RESUMO
Ferroelectric materials are fascinating for their non-volatile switchable electric polarizations induced by the spontaneous inversion-symmetry breaking. However, in all of the conventional ferroelectric compounds, at least two constituent ions are required to support the polarization switching1,2. Here, we report the observation of a single-element ferroelectric state in a black phosphorus-like bismuth layer3, in which the ordered charge transfer and the regular atom distortion between sublattices happen simultaneously. Instead of a homogenous orbital configuration that ordinarily occurs in elementary substances, we found the Bi atoms in a black phosphorous-like Bi monolayer maintain a weak and anisotropic sp orbital hybridization, giving rise to the inversion-symmetry-broken buckled structure accompanied with charge redistribution in the unit cell. As a result, the in-plane electric polarization emerges in the Bi monolayer. Using the in-plane electric field produced by scanning probe microscopy, ferroelectric switching is further visualized experimentally. Owing to the conjugative locking between the charge transfer and atom displacement, we also observe the anomalous electric potential profile at the 180° tail-to-tail domain wall induced by competition between the electronic structure and electric polarization. This emergent single-element ferroelectricity broadens the mechanism of ferroelectrics and may enrich the applications of ferroelectronics in the future.
RESUMO
The chemical bond is of central interest in chemistry, and it is of significance to study the nature of intermolecular bonds in real-space. Herein, non-contact atomic force microscopy (nc-AFM) and low-temperature scanning tunneling microscopy (LT-STM) are employed to acquire real-space atomic information of molecular clusters, i.e., monomer, dimer, trimer, tetramer, formed on Au(111). The formation of the various molecular clusters is due to the diversity of halogen bonds. DFT calculation also suggests the formation of three distinct halogen bonds among the molecular clusters, which originates from the noncovalent interactions of Br-atoms with the positive potential H-atoms, neutral potential Br-atoms, and negative potential N-atoms, respectively. This work demonstrates the real-space investigation of the multiple halogen bonds by nc-AFM/LT-STM, indicating the potential use of this technique to study other intermolecular bonds and to understand complex supramolecular assemblies at the atomic/sub-molecular level.
RESUMO
Chemical vapour deposition of two-dimensional materials typically involves the conversion of vapour precursors to solid products in a vapour-solid-solid mode. Here, we report the vapour-liquid-solid growth of monolayer MoS2, yielding highly crystalline ribbons with a width of few tens to thousands of nanometres. This vapour-liquid-solid growth is triggered by the reaction between MoO3 and NaCl, which results in the formation of molten Na-Mo-O droplets. These droplets mediate the growth of MoS2 ribbons in the 'crawling mode' when saturated with sulfur. The locally well-defined orientations of the ribbons reveal the regular horizontal motion of the droplets during growth. Using atomic-resolution scanning transmission electron microscopy and second harmonic generation microscopy, we show that the ribbons are grown homoepitaxially on monolayer MoS2 with predominantly 2H- or 3R-type stacking. Our findings highlight the prospects for the controlled growth of atomically thin nanostructure arrays for nanoelectronic devices and the development of unique mixed-dimensional structures.
RESUMO
Self-assembled two-dimensional molecular arrays and photoinduced polymerization of 4-bromo-4'-hydroxybiphenyl on Ag(111) were studied using low-temperature scanning tunneling microscopy combined with density functional theory calculations. Square-like self-assembled structures of 4-bromo-4'-hydroxybiphenyl stabilized by intermolecular hydrogen and halogen bonds were transformed into hexagonal nanopores of biphenyl biradicals by 266 nm UV laser irradiation at 80 K. The biradicals further coupled to each other and formed covalently linked polyphenylene polymer chains at room temperature.
RESUMO
A combination of abâ initio calculations, circular dichroism, nuclear magnetic resonance, and X-ray photoelectron spectroscopy has shown that aluminum ions can induce the formation of backbone ring structures in a wide range of peptides, including neurodegenerative disease related motifs. These ring structures greatly destabilize the protein and result in irreversible denaturation. This behavior benefits from the ability of aluminum ions to form chemical bonds simultaneously with the amide nitrogen and carbonyl oxygen atoms on the peptide backbone.
Assuntos
Alumínio/química , Proteínas/química , Teoria Quântica , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Conformação Proteica , Desnaturação ProteicaRESUMO
Combinations of phosphorus with main group III, IV, and V elements are theoretically predicted to generate 2D binary phosphides with extraordinary properties and promising applications. However, experimental synthesis is significantly lacking. Here, a general approach for preparing 2D binary phosphides is reported using single crystalline surfaces containing the constituent element of target 2D materials as the substrate. To validate this, SnP3 and BiP, representing typical 2D binary phosphides, are successfully synthesized on Cu2Sn and bismuthene, respectively. Scanning tunneling microscopy imaging reveals a hexagonal pattern of SnP3 on Cu2Sn, while α-BiP can be epitaxially grown on the α-bismuthene domain on Cu2Sb. First-principles calculations reveal that the formation of SnP3 on Cu2Sn is associated with strong interface bonding and significant charge transfer, while α-BiP interacts weakly with α-bismuthene so that its semiconducting property is preserved. The study demonstrates an attractive avenue for the atomic-scale growth of binary 2D materials via substrate phase engineering.
RESUMO
"Test-and-go" single-nucleotide variation (SNV) detection within several minutes remains challenging, especially in low-abundance samples, since existing methods face a trade-off between sensitivity and testing speed. Sensitive detection usually relies on complex and time-consuming nucleic acid amplification or sequencing. Here, a graphene field-effect transistor (GFET) platform mediated by Argonaute protein that enables rapid, sensitive, and specific SNV detection is developed. The Argonaute protein provides a nanoscale binding channel to preorganize the DNA probe, accelerating target binding and rapidly recognizing SNVs with single-nucleotide resolution in unamplified tumor-associated microRNA, circulating tumor DNA, virus RNA, and reverse transcribed cDNA when a mismatch occurs in the seed region. An integrated microchip simultaneously detects multiple SNVs in agreement with sequencing results within 5 min, achieving the fastest SNV detection in a "test-and-go" manner without the requirement of nucleic acid extraction, reverse transcription, and amplification.
Assuntos
Técnicas Biossensoriais , MicroRNAs , Nucleotídeos , Proteínas Argonautas , DNA/genética , MicroRNAs/genética , Sondas de DNARESUMO
Spin-polarized two-dimensional (2D) materials with large and tunable spin-splitting energy promise the field of 2D spintronics. While graphene has been a canonical 2D material, its spin properties and tunability are limited. Here, this work demonstrates the emergence of robust spin-polarization in graphene with large and tunable spin-splitting energy of up to 132 meV at zero applied magnetic fields. The spin polarization is induced through a magnetic exchange interaction between graphene and the underlying ferrimagnetic oxide insulating layer, Tm3 Fe5 O12 , as confirmed by its X-ray magnetic circular dichroism (XMCD). The spin-splitting energies are directly measured and visualized by the shift in their Landau-fan diagram mapped by analyzing the measured Shubnikov-de-Haas (SdH) oscillations as a function of applied electric fields, showing consistent fit with the first-principles and machine learning calculations. Further, the observed spin-splitting energies can be tuned over a broad range between 98 and 166 meV by field cooling. The methods and results are applicable to other 2D (magnetic) materials and heterostructures, and offer great potential for developing next-generation spin logic and memory devices.
RESUMO
On-site diagnostic tests that accurately identify disease biomarkers lay the foundation for self-healthcare applications. However, these tests routinely rely on single-mode signals and suffer from insufficient accuracy, especially for multiplexed point-of-care tests (POCTs) within a few minutes. Here, this work develops a dual-mode multiclassification diagnostic platform that integrates an electrochemiluminescence sensor and a field-effect transistor sensor in a microfluidic chip. The microfluidic channel guides the testing samples to flow across electro-optical sensor units, which produce dual-mode readouts by detecting infectious biomarkers of tuberculosis (TB), human rhinovirus (HRV), and group B streptococcus (GBS). Then, machine-learning classifiers generate three-dimensional (3D) hyperplanes to diagnose different diseases. Dual-mode readouts derived from distinct mechanisms enhance the anti-interference ability physically, and machine-learning-aided diagnosis in high-dimensional space reduces the occasional inaccuracy mathematically. Clinical validation studies with 501 unprocessed samples indicate that the platform has an accuracy approaching 99%, higher than the 77%-93% accuracy of rapid point-of-care testing technologies at 100% statistical power (>150 clinical tests). Moreover, the diagnosis time is 5 min without a trade-off of accuracy. This work solves the occasional inaccuracy issue of rapid on-site diagnosis, endowing POCT systems with the same accuracy as laboratory tests and holding unique prospects for complicated scenes of personalized healthcare.
Assuntos
Sistemas Automatizados de Assistência Junto ao Leito , Testes Imediatos , Humanos , Microfluídica , BiomarcadoresRESUMO
Precision chemistry demands miniaturized catalytic systems for sophisticated reactions with well-defined pathways. An ideal solution is to construct a nanoreactor system functioning as a chemistry laboratory to execute a full chemical process with molecular precision. However, existing nanoscale catalytic systems fail to in situ control reaction kinetics in a closed-loop manner, lacking the precision toward ultimate reaction efficiency. We find an inter-electrochemical gating effect when operating DNA framework-constructed enzyme cascade nanoreactors on a transistor, enabling in situ closed-loop reaction monitoring and modulation electrically. Therefore, a comprehensive system is developed, encapsulating nanoreactors, analyzers, and modulators, where the gate potential modulates enzyme activity and switches cascade reaction "ON" or "OFF." Such electric field-effect property enhances catalytic efficiency of enzyme by 343.4-fold and enables sensitive sarcosine assay for prostate cancer diagnoses, with a limit of detection five orders of magnitude lower than methodologies in clinical laboratory. By coupling with solid-state electronics, this work provides a perspective to construct intelligent nano-systems for precision chemistry.
Assuntos
Bioensaio , Eletricidade , Masculino , Humanos , Catálise , Inteligência , NanotecnologiaRESUMO
The supermoiré lattice, built by stacking two moiré patterns, provides a platform for creating flat mini-bands and studying electron correlations. An ultimate challenge in assembling a graphene supermoiré lattice is in the deterministic control of its rotational alignment, which is made highly aleatory due to the random nature of the edge chirality and crystal symmetry. Employing the so-called "golden rule of three", here we present an experimental strategy to overcome this challenge and realize the controlled alignment of double-aligned hBN/graphene/hBN supermoiré lattice, where the twist angles between graphene and top/bottom hBN are both close to zero. Remarkably, we find that the crystallographic edge of neighboring graphite can be used to better guide the stacking alignment, as demonstrated by the controlled production of 20 moiré samples with an accuracy better than ~ 0.2°. Finally, we extend our technique to low-angle twisted bilayer graphene and ABC-stacked trilayer graphene, providing a strategy for flat-band engineering in these moiré materials.
RESUMO
Making electronic devices using a single molecule has been the ultimate goal of molecular electronics. For binary data storage in particular, the challenge has been the ability to switch a single molecule in between bistable states in a simple and repeatable manner. The reversible switching of single molecules of chloroaluminum phthalocyanine (ClAlPc) dipolar molecules within a close-packed monolayer is demonstrated. By pulsing an scanning tunneling microscopy tip, read-write operations of single-molecular binary bits at ~40 Tb/cm(2) (~250 Tb/in(2)) are demonstrated.
RESUMO
Scanning tunnelling microscopy and spectroscopy experiments complemented by first-principles calculations have been conducted to study the electronic structure of 4 monolayer Bi(110) nanoribbons on epitaxial graphene on silicon carbide [4H-SiC(0001)]. In contrast with the semimetal property of elemental bismuth, an energy gap of 0.4 eV is measured at the centre of the Bi(110) nanoribbons. Edge reconstructions, which can facilitate the edge strain energy release, are found to be responsible for the band gap opening. The calculated density of states around the Fermi level are decreased quickly to zero from the terrace edge to the middle of a Bi(110) nanoribbon potentially signifying a spatial metal-to-semiconductor transition. This study opens new avenues for room-temperature bismuth nanoribbon-based electronic devices.
Assuntos
Bismuto/química , Nanoestruturas/química , Temperatura Baixa , Grafite/química , Microscopia de Tunelamento/métodos , Modelos Moleculares , Semicondutores , Análise Espectral/métodosRESUMO
Ultra-fine Au nanoparticles (NPs) show great application potential in catalysis. Size-tunable Au NPs have been fabricated on MoS(2) covered with monolayer 3,4,5,10-perylene tetracarboxylic dianhydride (PTCDA), and the morphological evolution as a function of Au deposition amount was investigated using scanning tunneling microscopy (STM). The PTCDA molecules act as a surfactant to stabilize ultra-fine Au NPs. Molecular scale STM images show that on MoS(2) the Au NPs with PTCDA molecules on top can be formed with height and lateral size down to 1.3 nm and 3.5 nm, respectively. By controlling the deposition amount and annealing temperature, the size of Au NPs can be tuned. After annealing at 270 °C to remove PTCDA, Au NPs with a linear size ≤5 nm can be obtained on MoS(2)(0001), facilitating the characterization of their intrinsic physical and chemical properties using various analytical techniques. In addition, photoemission spectroscopy data reveal charge transfer from Au NPs to PTCDA, indicating that the NPs possess more reactive chemical properties than bulk Au.
RESUMO
In this work, a simple technique to improve the field emission property of multi-walled carbon nanotubes is presented. Re-grown multi-walled carbon nanotubes are grown on the same substrates after the as-grown multi-walled carbon nanotubes are transferred to other substrates using polydimethylsiloxane as intermediation. For the duration of the synthesis of the re-grown multi-walled carbon nanotubes, similar synthesis parameters used in growing the as-grown multi-walled carbon nanotubes are utilized. As a form of possible application, field emission studies show -2.6 times improvement in field enhancement factor and more uniform emission for the re-grown multi-walled carbon nanotubes. In addition, the turn-on field is reduced from 2.85 V/microm to 1.40 V/microm. Such significant improvements are attributed to new emission sites comprising of sharp carbonaceous impurities encompassing both tip and upper portion of the multi-walled carbon nanotubes. As such, this technique presents a viable route for the production of multi-walled carbon nanotubes with better field emission quality.
Assuntos
Cristalização/métodos , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestrutura , Condutividade Elétrica , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de SuperfícieRESUMO
Creating and manipulating multiple charge states of solitary defects in semiconductors is of essential importance for solitary defect electronics, but is fundamentally limited by Coulomb's law. Achieving this objective is challenging, due to the conflicting requirements of the localization necessary for the sizable band gap and delocalization necessary for a low charging energy. Here, using scanning tunneling microscopy/spectroscopy experiments and first-principles calculations, we realized exotic quinary charge states of solitary defects in two-dimensional intermetallic semiconductor Sn2Bi. We also observed an ultralow defect charging energy that increases sublinearly with charge number rather than displaying the usual quadratic behavior. Our work suggests a promising route for constructing multiple defect-charge states by designing intermetallic semiconductors, and opens new opportunities for developing quantum devices with charge-based quantum states.
RESUMO
Molecular preferential adsorption on molecular patterned surfaces via specific intermolecular interactions provides an efficient route to construct ordered organic nanostructures for future nanodevices. Here, we demonstrate the preferential trapping of second-layer molecules atop two-dimensional binary supramolecular networks, F(16)CuPc on DIP:F(16)CuPc and 6P:F(16)CuPc systems, respectively, through intermolecular π-π interactions. The formation of the second-layer supramolecular nanostructures, individual molecular dots or linear molecular chains, can be controlled by the underlying molecular networks.
RESUMO
The epitaxial growth of the 1st and 2nd monolayer (ML) diindenoperylene (DIP) on Ag(111) has been systematically investigated using low temperature scanning tunneling microscopy, low energy electron diffraction and first-principles calculations. At one ML regime, DIP molecules commensurately arrange in either herringbone or brick-wall superstructures, depending on the deposition rate. Tip-induced structural transformation from herringbone to brick-wall is observed. Calculations based on density functional theory reveal that the top site of Ag(111) is energetically favorable for both superstructures. The 2nd ML DIP aggregate in either herringbone or brick-wall superstructures depending on the arrangements of the 1st ML DIP, indicating that the structural properties of DIP thin films on Ag(111) are sensitive to growth conditions. The observed variation in DIP ultrathin film structure may result in different electronic properties and have implications for DIP-based organic electronic devices, such as organic field-effect transistors or organic photovoltaic cells.
RESUMO
Anisotropy in crystals usually has remarkable consequences in two-dimensional (2D) materials, for example, black phosphorus, PdSe2, and SnS, arising from different lattice periodicities along different crystallographic directions. Electrical anisotropy has been successfully demonstrated in 2D materials, but anisotropic magnetoresistance in 2D materials is rarely studied. Herein, we report anisotropic magnetoresistance in layered nonmagnetic semiconducting PdSe2 flakes. Anisotropic magnetoresistance along the two crystalline axes under a perpendicular magnetic field is demonstrated, and the magnetoresistance along the a-axis is apparently different from the magnetoresistance along the b-axis. The magnetoresistance can also be flexibly tuned by applying a gate voltage, leveraging the semiconductor properties of PdSe2. The computed anisotropic electronic density of states and electronic mobility with ab initio density functional calculations support the anisotropic and measured magnetoresistance. Our findings advance the understanding of magnetoresistance in anisotropic transition-metal dichalcogenides and pave the way for potential applications in anisotropic spintronic devices.
RESUMO
Hybrid energy-harvesting systems that capture both wave and solar energy from the oceans using triboelectric nanogenerators and photovoltaic cells are promising renewable energy solutions. However, ubiquitous shadows cast from moving objects in these systems are undesirable as they degrade the performance of the photovoltaic cells. Here we report a shadow-tribo-effect nanogenerator that hybrids tribo-effect and shadow-effect together to overcome this issue. Several fiber-supercapacitors are integrated with the shadow-tribo-effect nanogenerator to form a self-charging power system. To capture and store wave/solar energy from oceans, an energy ball based on the self-charging power system is demonstrated. By harnessing the shadow-effect, i.e. the shadow of the moving object in the energy ball, the charging time shortens to 253.3 s to charge the fiber-supercapacitors to the same voltage (0.3 V) as using pure tribo-effect. This cost-effective method to harvest and store the wave/solar energy from the oceans in this work is expected to inspire next-generation large-scale blue energy harvesting.