Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042803

RESUMO

Green plants play a fundamental role in ecosystems, human health, and agriculture. As de novo genomes are being generated for all known eukaryotic species as advocated by the Earth BioGenome Project, increasing genomic information on green land plants is essential. However, setting standards for the generation and storage of the complex set of genomes that characterize the green lineage of life is a major challenge for plant scientists. Such standards will need to accommodate the immense variation in green plant genome size, transposable element content, and structural complexity while enabling research into the molecular and evolutionary processes that have resulted in this enormous genomic variation. Here we provide an overview and assessment of the current state of knowledge of green plant genomes. To date fewer than 300 complete chromosome-scale genome assemblies representing fewer than 900 species have been generated across the estimated 450,000 to 500,000 species in the green plant clade. These genomes range in size from 12 Mb to 27.6 Gb and are biased toward agricultural crops with large branches of the green tree of life untouched by genomic-scale sequencing. Locating suitable tissue samples of most species of plants, especially those taxa from extreme environments, remains one of the biggest hurdles to increasing our genomic inventory. Furthermore, the annotation of plant genomes is at present undergoing intensive improvement. It is our hope that this fresh overview will help in the development of genomic quality standards for a cohesive and meaningful synthesis of green plant genomes as we scale up for the future.


Assuntos
Sequência de Bases/genética , Genômica/tendências , Viridiplantae/genética , Biodiversidade , Evolução Biológica , Elementos de DNA Transponíveis/genética , Ecologia , Ecossistema , Embriófitas/genética , Evolução Molecular , Genoma , Genoma de Planta/genética , Genômica/métodos , Disseminação de Informação/métodos , Armazenamento e Recuperação da Informação/métodos , Filogenia , Plantas/genética
2.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042802

RESUMO

A global international initiative, such as the Earth BioGenome Project (EBP), requires both agreement and coordination on standards to ensure that the collective effort generates rapid progress toward its goals. To this end, the EBP initiated five technical standards committees comprising volunteer members from the global genomics scientific community: Sample Collection and Processing, Sequencing and Assembly, Annotation, Analysis, and IT and Informatics. The current versions of the resulting standards documents are available on the EBP website, with the recognition that opportunities, technologies, and challenges may improve or change in the future, requiring flexibility for the EBP to meet its goals. Here, we describe some highlights from the proposed standards, and areas where additional challenges will need to be met.


Assuntos
Sequência de Bases/genética , Eucariotos/genética , Genômica/normas , Animais , Biodiversidade , Genômica/métodos , Humanos , Padrões de Referência , Valores de Referência , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas
3.
Glob Chang Biol ; 30(1): e17145, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273516

RESUMO

Human activity changes multiple factors in the environment, which can have positive or negative synergistic effects on organisms. However, few studies have explored the causal effects of multiple anthropogenic factors, such as urbanization and invasive species, on animals and the mechanisms that mediate these interactions. This study examines the influence of urbanization on the detrimental effect of invasive avian vampire flies (Philornis downsi) on endemic Darwin's finches in the Galápagos Islands. We experimentally manipulated nest fly abundance in urban and non-urban locations and then characterized nestling health, fledging success, diet, and gene expression patterns related to host defense. Fledging success of non-parasitized nestlings from urban (79%) and non-urban (75%) nests did not differ significantly. However, parasitized, non-urban nestlings lost more blood, and fewer nestlings survived (8%) compared to urban nestlings (50%). Stable isotopic values (δ15 N) from urban nestling feces were higher than those from non-urban nestlings, suggesting that urban nestlings are consuming more protein. δ15 N values correlated negatively with parasite abundance, which suggests that diet might influence host defenses (e.g., tolerance and resistance). Parasitized, urban nestlings differentially expressed genes within pathways associated with red blood cell production (tolerance) and pro-inflammatory response (innate immunological resistance), compared to parasitized, non-urban nestlings. In contrast, parasitized non-urban nestlings differentially expressed genes within pathways associated with immunoglobulin production (adaptive immunological resistance). Our results suggest that urban nestlings are investing more in pro-inflammatory responses to resist parasites but also recovering more blood cells to tolerate blood loss. Although non-urban nestlings are mounting an adaptive immune response, it is likely a last effort by the immune system rather than an effective defense against avian vampire flies since few nestlings survived.


Assuntos
Tentilhões , Muscidae , Parasitos , Animais , Humanos , Tentilhões/parasitologia , Equador
4.
Plant Cell Environ ; 46(5): 1705-1725, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36541367

RESUMO

Fusarium circinatum poses a threat to both commercial and natural pine forests. Large variation in host resistance exists between species, with many economically important species being susceptible. Development of resistant genotypes could be expedited and optimised by investigating the molecular mechanisms underlying host resistance and susceptibility as well as increasing the available genetic resources. RNA-seq data, from F. circinatum inoculated and mock-inoculated ca. 6-month-old shoot tissue at 3- and 7-days postinoculation, was generated for three commercially important tropical pines, Pinus oocarpa, Pinus maximinoi and Pinus greggii. De novo transcriptomes were assembled and used to investigate the NLR and PR gene content within available pine references. Host responses to F. circinatum challenge were investigated in P. oocarpa (resistant) and P. greggii (susceptible), in comparison to previously generated expression profiles from Pinus tecunumanii (resistant) and Pinus patula (susceptible). Expression results indicated crosstalk between induced salicylate, jasmonate and ethylene signalling is involved in host resistance and compromised in susceptible hosts. Additionally, higher constitutive expression of sulfur metabolism and flavonoid biosynthesis in resistant hosts suggest involvement of these metabolites in resistance.


Assuntos
Fusarium , Pinus , Transcriptoma/genética , Fusarium/fisiologia , Genótipo , Pinus/genética , Doenças das Plantas/genética
5.
BMC Plant Biol ; 22(1): 143, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35337270

RESUMO

Aronia is a group of deciduous fruiting shrubs, of the Rosaceae family, native to eastern North America. Interest in Aronia has increased because of the high levels of dietary antioxidants in Aronia fruits. Using Illumina RNA-seq transcriptome analysis, this study investigates the molecular mechanisms of polyphenol biosynthesis during Aronia fruit development. Six A. melanocarpa (diploid) accessions were collected at four fruit developmental stages. De novo assembly was performed with 341 million clean reads from 24 samples and assembled into 90,008 transcripts with an average length of 801 bp. The transcriptome had 96.1% complete according to Benchmarking Universal Single-Copy Orthologs (BUSCOs). The differentially expressed genes (DEGs) were identified in flavonoid biosynthetic and metabolic processes, pigment biosynthesis, carbohydrate metabolic processes, and polysaccharide metabolic processes based on significant Gene Ontology (GO) biological terms. The expression of ten anthocyanin biosynthetic genes showed significant up-regulation during fruit development according to the transcriptomic data, which was further confirmed using qRT-PCR expression analyses. Additionally, transcription factor genes were identified among the DEGs. Using a transient expression assay, we confirmed that AmMYB10 induces anthocyanin biosynthesis. The de novo transcriptome data provides a valuable resource for the understanding the molecular mechanisms of fruit anthocyanin biosynthesis in Aronia and species of the Rosaceae family.


Assuntos
Photinia , Transcriptoma , Antocianinas/metabolismo , Frutas , Regulação da Expressão Gênica de Plantas , Photinia/genética , Photinia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Plant J ; 102(2): 410-423, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31823432

RESUMO

Juglans (walnuts), the most speciose genus in the walnut family (Juglandaceae), represents most of the family's commercially valuable fruit and wood-producing trees. It includes several species used as rootstock for their resistance to various abiotic and biotic stressors. We present the full structural and functional genome annotations of six Juglans species and one outgroup within Juglandaceae (Juglans regia, J. cathayensis, J. hindsii, J. microcarpa, J. nigra, J. sigillata and Pterocarya stenoptera) produced using BRAKER2 semi-unsupervised gene prediction pipeline and additional tools. For each annotation, gene predictors were trained using 19 tissue-specific J. regia transcriptomes aligned to the genomes. Additional functional evidence and filters were applied to multi-exonic and mono-exonic putative genes to yield between 27 000 and 44 000 high-confidence gene models per species. Comparison of gene models to the BUSCO embryophyta dataset suggested that, on average, genome annotation completeness was 85.6%. We utilized these high-quality annotations to assess gene family evolution within Juglans, and among Juglans and selected Eurosid species. We found notable contractions in several gene families in J. hindsii, including disease resistance-related wall-associated kinase (WAK), Catharanthus roseus receptor-like kinase (CrRLK1L) and others involved in abiotic stress response. Finally, we confirmed an ancient whole-genome duplication that took place in a common ancestor of Juglandaceae using site substitution comparative analysis.


Assuntos
Genoma de Planta/genética , Genômica , Juglans/genética , Transcriptoma , Resistência à Doença/genética , Juglans/fisiologia , Estresse Fisiológico
7.
Mol Phylogenet Evol ; 154: 106965, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32956800

RESUMO

A new paradigm has slowly emerged regarding the diversification of bryophytes, with inferences from molecular data highlighting a dynamic evolution of their genome. However, comparative studies of expressed genes among closely related taxa is so far missing. Here we contrast the dimensions of the vegetative transcriptome of Funaria hygrometrica and Physcomitrium pyriforme against the genome of their relative, Physcomitrium (Physcomitrella) patens. These three species of Funariaceae share highly conserved vegetative bodies, and are partially sympatric, growing on mineral soil in mostly temperate regions. We analyzed the vegetative gametophytic transcriptome of F. hygrometrica and P. pyriforme and mapped short reads, transcripts, and proteins to the genome and gene space of P. patens. Only about half of the transcripts of F. hygrometrica map to their ortholog in P. patens, whereas at least 90% of those of P. pyriforme align to loci in P. patens. Such divergence is unexpected given the high morphological similarity of the gametophyte but reflects the estimated times of divergence of F. hygrometrica and P. pyriforme from P. patens, namely 55 and 20 mya, respectively. The newly sampled transcriptomes bear signatures of at least one, rather ancient, whole genome duplication (WGD), which may be shared with one reported for P. patens. The transcriptomes of F. hygrometrica and P. pyriforme reveal significant contractions or expansions of different gene families. While transcriptomes offer only an incomplete estimate of the gene space, the high number of transcripts obtained suggest a significant divergence in gene sequences, and gene number among the three species, indicative of a rather strong, dynamic genome evolution, shaped in part by whole, partial or localized genome duplication. The gene ontology of their specific and rapidly-evolving protein families, suggests that the evolution of the Funariaceae may have been driven by the diversification of metabolic genes that may optimize the adaptations to environmental conditions, a hypothesis well in line with ecological patterns in the genetic diversity and structure in seed plants.


Assuntos
Bryopsida/anatomia & histologia , Bryopsida/genética , Filogenia , Evolução Molecular , Genoma de Planta , Família Multigênica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcriptoma/genética
8.
Nucleic Acids Res ; 47(D1): D1137-D1145, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30357347

RESUMO

The Genome Database for Rosaceae (GDR, https://www.rosaceae.org) is an integrated web-based community database resource providing access to publicly available genomics, genetics and breeding data and data-mining tools to facilitate basic, translational and applied research in Rosaceae. The volume of data in GDR has increased greatly over the last 5 years. The GDR now houses multiple versions of whole genome assembly and annotation data from 14 species, made available by recent advances in sequencing technology. Annotated and searchable reference transcriptomes, RefTrans, combining peer-reviewed published RNA-Seq as well as EST datasets, are newly available for major crop species. Significantly more quantitative trait loci, genetic maps and markers are available in MapViewer, a new visualization tool that better integrates with other pages in GDR. Pathways can be accessed through the new GDR Cyc Pathways databases, and synteny among the newest genome assemblies from eight species can be viewed through the new synteny browser, SynView. Collated single-nucleotide polymorphism diversity data and phenotypic data from publicly available breeding datasets are integrated with other relevant data. Also, the new Breeding Information Management System allows breeders to upload, manage and analyze their private breeding data within the secure GDR server with an option to release data publicly.


Assuntos
Biologia Computacional/métodos , Bases de Dados Genéticas , Genoma de Planta/genética , Genômica/métodos , Rosaceae/genética , Biologia Computacional/estatística & dados numéricos , Perfilação da Expressão Gênica/métodos , Genes de Plantas/genética , Armazenamento e Recuperação da Informação/métodos , Internet , Melhoramento Vegetal/métodos , Locos de Características Quantitativas/genética , Rosaceae/classificação , Especificidade da Espécie , Sintenia , Fatores de Tempo , Interface Usuário-Computador
10.
BMC Genomics ; 19(1): 632, 2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30139335

RESUMO

BACKGROUND: Fusarium circinatum is a pressing threat to the cultivation of many economically important pine tree species. Efforts to develop effective disease management strategies can be aided by investigating the molecular mechanisms involved in the host-pathogen interaction between F. circinatum and pine species. Pinus tecunumanii and Pinus patula are two closely related tropical pine species that differ widely in their resistance to F. circinatum challenge, being resistant and susceptible respectively, providing the potential for a useful pathosystem to investigate the molecular responses underlying resistance to F. circinatum. However, no genomic resources are available for P. tecunumanii. Pathogenesis-related proteins are classes of proteins that play important roles in plant-microbe interactions, e.g. chitinases; proteins that break down the major structural component of fungal cell walls. Generating a reference sequence for P. tecunumanii and characterizing pathogenesis related gene families in these two pine species is an important step towards unravelling the pine-F. circinatum interaction. RESULTS: Eight reference based and 12 de novo assembled transcriptomes were produced, for juvenile shoot tissue from both species. EvidentialGene pipeline redundancy reduction, expression filtering, protein clustering and taxonomic filtering produced a 50 Mb shoot transcriptome consisting of 28,621 contigs for P. tecunumanii and a 72 Mb shoot transcriptome consisting of 52,735 contigs for P. patula. Predicted protein sequences encoded by the assembled transcriptomes were clustered with reference proteomes from 92 other species to identify pathogenesis related gene families in P. patula, P. tecunumanii and other pine species. CONCLUSIONS: The P. tecunumanii transcriptome is the first gene catalogue for the species, representing an important resource for studying resistance to the pitch canker pathogen, F. circinatum. This study also constitutes, to our knowledge, the largest index of gymnosperm PR-genes to date.


Assuntos
Perfilação da Expressão Gênica , Pinus/genética , Pinus/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Fusarium/fisiologia , Perfilação da Expressão Gênica/normas , Anotação de Sequência Molecular , Padrões de Referência
11.
Plant J ; 87(5): 507-32, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27145194

RESUMO

The Persian walnut (Juglans regia L.), a diploid species native to the mountainous regions of Central Asia, is the major walnut species cultivated for nut production and is one of the most widespread tree nut species in the world. The high nutritional value of J. regia nuts is associated with a rich array of polyphenolic compounds, whose complete biosynthetic pathways are still unknown. A J. regia genome sequence was obtained from the cultivar 'Chandler' to discover target genes and additional unknown genes. The 667-Mbp genome was assembled using two different methods (SOAPdenovo2 and MaSuRCA), with an N50 scaffold size of 464 955 bp (based on a genome size of 606 Mbp), 221 640 contigs and a GC content of 37%. Annotation with MAKER-P and other genomic resources yielded 32 498 gene models. Previous studies in walnut relying on tissue-specific methods have only identified a single polyphenol oxidase (PPO) gene (JrPPO1). Enabled by the J. regia genome sequence, a second homolog of PPO (JrPPO2) was discovered. In addition, about 130 genes in the large gallate 1-ß-glucosyltransferase (GGT) superfamily were detected. Specifically, two genes, JrGGT1 and JrGGT2, were significantly homologous to the GGT from Quercus robur (QrGGT), which is involved in the synthesis of 1-O-galloyl-ß-d-glucose, a precursor for the synthesis of hydrolysable tannins. The reference genome for J. regia provides meaningful insight into the complex pathways required for the synthesis of polyphenols. The walnut genome sequence provides important tools and methods to accelerate breeding and to facilitate the genetic dissection of complex traits.


Assuntos
Genoma de Planta/genética , Juglans/genética , Proteínas de Plantas/genética , Polifenóis/metabolismo , Catecol Oxidase/metabolismo
12.
BMC Genomics ; 18(1): 558, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28738815

RESUMO

BACKGROUND: Perennial growth in plants is the product of interdependent cycles of daily and annual stimuli that induce cycles of growth and dormancy. In conifers, needles are the key perennial organ that integrates daily and seasonal signals from light, temperature, and water availability. To understand the relationship between seasonal cycles and seasonal gene expression responses in conifers, we examined diurnal and circannual needle mRNA accumulation in Douglas-fir (Pseudotsuga menziesii) needles at diurnal and circannual scales. Using mRNA sequencing, we sampled 6.1 × 109 reads from 19 trees and constructed a de novo pan-transcriptome reference that includes 173,882 tree-derived transcripts. Using this reference, we mapped RNA-Seq reads from 179 samples that capture daily and annual variation. RESULTS: We identified 12,042 diurnally-cyclic transcripts, 9299 of which showed homology to annotated genes from other plant genomes, including angiosperm core clock genes. Annual analysis revealed 21,225 circannual transcripts, 17,335 of which showed homology to annotated genes from other plant genomes. The timing of maximum gene expression is associated with light intensity at diurnal scales and photoperiod at annual scales, with approximately half of transcripts reaching maximum expression +/- 2 h from sunrise and sunset, and +/- 20 days from winter and summer solstices. Comparisons with published studies from other conifers shows congruent behavior in clock genes with Japanese cedar (Cryptomeria), and a significant preservation of gene expression patterns for 2278 putative orthologs from Douglas-fir during the summer growing season, and 760 putative orthologs from spruce (Picea) during the transition from fall to winter. CONCLUSIONS: Our study highlight the extensive diurnal and circannual transcriptome variability demonstrated in conifer needles. At these temporal scales, 29% of expressed transcripts show a significant diurnal cycle, and 58.7% show a significant circannual cycle. Remarkably, thousands of genes reach their annual peak activity during winter dormancy. Our study establishes the fine-scale timing of daily and annual maximum gene expression for diverse needle genes in Douglas-fir, and it highlights the potential for using this information for evaluating hypotheses concerning the daily or seasonal timing of gene activity in temperate-zone conifers, and for identifying cyclic transcriptome components in other conifer species.


Assuntos
Ritmo Circadiano/genética , Folhas de Planta/genética , Folhas de Planta/fisiologia , Pseudotsuga/genética , Pseudotsuga/fisiologia , Transcrição Gênica , Escuridão , Perfilação da Expressão Gênica , Fotoperíodo , Folhas de Planta/efeitos da radiação , Pseudotsuga/efeitos da radiação , Transcrição Gênica/efeitos da radiação
13.
Mol Ecol ; 26(3): 831-848, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28012221

RESUMO

Comparative approaches in physiological genomics offer an opportunity to understand the functional importance of genes involved in niche exploitation. We used populations of Alewife (Alosa pseudoharengus) to explore the transcriptional mechanisms that underlie adaptation to fresh water. Ancestrally anadromous Alewives have recently formed multiple, independently derived, landlocked populations, which exhibit reduced tolerance of saltwater and enhanced tolerance of fresh water. Using RNA-seq, we compared transcriptional responses of an anadromous Alewife population to two landlocked populations after acclimation to fresh (0 ppt) and saltwater (35 ppt). Our results suggest that the gill transcriptome has evolved in primarily discordant ways between independent landlocked populations and their anadromous ancestor. By contrast, evolved shifts in the transcription of a small suite of well-characterized osmoregulatory genes exhibited a strong degree of parallelism. In particular, transcription of genes that regulate gill ion exchange has diverged in accordance with functional predictions: freshwater ion-uptake genes (most notably, the 'freshwater paralog' of Na+ /K+ -ATPase α-subunit) were more highly expressed in landlocked forms, whereas genes that regulate saltwater ion secretion (e.g. the 'saltwater paralog' of NKAα) exhibited a blunted response to saltwater. Parallel divergence of ion transport gene expression is associated with shifts in salinity tolerance limits among landlocked forms, suggesting that changes to the gill's transcriptional response to salinity facilitate freshwater adaptation.


Assuntos
Aclimatação/genética , Peixes/genética , Água Doce , Brânquias/fisiologia , Transcriptoma , Animais , Peixes/fisiologia , Água do Mar , ATPase Trocadora de Sódio-Potássio/genética
14.
Mol Ecol ; 26(12): 3168-3185, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28316116

RESUMO

Patterns of local adaptation at fine spatial scales are central to understanding how evolution proceeds, and are essential to the effective management of economically and ecologically important forest tree species. Here, we employ single and multilocus analyses of genetic data (n = 116 231 SNPs) to describe signatures of fine-scale adaptation within eight whitebark pine (Pinus albicaulis Engelm.) populations across the local extent of the environmentally heterogeneous Lake Tahoe Basin, USA. We show that despite highly shared genetic variation (FST  = 0.0069), there is strong evidence for adaptation to the rain shadow experienced across the eastern Sierra Nevada. Specifically, we build upon evidence from a common garden study and find that allele frequencies of loci associated with four phenotypes (mean = 236 SNPs), 18 environmental variables (mean = 99 SNPs), and those detected through genetic differentiation (n = 110 SNPs) exhibit significantly higher signals of selection (covariance of allele frequencies) than could be expected to arise, given the data. We also provide evidence that this covariance tracks environmental measures related to soil water availability through subtle allele frequency shifts across populations. Our results replicate empirical support for theoretical expectations of local adaptation for populations exhibiting strong gene flow and high selective pressures and suggest that ongoing adaptation of many P. albicaulis populations within the Lake Tahoe Basin will not be constrained by the lack of genetic variation. Even so, some populations exhibit low levels of heritability for the traits presumed to be related to fitness. These instances could be used to prioritize management to maintain adaptive potential. Overall, we suggest that established practices regarding whitebark pine conservation be maintained, with the additional context of fine-scale adaptation.


Assuntos
Adaptação Fisiológica/genética , Pinus/genética , Pinus/fisiologia , Água , Meio Ambiente , Frequência do Gene , Lagos , Nevada , Polimorfismo de Nucleotídeo Único , Análise Espacial , Árvores
15.
BMC Genomics ; 16: 1057, 2015 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-26652261

RESUMO

BACKGROUND: Pines are the most important tree species to the international forestry industry, covering 42 % of the global industrial forest plantation area. One of the most pressing threats to cultivation of some pine species is the pitch canker fungus, Fusarium circinatum, which can have devastating effects in both the field and nursery. Investigation of the Pinus-F. circinatum host-pathogen interaction is crucial for development of effective disease management strategies. As with many non-model organisms, investigation of host-pathogen interactions in pine species is hampered by limited genomic resources. This was partially alleviated through release of the 22 Gbp Pinus taeda v1.01 genome sequence ( http://pinegenome.org/pinerefseq/ ) in 2014. Despite the fact that the fragmented state of the genome may hamper comprehensive transcriptome analysis, it is possible to leverage the inherent redundancy resulting from deep RNA sequencing with Illumina short reads to assemble transcripts in the absence of a completed reference sequence. These data can then be integrated with available genomic data to produce a comprehensive transcriptome resource. The aim of this study was to provide a foundation for gene expression analysis of disease response mechanisms in Pinus patula through transcriptome assembly. RESULTS: Eighteen de novo and two reference based assemblies were produced for P. patula shoot tissue. For this purpose three transcriptome assemblers, Trinity, Velvet/OASES and SOAPdenovo-Trans, were used to maximise diversity and completeness of assembled transcripts. Redundancy in the assembly was reduced using the EvidentialGene pipeline. The resulting 52 Mb P. patula v1.0 shoot transcriptome consists of 52 112 unigenes, 60 % of which could be functionally annotated. CONCLUSIONS: The assembled transcriptome will serve as a major genomic resource for future investigation of P. patula and represents the largest gene catalogue produced to date for this species. Furthermore, this assembly can help detect gene-based genetic markers for P. patula and the comparative assembly workflow could be applied to generate similar resources for other non-model species.


Assuntos
Perfilação da Expressão Gênica/métodos , Genômica/métodos , Pinus/genética , RNA de Plantas/análise , Resistência à Doença , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Anotação de Sequência Molecular , Brotos de Planta/genética , Análise de Sequência de RNA/métodos
16.
New Phytol ; 205(2): 627-41, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25266813

RESUMO

Genetically improving constitutive resin canal development in Pinus stems may enhance the capacity to synthesize terpenes for bark beetle resistance, chemical feedstocks, and biofuels. To discover genes that potentially regulate axial resin canal number (RCN), single nucleotide polymorphisms (SNPs) in 4027 genes were tested for association with RCN in two growth rings and three environments in a complex pedigree of 520 Pinus taeda individuals (CCLONES). The map locations of associated genes were compared with RCN quantitative trait loci (QTLs) in a (P. taeda × Pinus elliottii) × P. elliottii pseudo-backcross of 345 full-sibs (BC1). Resin canal number was heritable (h(2) ˜ 0.12-0.21) and positively genetically correlated with xylem growth (rg ˜ 0.32-0.72) and oleoresin flow (rg ˜ 0.15-0.51). Sixteen well-supported candidate regulators of RCN were discovered in CCLONES, including genes associated across sites and ages, unidirectionally associated with oleoresin flow and xylem growth, and mapped to RCN QTLs in BC1. Breeding is predicted to increase RCN 11% in one generation and could be accelerated with genomic selection at accuracies of 0.45-0.52 across environments. There is significant genetic variation for RCN in loblolly pine, which can be exploited in breeding for elevated terpene content.


Assuntos
Genes de Plantas , Pinus taeda/genética , Resinas Vegetais/química , Animais , Biocombustíveis , Besouros/fisiologia , Variação Genética , Pinus taeda/química , Pinus taeda/metabolismo , Caules de Planta/química , Caules de Planta/genética , Caules de Planta/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Xilema/química , Xilema/metabolismo
17.
Evol Appl ; 17(4): e13669, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38633133

RESUMO

DNA methylation is critical to the regulation of transposable elements and gene expression and can play an important role in the adaptation of stress response mechanisms in plants. Traditional methods of methylation quantification rely on bisulfite conversion that can compromise accuracy. Recent advances in long-read sequencing technologies allow for methylation detection in real time. The associated algorithms that interpret these modifications have evolved from strictly statistical approaches to Hidden Markov Models and, recently, deep learning approaches. Much of the existing software focuses on methylation in the CG context, but methylation in other contexts is important to quantify, as it is extensively leveraged in plants. Here, we present methylation profiles for two maple species across the full range of 5mC sequence contexts using Oxford Nanopore Technologies (ONT) long-reads. Hybrid and reference-guided assemblies were generated for two new Acer accessions: Acer negundo (box elder; 65x ONT and 111X Illumina) and Acer saccharum (sugar maple; 93x ONT and 148X Illumina). The ONT reads generated for these assemblies were re-basecalled, and methylation detection was conducted in a custom pipeline with the published Acer references (PacBio assemblies) and hybrid assemblies reported herein to generate four epigenomes. Examination of the transposable element landscape revealed the dominance of LTR Copia elements and patterns of methylation associated with different classes of TEs. Methylation distributions were examined at high resolution across gene and repeat density and described within the broader angiosperm context, and more narrowly in the context of gene family dynamics and candidate nutrient stress genes.

18.
G3 (Bethesda) ; 14(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38781445

RESUMO

The first chromosome-scale reference genome of the rare narrow-endemic African moss Physcomitrellopsis africana (P. africana) is presented here. Assembled from 73 × Oxford Nanopore Technologies (ONT) long reads and 163 × Beijing Genomics Institute (BGI)-seq short reads, the 414 Mb reference comprises 26 chromosomes and 22,925 protein-coding genes [Benchmarking Universal Single-Copy Ortholog (BUSCO) scores: C:94.8% (D:13.9%)]. This genome holds 2 genes that withstood rigorous filtration of microbial contaminants, have no homolog in other land plants, and are thus interpreted as resulting from 2 unique horizontal gene transfers (HGTs) from microbes. Further, P. africana shares 176 of the 273 published HGT candidates identified in Physcomitrium patens (P. patens), but lacks 98 of these, highlighting that perhaps as many as 91 genes were acquired in P. patens in the last 40 million years following its divergence from its common ancestor with P. africana. These observations suggest rather continuous gene gains via HGT followed by potential losses during the diversification of the Funariaceae. Our findings showcase both dynamic flux in plant HGTs over evolutionarily "short" timescales, alongside enduring impacts of successful integrations, like those still functionally maintained in extant P. africana. Furthermore, this study describes the informatic processes employed to distinguish contaminants from candidate HGT events.


Assuntos
Bryopsida , Transferência Genética Horizontal , Genoma de Planta , Filogenia , Bryopsida/genética , Genômica/métodos , Anotação de Sequência Molecular
19.
G3 (Bethesda) ; 14(5)2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38526344

RESUMO

Whitebark pine (WBP, Pinus albicaulis) is a white pine of subalpine regions in the Western contiguous United States and Canada. WBP has become critically threatened throughout a significant part of its natural range due to mortality from the introduced fungal pathogen white pine blister rust (WPBR, Cronartium ribicola) and additional threats from mountain pine beetle (Dendroctonus ponderosae), wildfire, and maladaptation due to changing climate. Vast acreages of WBP have suffered nearly complete mortality. Genomic technologies can contribute to a faster, more cost-effective approach to the traditional practices of identifying disease-resistant, climate-adapted seed sources for restoration. With deep-coverage Illumina short reads of haploid megagametophyte tissue and Oxford Nanopore long reads of diploid needle tissue, followed by a hybrid, multistep assembly approach, we produced a final assembly containing 27.6 Gb of sequence in 92,740 contigs (N50 537,007 bp) and 34,716 scaffolds (N50 2.0 Gb). Approximately 87.2% (24.0 Gb) of total sequence was placed on the 12 WBP chromosomes. Annotation yielded 25,362 protein-coding genes, and over 77% of the genome was characterized as repeats. WBP has demonstrated the greatest variation in resistance to WPBR among the North American white pines. Candidate genes for quantitative resistance include disease resistance genes known as nucleotide-binding leucine-rich repeat receptors (NLRs). A combination of protein domain alignments and direct genome scanning was employed to fully describe the 3 subclasses of NLRs. Our high-quality reference sequence and annotation provide a marked improvement in NLR identification compared to previous assessments that leveraged de novo-assembled transcriptomes.


Assuntos
Genoma de Planta , Anotação de Sequência Molecular , Pinus , Pinus/genética , Pinus/parasitologia , Genômica/métodos , Espécies em Perigo de Extinção , Sequenciamento de Nucleotídeos em Larga Escala
20.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-37703053

RESUMO

With the advent of affordable and more accurate third-generation sequencing technologies, and the associated bioinformatic tools, it is now possible to sequence, assemble, and annotate more species of conservation concern than ever before. Juglans cinerea, commonly known as butternut or white walnut, is a member of the walnut family, native to the Eastern United States and Southeastern Canada. The species is currently listed as Endangered on the IUCN Red List due to decline from an invasive fungus known as Ophiognomonia clavigignenti-juglandacearum (Oc-j) that causes butternut canker. Oc-j creates visible sores on the trunks of the tree which essentially starves and slowly kills the tree. Natural resistance to this pathogen is rare. Conserving butternut is of utmost priority due to its critical ecosystem role and cultural significance. As part of an integrated undergraduate and graduate student training program in biodiversity and conservation genomics, the first reference genome for Juglans cinerea is described here. This chromosome-scale 539 Mb assembly was generated from over 100 × coverage of Oxford Nanopore long reads and scaffolded with the Juglans mandshurica genome. Scaffolding with a closely related species oriented and ordered the sequences in a manner more representative of the structure of the genome without altering the sequence. Comparisons with sequenced Juglandaceae revealed high levels of synteny and further supported J. cinerea's recent phylogenetic placement. Comparative assessment of gene family evolution revealed a significant number of contracting families, including several associated with biotic stress response.


Assuntos
Juglans , Humanos , Estados Unidos , Juglans/genética , Filogenia , Ecossistema , Cromossomos , América do Norte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA