated by reverse transcription-PCR (RT-PCR). Treatment of larvae with chloroquine (a broad-spectrum viral inhibitor that blocks membrane fusion) or bafilomycin A1 (a specific inhibitor of vacuolar proton ATPases, which blocks endolysosomal trafficking) significantly reduced luc expression, indicating the possible involvement of the endolysosomal system in the viral entry mechanism. The pharmacological inhibition of two-pore channel (TPC) activity or use of the tpcn2dhkz1a mutant zebrafish line also led to diminished luc expression. The localized expression of ACE2 and TPC2 in the anterior neuromasts and the forming olfactory organs was demonstrated, and the occurrence of endocytosis in both locations was confirmed. Together, our data indicate that zebrafish embryos/larvae are a viable and tractable model to explore the mechanism of SARS-CoV-2 host cell entry, that the peripheral sense organs are a likely site for viral host cell entry, and that TPC2 plays a key role in the translocation of the virus through the endolysosomal system. IMPORTANCE Despite the development of effective vaccines to combat the COVID-19 pandemic, which help prevent the most life-threatening symptoms, full protection cannot be guaranteed, especially with the emergence of new viral variants. Moreover, some resistance to vaccination remains in certain age groups and cultures. As such, there is an urgent need for the development of new strategies and therapies to help combat this deadly disease. Here, we provide compelling evidence that the peripheral sensory organs of zebrafish possess several key components required for SARS-CoV-2 host cell entry. The nearly transparent larvae provide a most amenable complementary platform to investigate the key steps of viral entry into host cells, as well as its spread through the tissues and organs. This will help in the identification of key viral entry steps for therapeutic intervention, provide an inexpensive model for screening novel antiviral compounds, and assist in the development of new and more effective vaccines.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , COVID-19/transmissão , Ligação Proteica , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Peixe-Zebra , Modelos Animais de Doenças , Virologia/métodos , Larva
5.
Zygote ; 31(6): 517-526, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37533161

RESUMO

In zebrafish, a punctate band of F-actin is reported to develop in the external yolk syncytial layer (E-YSL) during the latter part of epiboly in zebrafish embryos. Here, electron microscopy (EM) and fluorescence confocal microscopy were conducted to investigate dynamic changes in the E-YSL membrane during epiboly. Using scanning EM, we report that the surface of the E-YSL is highly convoluted, consisting of a complex interwoven network of branching membrane surface microvilli-like protrusions. The region of membrane surface protrusions was relatively wide at 30% epiboly but narrowed as epiboly progressed. This narrowing was coincident with the formation of the punctate actin band. We also demonstrated using immunogold transmission EM that actin clusters were localized at the membrane surface mainly within the protrusions as well as in deeper locations of the E-YSL. Furthermore, during the latter part of epiboly, the punctate actin band was coincident with a region of highly dynamic endocytosis. Treatment with cytochalasin B led to the disruption of the punctate actin band and the membrane surface protrusions, as well as the attenuation of endocytosis. Together, our data suggest that, in the E-YSL, the region encompassing the membrane surface protrusions and its associated punctate actin band are likely to be an integral part of the localized endocytosis, which is important for the progression of epiboly in zebrafish embryos.


Assuntos
Actinas , Peixe-Zebra , Animais , Citoesqueleto de Actina , Morfogênese , Endocitose , Proteínas de Peixe-Zebra
6.
Int J Mol Sci ; 24(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36614206

RESUMO

COVID-19, derived from SARS-CoV-2, has resulted in millions of deaths and caused unprecedented socioeconomic damage since its outbreak in 2019. Although the vaccines developed against SARS-CoV-2 provide some protection, they have unexpected side effects in some people. Furthermore, new viral mutations reduce the effectiveness of the current vaccines. Thus, there is still an urgent need to develop potent non-vaccine therapeutics against this infectious disease. We recently established a series of detecting platforms to screen a large library of Chinese medicinal herbs and phytochemicals. Here, we reveal that the ethanolic extract of Evodiae Fructus and one of its components, rutaecarpine, showed promising potency in inhibiting the activity of 3C-like (3CL) protease, blocking the entry of the pseudo-typed SARS-CoV-2 (including wild-type and omicron) into cultured cells. In addition, inflammatory responses induced by pseudo-typed SARS-CoV-2 were markedly reduced by Evodiae Fructus extract and rutaecarpine. Together our data indicate that the herbal extract of Evodiae Fructus and rutaecarpine are potent anti-SARS-CoV-2 agents, which might be considered as a treatment against COVID-19 in clinical applications.


Assuntos
COVID-19 , Medicamentos de Ervas Chinesas , Evodia , Humanos , SARS-CoV-2 , Medicamentos de Ervas Chinesas/farmacologia , Extratos Vegetais/farmacologia
7.
Aust Crit Care ; 36(1): 133-137, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470778

RESUMO

BACKGROUND: Although well-established internationally, nurse practitioners (NPs) in Australian adult intensive care units (ICUs) are rare. Australian literature clearly highlights the importance of creating ICU NP roles to meet emerging demands. An ICU NP model of care at a metropolitan hospital in Sydney provides care in four core practice areas: complex case management, vascular access, tracheostomy management, and intrahospital transport of critically ill patients. The ICU NPs also provide training and assessment for ICU nurses and medical officers in these same core practice areas and can efficiently meet service gaps in crisis such as the most recent COVID-19 pandemic. RESULTS: The ICU NP program described is an innovative model of care that has demonstrated potential benefits to patients and their families. Potential benefits to the healthcare system including supporting advanced practice nursing development in regional and rural Australia and in addressing future ICU workforce issues are also identified. This model of care provides a clear role and structure for the integration of NPs in the adult ICU. Research to evaluate the impact of the role is required and is underway. CONCLUSIONS: This model is being used to develop a national adult ICU NP fellowship training program for ICU transitional NPs preparing for endorsement or endorsed NPs who require additional ICU-specific training. This immersive clinical training program combined with didactic learning modules offers a framework to support the implementation of the adult ICU NP role as well as a framework for NP fellowship programs in other specialties.


Assuntos
COVID-19 , Profissionais de Enfermagem , Humanos , Adulto , Austrália , Pandemias , Unidades de Terapia Intensiva , Profissionais de Enfermagem/educação , Cuidados Críticos
8.
J Cell Sci ; 133(13)2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32546534

RESUMO

The role of two-pore channel type 2 (TPC2, encoded by tcpn2)-mediated Ca2+ release was recently characterized in zebrafish during establishment of the early spinal circuitry, one of the key events in the coordination of neuromuscular activity. Here, we extend our study to investigate the in vivo role of TPC2 in the regulation of caudal primary motor neuron (CaP) axon extension. We used a combination of TPC2 knockdown with a translation-blocking morpholino antisense oligonucleotide (MO), TPC2 knockout via the generation of a tpcn2dhkz1a mutant line of zebrafish using CRISPR/Cas9 gene-editing and pharmacological inhibition of TPC2 via incubation with bafilomycin A1 (an H+-ATPase inhibitor) or trans-ned-19 (an NAADP receptor antagonist), and showed that these treatments attenuated CaP Ca2+ signaling and inhibited axon extension. We also characterized the expression of an arc1-like transcript in CaPs grown in primary culture. MO-mediated knockdown of ARC1-like in vivo led to attenuation of the Ca2+ transients in the CaP growth cones and an inhibition of axon extension. Together, our new data suggest a link between ARC1-like, TPC2 and Ca2+ signaling during axon extension in zebrafish.


Assuntos
Canais de Cálcio , Peixe-Zebra , Animais , Axônios/metabolismo , Cálcio/metabolismo , Neurônios Motores/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
9.
Zygote ; 30(2): 267-278, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34530953

RESUMO

It has previously been reported that in ex vivo planar explants prepared from Xenopus laevis embryos, the intracellular pH (pHi) increases in cells of the dorsal ectoderm from stage 10.5 to 11.5 (i.e. 11-12.5 hpf). It was proposed that such increases (potentially due to H+ being extruded, sequestered, or buffered in some manner), play a role in regulating neural induction. Here, we used an extracellular ion-selective electrode to non-invasively measure H+ fluxes at eight locations around the equatorial circumference of intact X. laevis embryos between stages 9-12 (˜7-13.25 hpf). We showed that at stages 9-11, there was a small H+ efflux recorded from all the measuring positions. At stage 12 there was a small, but significant, increase in the efflux of H+ from most locations, but the efflux from the dorsal side of the embryo was significantly greater than from the other positions. Embryos were also treated from stages 9-12 with bafilomycin A1, to block the activity of the ATP-driven H+ pump. By stage 22 (24 hpf), these embryos displayed retarded development, arresting before the end of gastrulation and therefore did not display the usual anterior and neural structures, which were observed in the solvent-control embryos. In addition, expression of the early neural gene, Zic3, was absent in treated embryos compared with the solvent controls. Together, our new in vivo data corroborated and extended the earlier explant-derived report describing changes in pHi that were suggested to play a role during neural induction in X. laevis embryos.


Assuntos
Ectoderma , Desenvolvimento Embrionário , Animais , Ectoderma/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Sistema Nervoso , Xenopus laevis/metabolismo
10.
Molecules ; 27(12)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35744929

RESUMO

COVID-19, resulting from infection by the SARS-CoV-2 virus, caused a contagious pandemic. Even with the current vaccines, there is still an urgent need to develop effective pharmacological treatments against this deadly disease. Here, we show that the water and ethanol extracts of the root and rhizome of Polygonum cuspidatum (Polygoni Cuspidati Rhizoma et Radix), a common Chinese herbal medicine, blocked the entry of wild-type and the omicron variant of the SARS-CoV-2 pseudotyped virus into fibroblasts or zebrafish larvae, with IC50 values ranging from 0.015 to 0.04 mg/mL. The extracts were shown to inhibit various aspects of the pseudovirus entry, including the interaction between the spike protein (S-protein) and the angiotensin-converting enzyme II (ACE2) receptor, and the 3CL protease activity. Out of the chemical compounds tested in this report, gallic acid, a phytochemical in P. cuspidatum, was shown to have a significant anti-viral effect. Therefore, this might be responsible, at least in part, for the anti-viral efficacy of the herbal extract. Together, our data suggest that the extracts of P. cuspidatum inhibit the entry of wild-type and the omicron variant of SARS-CoV-2, and so they could be considered as potent treatments against COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , Fallopia japonica , Animais , Antivirais/análise , Antivirais/farmacologia , Fallopia japonica/química , Peptídeo Hidrolases , Extratos Vegetais/análise , Extratos Vegetais/farmacologia , Rizoma/química , SARS-CoV-2 , Pseudotipagem Viral , Peixe-Zebra
11.
Future Oncol ; 17(34): 4813-4822, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34494443

RESUMO

Aim: There is a need to evaluate current treatments for stages I-III of Merkel cell carcinoma (MCC). Materials & methods: A systematic literature review was conducted to understand how patients with stage I-III MCC are treated and assess efficacy, safety, health-related quality of life and economic impact of current therapies. Embase was searched using the following inclusion criteria: publications from 2014 to 2019, in English, with adult patients (≥18 years) with early-stage MCC (i.e., stages I-III) and any interventions/comparators. Publications were excluded if they included only patients with stage IV MCC, had no distinction between early and advanced or metastatic MCC or had no extractable data. Results: A total of 18 retrospective studies were included. Few studies had evidence that surgery plus adjuvant radiotherapy significantly increased survival versus surgery alone in early MCC. Limited safety data were reported in three studies. None of the studies reported data on health-related quality of life or economic impact of treatment in patients with early-stage MCC. Conclusion: Although surgery plus adjuvant radiotherapy was a common treatment, no clear standard of care exists for stages I-III MCC and treatment outcomes need to be improved. All studies were retrospective with a high variability in sample sizes; hence, findings should be interpreted with caution.


Assuntos
Carcinoma de Célula de Merkel/terapia , Procedimentos Cirúrgicos Dermatológicos/estatística & dados numéricos , Recidiva Local de Neoplasia/epidemiologia , Neoplasias Cutâneas/terapia , Carcinoma de Célula de Merkel/diagnóstico , Carcinoma de Célula de Merkel/mortalidade , Carcinoma de Célula de Merkel/patologia , Intervalo Livre de Doença , Humanos , Recidiva Local de Neoplasia/prevenção & controle , Estadiamento de Neoplasias , Qualidade de Vida , Radioterapia Adjuvante/estatística & dados numéricos , Estudos Retrospectivos , Biópsia de Linfonodo Sentinela , Pele/patologia , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia
12.
Am J Primatol ; 83(3): e23214, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33169860

RESUMO

Chimpanzees are the species most closely related to humans, yet age-related changes in brain and cognition remain poorly understood. The lack of studies on age-related changes in cognition in chimpanzees is particularly unfortunate in light of the recent evidence demonstrating that this species naturally develops Alzheimer's disease (AD) neuropathology. Here, we tested 213 young, middle-aged, and elderly captive chimpanzees on the primate cognitive test battery (PCTB), a set of 13 tasks that assess physical and social cognition in nonhuman primates. A subset of these chimpanzees (n = 146) was tested a second time on a portion of the PCTB tasks as a means of evaluating longitudinal changes in cognition. Cross-sectional analyses revealed a significant quadratic association between age and cognition with younger and older chimpanzees performing more poorly than middle-aged individuals. Longitudinal analyses showed that the oldest chimpanzees at the time of the first test showed the greatest decline in cognition, although the effect was mild. The collective data show that chimpanzees, like other nonhuman primates, show age-related decline in cognition. Further investigations into whether the observed cognitive decline is associated with AD pathologies in chimpanzees would be invaluable in understanding the comparative biology of aging and neuropathology in primates.


Assuntos
Disfunção Cognitiva , Pan troglodytes , Envelhecimento , Animais , Cognição , Estudos Transversais
13.
J Fish Biol ; 98(1): 17-32, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32964432

RESUMO

The elasmoid scales of anadromous sea trout Salmo trutta L. represent a significant internal reservoir of Ca2+ . Although more is known about long-term remodelling of scales in response to calciotropic challenges encountered during smoltification and migration, very little is known about the contribution made by scales to the short-term, minute-to-minute regulation of Ca2+ homeostasis in the extracellular fluid (ECF) during these phases of the life cycle. This gap in the knowledge is partly due to the technical challenges involved in measuring small Ca2+ fluxes around the scales of live fish in real time. Here, this study describes exfoliating, mounting and culturing scales and their resident cells from parr, smolt and adult sea trout from a freshwater environment, as well as from adult sea trout caught in sea or brackish water. All the scales were then examined using an extracellular, non-invasive, surface-scanning Ca2+ -sensitive microelectrode. The authors quantified the Ca2+ fluxes, in the absence of any systemic or local regulators, into and out of scales on both the episquamal and hyposquamal sides under different extracellular calcemic challenges set to mimic a variety of ECF-Ca2+ concentrations. Scales from the life-cycle stages as well as from adult fish taken from sea, brackish or fresh water all showed a consistent efflux or influx of Ca2+ under hypo- or hypercalcemic conditions, respectively. What were considered to be isocalcemic conditions resulted in minimal flux of Ca2+ in either direction, or in the case of adult scales, a consistent but small influx. Indeed, adult scales appeared to display the largest flux densities in either direction. These new data extend the current understanding of the role played by fish scales in the short-term, minute-to-minute homeostatic regulation of ECF-Ca2+ concentration, and are similar to those recently reported from zebrafish Danio rerio scales. This suggests that this short-term regulatory response might be a common feature of teleost scales.


Assuntos
Migração Animal/fisiologia , Escamas de Animais/metabolismo , Cálcio/metabolismo , Líquido Extracelular/química , Homeostase , Truta/fisiologia , Animais , Cálcio/sangue , Água Doce , Água do Mar , Truta/sangue
14.
Dev Biol ; 445(2): 211-225, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30447180

RESUMO

We recently demonstrated the requirement of two-pore channel type 2 (TPC2)-mediated Ca2+ release during slow muscle cell differentiation and motor circuit maturation in intact zebrafish embryos. However, the upstream trigger(s) of TPC2/Ca2+ signaling during these developmental processes remains unclear. Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca2+ mobilizing messenger, which is suggested to target TPC2 in mediating the release of Ca2+ from acidic vesicles. Here, we report the molecular cloning of the zebrafish ADP ribosyl cyclase (ARC) homolog (i.e., ARC1-like), which is a putative enzyme for generating NAADP. We characterized the expression of the arc1-like transcript and the NAADP levels between ~ 16 h post-fertilization (hpf) and ~ 48 hpf in whole zebrafish embryos. We showed that if ARC1-like (when fused with either EGFP or tdTomato) was overexpressed it localized in the plasma membrane, and associated with intracellular organelles, such as the acidic vesicles, Golgi complex and sarcoplasmic reticulum, in primary muscle cell cultures. Morpholino (MO)-mediated knockdown of arc1-like or pharmacological inhibition of ARC1-like (via treatment with nicotinamide), led to an attenuation of Ca2+ signaling and disruption of slow muscle cell development. In addition, the injection of arc1-like mRNA into ARC1-like morphants partially rescued the Ca2+ signals and slow muscle cell development. Together, our data might suggest a link between ARC1-like, NAADP, TPC2 and Ca2+ signaling during zebrafish myogenesis.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , NADP/análogos & derivados , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , ADP-Ribosil Ciclase 1/antagonistas & inibidores , ADP-Ribosil Ciclase 1/genética , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Técnicas de Silenciamento de Genes , Células Musculares/metabolismo , Desenvolvimento Muscular , NADP/metabolismo , Niacinamida/farmacologia , Retículo Sarcoplasmático/metabolismo , Homologia de Sequência de Aminoácidos , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética
15.
Am J Primatol ; 82(3): e23109, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32077522

RESUMO

Due to advances in captive nonhuman primate (NHP) medical care, the number of geriatric chimpanzees (≥35-years old) is growing. With old age comes a variety of physical conditions, including arthritis, stroke, and mobility impairments. Programs aimed at enhancing the welfare of geriatric chimpanzees are now quite common, but there are few published empirical evaluations of the efficacy of such programs. The current study aimed to create, implement, and evaluate the effects of participation in a physical therapy (PT) program on physical health, mobility, welfare, and behavior. Nine chimpanzees with mobility impairments participated in personalized PT routines (using positive reinforcement training) twice per week for 5 months. Additionally, nine control chimpanzees (non-mobility-impaired, matched with PT chimpanzees on age and gender) participated in body exam behavior sessions (also using positive reinforcement training) twice per week. All chimpanzees were rated on 14 health, well-being, and behavior items, as well as level of mobility throughout the PT program. Chimpanzees that participated in the PT program showed significant increases in ratings of physical health, well-being, and activity levels across phases of the program. Furthermore, compared to control chimpanzees, PT chimpanzees showed significant increases in ratings of ease of movement. Because raters were not blind to physical therapy treatment, our results represent an initial evaluation of the program that may suggest that participation in the PT program has physical, behavioral, and welfare benefits. Assessments of novel geriatric-focused care strategies and programs are essential to further enhance the welfare of the captive chimpanzee population, which is currently comprised of many geriatric animals, whose proportion of the captive population will only increase.


Assuntos
Envelhecimento , Bem-Estar do Animal , Pan troglodytes , Modalidades de Fisioterapia/veterinária , Animais , Feminino , Masculino , Limitação da Mobilidade , Avaliação de Programas e Projetos de Saúde , Reforço Psicológico
16.
Am J Primatol ; 82(10): e23188, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32856319

RESUMO

Obesity is a problem in captive chimpanzee colonies that can lead to increased risk for disease; therefore, implementation of effective weight management strategies is imperative. To properly implement a weight management program, captive managers should be able to noninvasively identify and assess overweight or obese individuals. Traditional means of categorizing obese individuals involve sedating the animals to obtain body weights or skin fold measurements. The current study aimed to validate a noninvasive, subjective body condition score (BCS) system for captive chimpanzees. The system utilizes a 10-point scale, with one rated as "emaciated," five as "normal," and 10 as "extremely obese." Between 2013 and 2014, 158 chimpanzees were weighed and scored using this system (a) while sedated and (b) while awake in their social group within 1-3 days of sedation ("In-group" ratings). We found high inter-rater reliability between In-group raters, as well as between sedated and In-group scores. BCSs, which require observation only, were significantly positively correlated with weight (an objective measure of obesity often requiring anesthetization), supporting the scale's validity. The BCS system identified 36 individuals as "overweight," while the use of weights alone identified only 26 individuals as "overweight." Furthermore, the BCS system was able to classify individuals of the same sex and weight as having different BCSs, ranging from normal to overweight. Lastly, using focal animal behavioral observations from 2016 to 2018 (N = 120), we found that In-group BCS predicted individual levels of inactive behavior more than 2 years later, demonstrating the predictive validity of the scale. These results illustrate the utility of the BCS system as a noninvasive, reliable, and valid technique that may be more sensitive than traditional methods in identifying and quantifying obesity in chimpanzees. This system can be a useful tool for captive managers to monitor and manage the weight of chimpanzees and other nonhuman primates.


Assuntos
Composição Corporal , Pan troglodytes , Bem-Estar do Animal , Animais , Comportamento Animal/fisiologia , Peso Corporal , Feminino , Masculino , Variações Dependentes do Observador , Sobrepeso/veterinária
17.
Perfusion ; 35(8): 802-805, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32404019

RESUMO

INTRODUCTION: There is a need for a universal risk-adjustment model that may be used regardless of the indication and nature of neonatal or paediatric extracorporeal membrane oxygenation support. The 'paediatric extracorporeal membrane oxygenation prediction' model appeared to be a promising candidate but required external validation. METHODS: We performed a validation study using institutional database of extracorporeal membrane oxygenation patients (2008-2019). We used the published paediatric extracorporeal membrane oxygenation prediction score calculator to derive estimated mortality based on the model in this cohort of patients in our institutional database. We used standardized mortality ratio, area under the receiver operating characteristic curve and Hosmer-Lemeshow goodness-of-fit test in 10 deciles to assess model performance. RESULTS: We analysed 154 extracorporeal membrane oxygenation episodes in 150 patients. About 53% of the patients were full term (age ⩽30 days and gestation at birth ⩾37 weeks) neonates. The commonest category of extracorporeal membrane oxygenation support was cardiac (42%). The overall in-paediatric intensive care unit mortality was 37% (57/154) and the in-hospital mortality was 42% (64/154). Distribution of estimated mortality risk was similar to the derivation study. The calculated standardized mortality ratio was 0.81 based on the paediatric extracorporeal membrane oxygenation prediction model of risk-adjustment. The area under the receiver operating characteristic curve was 0.55 (0.45-0.64) and Hosmer-Lemeshow-test p value <0.001 was unable to support goodness-of-fit. CONCLUSION: This small single-centre study with a small number of events was unable to validate the paediatric extracorporeal membrane oxygenation prediction-model of risk-adjustment. Although this remains the most promising of all the available models, further validation in larger data sets and/or refinement may be required before widespread use.


Assuntos
Oxigenação por Membrana Extracorpórea/métodos , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Reprodutibilidade dos Testes , Estudos Retrospectivos , Medição de Risco , Reino Unido
18.
Dev Biol ; 438(1): 57-68, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29577882

RESUMO

During the development of the early spinal circuitry in zebrafish, spontaneous Ca2+ transients in the primary motor neurons (PMNs) are reported to transform from being slow and uncorrelated, to being rapid, synchronized and patterned. In this study, we demonstrated that in intact zebrafish, Ca2+ release via two-pore channel type 2 (TPC2) from acidic stores/endolysosomes is required for the establishment of synchronized activity in the PMNs. Using the SAIGFF213A;UAS:GCaMP7a double-transgenic zebrafish line, Ca2+ transients were visualized in the caudal PMNs (CaPs). TPC2 inhibition via molecular, genetic or pharmacological means attenuated the CaP Ca2+ transients, and decreased the normal ipsilateral correlation and contralateral anti-correlation, indicating a disruption in normal spinal circuitry maturation. Furthermore, treatment with MS-222 resulted in a complete (but reversible) inhibition of the CaP Ca2+ transients, as well as a significant decrease in the concentration of the Ca2+ mobilizing messenger, nicotinic acid adenine diphosphate (NAADP) in whole embryo extract. Together, our new data suggest a novel function for NAADP/TPC2-mediated Ca2+ signaling in the development, coordination, and maturation of the spinal network in zebrafish embryos.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Neurônios Motores/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Técnicas de Cultura de Células , Imuno-Histoquímica , NADP/análogos & derivados , NADP/metabolismo , Peixe-Zebra/metabolismo
20.
Nature ; 554(7693): 555-557, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32094952
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA