Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 609(7927): 496-501, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36104554

RESUMO

Lithium niobate (LiNbO3) is viewed as a promising material for optical communications and quantum photonic chips1,2. Recent breakthroughs in LiNbO3 nanophotonics have considerably boosted the development of high-speed electro-optic modulators3-5, frequency combs6,7 and broadband spectrometers8. However, the traditional method of electrical poling for ferroelectric domain engineering in optic9-13, acoustic14-17 and electronic applications18,19 is limited to two-dimensional space and micrometre-scale resolution. Here we demonstrate a non-reciprocal near-infrared laser-writing technique for reconfigurable three-dimensional ferroelectric domain engineering in LiNbO3 with nanoscale resolution. The proposed method is based on a laser-induced electric field that can either write or erase domain structures in the crystal, depending on the laser-writing direction. This approach offers a pathway for controllable nanoscale domain engineering in LiNbO3 and other transparent ferroelectric crystals, which has potential applications in high-efficiency frequency mixing20,21, high-frequency acoustic resonators14-17 and high-capacity non-volatile ferroelectric memory19,22.

2.
Nano Lett ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847507

RESUMO

The strong light localization and long photon lifetimes in whispering gallery mode (WGM) microresonators, benefiting from a high-quality (Q) factor and a small mode volume (V), could significantly enhance light-matter interactions, enabling efficient nonlinear photon generation and paving the way for exploring novel on-chip optical functionalities. However, the leakage of energy from bending losses severely limits the improvement of the Q factor for subwavelength WGM microresonators. Here, we demonstrated an integrated self-suspended WGM microresonator that combines external rings and bridges with a microdisk on a platform of silicon on insulator, achieving about one-hundred-fold enhancement in the Q factor and an ultrasmall mode volume of 2.67(/λnSi)3 as predicted by numerical simulations. We experimentally confirmed the improved performance of the subwavelength WGM resonator with the dramatic enhancement of third-harmonic generation and second-harmonic generation on this device. Our work is anticipated to enhance light-matter interactions on small-footprint microresonators and boost the development of efficient integrated nonlinear and quantum photonics.

3.
Nano Lett ; 23(10): 4487-4494, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37171136

RESUMO

Chalcogenide glasses (ChGs) have recently emerged as enabling materials for building reconfigurable nanophotonic devices by employing their refractive index changes associated with photosensitive effects. In particular, the availability of low-loss thin-film ChGs and the realization of high-Q microresonators provide exciting opportunities for integrated photonics. So far, the ChG photonic devices are predominately operated in the classical optics regime. In this work, we present the realization on-chip bright photon-pair quantum light sources via spontaneous four-wave mixing in a high-Q microring resonator fabricated on the newly developed ChG Ge25Sb10S65 platform. The emission wavelength of the photon-pair source can be continuously tuned across a double-free spectral range in a reconfigurable manner. Our work serves as a starting point to fully unleash the potential of exploiting ChGs for developing reconfigurable integrated quantum photonic devices.

4.
Opt Express ; 31(23): 37464-37471, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38017874

RESUMO

Lithium niobate on insulator (LNOI) is a powerful platform for integrated photonic circuits. Recently, advanced applications in nonlinear and quantum optics require to controllably fabricate nano-resolution domain structures in LNOI. Here, we report on the fabrication of stable domain structures with sub-100 nm feature size through piezoelectric force microscopy (PFM) tip poling in a z-cut LNOI. In experiment, the domain dot with an initial diameter of 80 nm and the domain line with an initial width of 50 nm can survive after a storage of more than 3 months. Particularly, we demonstrate the successful fabrication of 1D stable domain array with a period down to 100 nm and a duty cycle of ∼50%. Our method paves the way to precisely manipulate frequency conversion and quantum entanglement on an LNOI chip.

5.
Opt Lett ; 48(10): 2672-2675, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37186737

RESUMO

We numerically analyze the conversion and selection of intracavity modes in a two-mirror optical resonator, which is assisted by a geometric phase plate (GPP) and a circular aperture, along with its output performance of high-order Laguerre-Gaussian (LG) modes. Based on the iterative Fox-Li method and the analysis of modal decomposition, transmission losses, and spot sizes, we find that various self-consistent two-faced resonator modes could be formed by fixing the GPP but changing the size of aperture. Such a feature not only enriches transverse-mode structures inside the optical resonator, but also provides a flexible way to directly output high-purity LG modes for high-capacity optical communication, high-precision interferometers, high-dimensional quantum correlation, etc.

6.
Opt Express ; 30(7): 11120-11129, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35473062

RESUMO

High-dimensional maximally entangled orbital angular momentum (OAM) states are a promising resource for enhancing information capacity and robustness in quantum communication. However, it still lacks an effective method to increase the state dimensionality. Here, we theoretically propose an efficient scheme to generate maximally entangled OAM states of ultrahigh dimensionality by manipulating the radial components of a Laguerre-Gaussian (LG) pump beam. By optimizing the complex amplitudes of multiple radial modes of the LG pump light, one can feasibly achieve 101-dimensional OAM-based maximally entangled states. Our scheme has potential applications in high capacity quantum communication networks.

7.
Phys Rev Lett ; 125(14): 143901, 2020 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-33064525

RESUMO

Nonlinear interactions between light waves can exchange energy, linear momentum, and angular momentum. The direction of energy flow between frequency components is usually determined by the conventional phase-matching condition related to the linear momentum. However, the transfer law of orbital angular momentum (OAM) during frequency conversion remains to be elucidated. Here, we demonstrate experimentally that OAM transfer depends strongly on the phase-matching condition defined by both linear and orbital angular momenta. Under different phase-matching configurations, the second-harmonic wave exhibits variable OAM spectral characteristics such as the presence of just a single value or of odd orders only. Our results pave the way toward unveiling the underlying mechanism of nonlinear conversion of OAM states.

8.
Opt Lett ; 43(13): 3168-3171, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29957808

RESUMO

In this Letter, we studied the near-field effect of the nonlinear Raman-Nath diffraction experimentally in a 1D periodically poled LiTaO3 crystal and established a theoretical relationship between the nonlinear effect in the near field and the corresponding effect in the far field. The interference of far-field spots in the near field constitutes the nonlinear Talbot self-imaging effect. Our results not only enhance our understanding of the nonlinear Talbot effect, but they also indicate potential applications of this effect in domain inspection and domain design.

9.
Opt Express ; 25(10): 11556-11563, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28788719

RESUMO

We experimentally demonstrate multiple generations of high-order orbital angular momentum (OAM) modes through third-harmonic generation in a 2D nonlinear photonic crystal. Such third-harmonic generation process is achieved by cascading second-harmonic generation and sum-frequency generation using the non-collinear quasi-phase-matching technique. This technique allows multiple OAM modes with different colors to be simultaneously generated. Moreover, the OAM conservation law guarantees that the topological charge is tripled in the cascaded third-harmonic generation process. Our method is effective for obtaining multiple high-order OAM modes for optical imaging, manipulation, and communications.

10.
Opt Lett ; 42(13): 2463-2466, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28957260

RESUMO

With experimental results, we demonstrate the generation of high-order Laguerre-Gaussian modes with non-zero radial indices using a metal meta-surface, which is composed of a series of rectangle nanoholes with different orientation angles. The phase shift after transmission through the metasurface is determined by the orientation angle of the nanohole. This device works over a broad wavelength band ranging from 700 to 1000 nm. Moreover, we achieve a LG mode with a radial mode index of 10. Our results provide an integrated method to obtain high-order LG modes, which can be used to enhance the capacity in optical communication and manipulation.

11.
Opt Express ; 24(11): 12007-12, 2016 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-27410122

RESUMO

We report on the extraordinary optical transmission (EOT) of an orbital angular momentum (OAM) state of light in the paraxial approximation. The OAM state transmits through a subwavelength metal hole array with a square structure, and then is analyzed by using a Mach-Zehnder interferometer. In the experiment, the transmitted light well conserves the OAM information while the transmission efficiency of the OAM mode is much greater than 1 (i.e., EOT works). Further study shows that the OAM mode has no significant influence on the transmission spectrum of the EOT paraxial process under our experimental configuration. Our work can be useful for future plasmon-based OAM devices.

12.
Opt Lett ; 41(6): 1169-72, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26977661

RESUMO

We experimentally demonstrate the orbital angular momentum (OAM) conversion by the coupled nonlinear optical processes in a quasi-periodically poled LiTaO3 crystal. In such a crystal, third-harmonic generation (THG) is realized by the coupled second-harmonic generation (SHG) and sum-frequency generation (SFG) processes, i.e., SHG is dependent on SFG and vice versa. The OAMs of the interacting waves are proved to be conserved in such coupled nonlinear optical processes. As we increase the input OAM in the experiment, the conversion efficiency decreases because of the reduced fundamental power density. Our results provide better understanding for the OAM conversions, which can be used to efficiently produce an optical OAM state at a short wavelength.

13.
Opt Express ; 21(12): 13969-74, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23787586

RESUMO

We demonstrate the improved second-harmonic Talbot self-imaging through the quasi-phase-matching technique in a 2D periodically-poled LiTaO(3) crystal. The domain structure not only composes a nonlinear optical grating which is necessary to realize nonlinear Talbot self-imaging, but also provides reciprocal vectors to satisfy the phase-matching condition for second-harmonic generation. Our experimental results show that quasi-phase-matching can improve the intensity of the second-harmonic Talbot self-imaging by a factor of 21.


Assuntos
Lítio/química , Lítio/efeitos da radiação , Óxidos/química , Óxidos/efeitos da radiação , Refratometria/métodos , Tantálio/química , Tantálio/efeitos da radiação , Luz , Teste de Materiais , Espalhamento de Radiação
14.
Nanoscale ; 15(8): 3757-3763, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36787155

RESUMO

Colloidal CdSe/ZnS quantum dots (QDs) exhibit excellent optical properties for wide potential applications in light-emitting diodes, solar concentrators, and single-photon sources. However, the ultra-thin films with low concentration of QDs still encounter inefficient photoluminescence (PL) and poor directionality of radiation, which need to be enhanced using nanophotonics device designs. Here we design and experimentally demonstrate an on-substrate silicon nitride (SiN) photonic crystal (PhC) microcavity encapsulated by a layer of PMMA hosting CdSe/ZnS QDs. The miniaturized bound states in the continuum (BIC) supported by our structures, provide high-Q resonant modes with highly-directional emission patterns. Experimental results show that the BIC mode in the microcavity has a Q-factor up to 7000 owing to the symmetric refractive index distribution along the Z-direction, rendering 8.5-fold enhancement of PL intensity and 8.4-fold acceleration of radiative emission rate. Our work provides a practical way for constructing efficient on-chip surface-emitting light sources on silicon-based integrated photonic devices.

15.
Nat Commun ; 14(1): 5523, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684225

RESUMO

Nonlinear optics provides a means to bridge between different electromagnetic frequencies, enabling communication between visible, infrared, and terahertz bands through χ(2) and higher-order nonlinear optical processes. However, precisely modulating nonlinear optical waves in 3D space remains a significant challenge, severely limiting the ability to directly manipulate optical information across different wavelength bands. Here, we propose and experimentally demonstrate a three-dimensional (3D) χ(2)-super-pixel hologram with nanometer resolution in lithium niobate crystals, capable of performing advanced processing tasks. In our design, each pixel consists of properly arranged nanodomain structures capable of completely and dynamically manipulating the complex-amplitude of nonlinear waves. Fabricated by femtosecond laser writing, the nonlinear hologram features a pixel diameter of 500 nm and a pixel density of approximately 25000 pixels-per-inch (PPI), reaching far beyond the state of the art. In our experiments, we successfully demonstrate the novel functions of the hologram to process near-infrared (NIR) information at visible wavelengths, including dynamic 3D nonlinear holographic imaging and frequency-up-converted image recognition. Our scheme provides a promising nano-optic platform for high-capacity optical storage and multi-functional information processing across different wavelength ranges.

16.
Light Sci Appl ; 11(1): 317, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36316306

RESUMO

Integrated photonics provides unprecedented opportunities to pursue advanced nonlinear light sources with low-power consumptions and small footprints in a scalable manner, such as microcombs, chip-scale optical parametric oscillators and integrated quantum light sources. Among a variety of nonlinear optical processes, high-efficiency second harmonic generation (SHG) on-chip is particularly appealing and yet challenging. In this work, we present efficient SHG in highly engineerable semi-nonlinear waveguides consisting of electron-beam resist waveguides and thin-film silicon nitride (SiN)/lithium niobate (LN). By carefully designing octave-separating bound states in the continuum (BICs) for the nonlinear interacting waves in such a hybrid structure, we have simultaneously optimized the losses for both fundamental frequency (FF) and second harmonic (SH) waves and achieved modal phasing matching and maximized the nonlinear modal overlap between the FF and SH waves, which results in an experimental conversion efficiency up to 4.05% W-1cm-2. Our work provides a versatile and fabrication-friendly platform to explore on-chip nonlinear optical processes with high efficiency in the context of nanophotonics and quantum optics.

17.
Light Sci Appl ; 10(1): 146, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34267178

RESUMO

Nonlinear holography has recently emerged as a novel tool to reconstruct the encoded information at a new wavelength, which has important applications in optical display and optical encryption. However, this scheme still struggles with low conversion efficiency and ineffective multiplexing. In this work, we demonstrate a quasi-phase-matching (QPM) -division multiplexing holography in a three-dimensional (3D) nonlinear photonic crystal (NPC). 3D NPC works as a nonlinear hologram, in which multiple images are distributed into different Ewald spheres in reciprocal space. The reciprocal vectors locating in a given Ewald sphere are capable of fulfilling the complete QPM conditions for the high-efficiency reconstruction of the target image at the second-harmonic (SH) wave. One can easily switch the reconstructed SH images by changing the QPM condition. The multiplexing capacity is scalable with the period number of 3D NPC. Our work provides a promising strategy to achieve highly efficient nonlinear multiplexing holography for high-security and high-density storage of optical information.

18.
Nat Commun ; 10(1): 4193, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31519901

RESUMO

Nonlinear beam shaping refers to spatial reconfiguration of a light beam at a new frequency, which can be achieved by using nonlinear photonic crystals (NPCs). Direct nonlinear beam shaping has been achieved to convert second-harmonic waves into focusing spots, vortex beams, and diffraction-free beams. However, previous nonlinear beam shaping configurations in one-dimensional and two-dimensional (2D) NPCs generally suffer from low efficiency because of unfulfilled phase-matching condition. Here, we present efficient generations of second-harmonic vortex and Hermite-Gaussian beams in the recently-developed three-dimensional (3D) lithium niobate NPCs fabricated by using a femtosecond-laser-engineering technique. Since 3D χ(2) modulations can be designed to simultaneously fulfill the requirements of nonlinear wave-front shaping and quasi-phase-matching, the conversion efficiency is enhanced up to two orders of magnitude in a tens-of-microns-long 3D NPC in comparison to the 2D case. Efficient nonlinear beam shaping paves a way for its applications in optical communication, super-resolution imaging, high-dimensional entangled source, etc.

19.
Sci Rep ; 8(1): 11591, 2018 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-30072801

RESUMO

Metasurfaces are two-dimensional metamaterials composed of a carefully designed series of subwavelength meta-atom (antenna or aperture) arrays. These surfaces can manipulate the phase, amplitude and polarization of output light by changing the shapes and orientations of the meta-atoms on a subwavelength scale. Using these properties, we experimentally demonstrate variable meta-axicons composed of rectangular nano-apertures arranged in several concentric rings that can focus left circularly polarized (LCP) light into a real Bessel beam and defocus right circular polarized (RCP) light to form a virtual beam. A desired phase discontinuity in cross-polarized transmitted light is introduced along the interface by controlling the orientations of the nano-apertures. In addition, the meta-axicons can generate Bessel beams of arbitrary orders by suitable design of the phase profile along the surface. The meta-axicons demonstrate broadband optical properties that can switch the wavelength of the incident light from 690 nm to 1050 nm. These variable meta-axicons open a path towards the development of new applications using integrated beam shaping devices.

20.
Sci Rep ; 7: 40856, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28098213

RESUMO

Diffraction-free beams have attracted increasing research interests because of their unique performances and broad applications in various fields. Although many methods have been developed to produce such beams, it is still challenging to realize a tunable non-diffracting beam. Here, we report the generation of a tunable diffraction-free array through second-harmonic generation in a nonlinear photonic crystal, i.e., a 2D periodically-poled LiTaO3 crystal. In such a crystal, the second-harmonic wave is engineered by properly designing the domain structure based on the Huygens-Fresnel principle. The characteristics of the generated diffraction-free array including its period, propagation length, and wavelength can be tuned by simply changing the input wavelength. Our observation not only enriches the diffraction-free optics, but also has potential applications for photolithography and imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA