Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 19(39): e2302499, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37254463

RESUMO

Mechanical properties of graphene, e.g., strength, modulus, and fracture toughness are extremely sensitive to flaws. Here the fracture properties of stacked bilayer graphene sheets (SBLG) are reported, obtained via stacking two individually grown graphene sheets. The SBLG is presented here as a building block for flaw-resilient nanomaterials. The fracture properties of freestanding SBLG sheets, suspended on transmission electron microscope (TEM) grids, are characterized by stretching the TEM grid inside an scanning electron microscope (SEM) chamber and monitoring the local displacements in real-time. The fracture toughness is measured and expressed as a function of the critical displacement required to propagate existing cracks in the experiment via computational models. This approach decouples force and displacements measurements, and utilizes the known elastic modulus along with the known displacement boundary conditions at the onset of crack growth to estimate the far field force and stress. This strategy represents a breakthrough in nanoscale fracture mechanics for statistical analysis and high throughput experimens on multiple samples at a time. Results demonstrate that the SBLG is markedly tougher than as-grown single or multilayer graphene, with a mode I fracture toughness of ≈28.06 ± 7.5 MPa m $\sqrt m $ . The mechanisms leading to a higher toughness of SBLG are also analyzed and discussed.

2.
Soft Matter ; 14(38): 7801-7808, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30187058

RESUMO

The nonlinear mechanical properties, deformation and failure mechanisms of polyurea aerogels (PUAs) were investigated using a multi-scale approach that combines nanoindentation, analytical and computational modeling. The atomistic structure of primary particles of PUAs and their mechanical interactions were investigated with molecular dynamics simulations. From nanoindentation we identified four deformation and failure modes: free ligament buckling, cell ligament bending, stable cell collapsing, and ligament crush induced strain hardening. The corresponding structural evolution during indentation and strain hardening were analyzed and modeled. The material scaling properties were found to be dependent on both the relative density and the secondary particle size of PUAs. Using a porosity-dependent material constitutive model, a linear relationship was found between the strain hardening index and secondary particle size instead the conventional power-law relationship. Finally, the structural efficiency of PUAs with respect to the capability for energy absorption is evaluated as a function of structural parameters and base polymeric material properties.

3.
ACS Appl Mater Interfaces ; 13(3): 4682-4691, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33433988

RESUMO

MXenes, a large family of two-dimensional (2D) early transition metal carbides and nitrides, have excellent electrical and electrochemical properties, which can also be explored in assemblies with other 2D materials, like graphene and transition metal dichalcogenides (TMDs), creating heterostructures with unique properties. Understanding the interaction mechanism between 2D materials is critical for the design and manipulation of these 2D heterostructures. Our previous work investigated the interaction between SiO2 and two MXenes (Ti3C2Tx and Ti2CTx). However, no experimental research has been done on MXene interlayer interactions and interactions in MXene heterostructures. Here, we used atomic force microscopy (AFM) with SiO2 tip and Ti3C2Tx and Ti2CTx MXene-coated tips, respectively, to measure the adhesion energies of graphene, MoSe2, Ti3C2Tx, and Ti2CTx MXene with other 2D materials. The measured adhesion energies show that only the interfaces involving graphene demonstrate dependence on the number of material monolayers in a stack. Comparing 40 interacting pairs of 2D materials, the lowest adhesion energy (∼0.27 J/m2) was found for the interfaces involving MoSe2 and the highest adhesion energy was observed for the interfaces involving Ti3C2Tx (∼1.23 J/m2). The obtained set of experimental data for 2D interfaces involving MXenes provides a basis for a future in-depth understanding of adhesive mechanisms at interfaces between 2D materials, which is an important topic for the design of 2D heterostructures with controlled interfacial strength and properties.

4.
ACS Omega ; 6(10): 6643-6653, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33748577

RESUMO

An MXene-graphene field-effect transistor (FET) sensor for both influenza virus and 2019-nCoV sensing was developed and characterized. The developed sensor combines the high chemical sensitivity of MXene and the continuity of large-area high-quality graphene to form an ultra-sensitive virus-sensing transduction material (VSTM). Through polymer linking, we are able to utilize antibody-antigen binding to achieve electrochemical signal transduction when viruses are deposited onto the VSTM surface. The MXene-graphene VSTM was integrated into a microfluidic channel that can directly receive viruses in solution. The developed sensor was tested with various concentrations of antigens from two viruses: inactivated influenza A (H1N1) HA virus ranging from 125 to 250,000 copies/mL and a recombinant 2019-nCoV spike protein ranging from 1 fg/mL to 10 pg/mL. The average response time was about ∼50 ms, which is significantly faster than the existing real-time reverse transcription-polymerase chain reaction method (>3 h). The low limit of detection (125 copies/mL for the influenza virus and 1 fg/mL for the recombinant 2019-nCoV spike protein) has demonstrated the sensitivity of the MXene-graphene VSTM on the FET platform to virus sensing. Especially, the high signal-to-viral load ratio (∼10% change in source-drain current and gate voltage) also demonstrates the ultra-sensitivity of the developed MXene-graphene FET sensor. In addition, the specificity of the sensor was also demonstrated by depositing the inactivated influenza A (H1N1) HA virus and the recombinant 2019-nCoV spike protein onto microfluidic channels with opposite antibodies, producing signal differences that are about 10 times lower. Thus, we have successfully fabricated a relatively low-cost, ultrasensitive, fast-responding, and specific inactivated influenza A (H1N1) and 2019-nCoV sensor with the MXene-graphene VSTM.

5.
J Colloid Interface Sci ; 535: 341-352, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30316121

RESUMO

Silver nanowire graphene (AgNW-GN) composite, as an alternative transparent conductive film (TCF) to conventional indium tin oxide (ITO), has much improved mechanical and electrical properties. These advantages make AgNW-GN an ideal TCF for planar devices. The adhesion of AgNW-GN composite film plays a critical role in these applications. However, the effect of silver nanowire on the adhesion between AgNW-GN and copper substrate remains unexplored. In the present work, AgNW-GN composite films with different AgNW concentrations were prepared and their adhesion with copper substrates was characterized using the double cantilever beam (DCB) experiment and the digital image correlation (DIC). The interfacial failures were characterized using scanning electron microscopy (SEM), Raman spectroscopy, and atomic force microscopy (AFM). The results showed the brittle to ductile interfacial fracture transition with increased amount of AgNW. The interfacial traction separation relations (TSR) were subsequently extracted. The competing interfacial failure mechanism was discovered and modeled between the interfaces of epoxy/composite and composite/copper. The associated transfer criterion was subsequently established combining both experimental and modeling results.

6.
Micromachines (Basel) ; 10(2)2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30691018

RESUMO

In situ nanoindentation experiments have been widely adopted to characterize material behaviors of microelectronic devices. This work introduces the latest developments of nanoindentation experiments in the characterization of nonlinear material properties of 3D integrated microelectronic devices using the through-silicon via (TSV) technique. The elastic, plastic, and interfacial fracture behavior of the copper via and matrix via interface were characterized using small-scale specimens prepared with a focused ion beam (FIB) and nanoindentation experiments. A brittle interfacial fracture was found at the Cu/Si interface under mixed-mode loading with a phase angle ranging from 16.7° to 83.7°. The mixed-mode fracture strengths were extracted using the linear elastic fracture mechanics (LEFM) analysis and a fracture criterion was obtained by fitting the extracted data with the power-law function. The vectorial interfacial strength and toughness were found to be independent with the mode-mix.

7.
Nat Commun ; 10(1): 3014, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31285430

RESUMO

Two-dimensional transition metal carbides (MXenes) have attracted a great interest of the research community as a relatively recently discovered large class of materials with unique electronic and optical properties. Understanding of adhesion between MXenes and various substrates is critically important for MXene device fabrication and performance. We report results of direct atomic force microscopy (AFM) measurements of adhesion of two MXenes (Ti3C2Tx and Ti2CTx) with a SiO2 coated Si spherical tip. The Maugis-Dugdale theory was applied to convert the AFM measured adhesion force to adhesion energy, while taking into account surface roughness. The obtained adhesion energies were compared with those for mono-, bi-, and tri-layer graphene, as well as SiO2 substrates. The average adhesion energies for the MXenes are 0.90 ± 0.03 J m-2 and 0.40 ± 0.02 J m-2 for thicker Ti3C2Tx and thinner Ti2CTx, respectively, which is of the same order of magnitude as that between graphene and silica tip.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA