Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 42(7): 1069-1079, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33758353

RESUMO

Sepsis is life-threatening organ dysfunction due to dysregulated systemic inflammatory and immune response to infection, often leading to cognitive impairments. Growing evidence shows that artemisinin, an antimalarial drug, possesses potent anti-inflammatory and immunoregulatory activities. In this study we investigated whether artemisinin exerted protective effect against neurocognitive deficits associated with sepsis and explored the underlying mechanisms. Mice were injected with LPS (750 µg · kg-1 · d-1, ip, for 7 days) to establish an animal model of sepsis. Artemisinin (30 mg · kg-1 · d-1, ip) was administered starting 4 days prior LPS injection and lasting to the end of LPS injection. We showed that artemisinin administration significantly improved LPS-induced cognitive impairments assessed in Morris water maze and Y maze tests, attenuated neuronal damage and microglial activation in the hippocampus. In BV2 microglial cells treated with LPS (100 ng/mL), pre-application of artemisinin (40 µΜ) significantly reduced the production of proinflammatory cytokines (i.e., TNF-α, IL-6) and suppressed microglial migration. Furthermore, we revealed that artemisinin significantly suppressed the nuclear translocation of NF-κB and the expression of proinflammatory cytokines by activating the AMPKα1 pathway; knockdown of AMPKα1 markedly abolished the anti-inflammatory effects of artemisinin in BV2 microglial cells. In conclusion, atemisinin is a potential therapeutic agent for sepsis-associated neuroinflammation and cognitive impairment, and its effect is probably mediated by activation of the AMPKα1 signaling pathway in microglia.


Assuntos
Artemisininas/uso terapêutico , Microglia/efeitos dos fármacos , Transtornos Neurocognitivos/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Sepse/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Anti-Inflamatórios/uso terapêutico , Região CA1 Hipocampal/efeitos dos fármacos , Região CA1 Hipocampal/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Citocinas/metabolismo , Inflamação/tratamento farmacológico , Inflamação/etiologia , Inflamação/metabolismo , Lipopolissacarídeos , Masculino , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Teste do Labirinto Aquático de Morris/efeitos dos fármacos , Transtornos Neurocognitivos/etiologia , Transtornos Neurocognitivos/metabolismo , Neurônios/efeitos dos fármacos , Sepse/induzido quimicamente , Sepse/complicações , Sepse/metabolismo
2.
Cell Mol Neurobiol ; 40(7): 1231-1242, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32140899

RESUMO

Recent studies demonstrated that FoxO3 circular RNA (circFoxO3) plays an important regulatory role in tumourigenesis and cardiomyopathy. However, the role of circFoxO3 in neurodegenerative diseases remains unknown. The aim of this study was to examine the possible role of circFoxO3 in neurodegenerative diseases and the underlying mechanisms. To model human neurodegenerative conditions, hippocampus-derived neurons were treated with glutamate. Using molecular and cellular biology approaches, we found that circFoxO3 expression was significantly higher in the glutamate treatment group than that in the control group. Furthermore, silencing of circFoxO3 protected HT22 cells from glutamate-induced oxidative injury through the inhibition of the mitochondrial apoptotic pathway. Collectively, our study demonstrates that endogenous circFoxO3 plays a key role in inducing apoptosis and neuronal cell death and may act as a novel therapeutic target for neurodegenerative diseases.


Assuntos
Apoptose/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Hipocampo/metabolismo , Mitocôndrias/metabolismo , RNA Circular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose/fisiologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Proteína Forkhead Box O3/genética , Ácido Glutâmico/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
3.
World J Emerg Med ; 14(1): 10-16, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36713343

RESUMO

BACKGROUND: Endothelial dysfunction in sepsis is a pathophysiological feature of septic organ failure. Endothelial cells (ECs) exhibit specific metabolic traits and release metabolites to adapt to the septic state in the blood to maintain vascular homeostasis. METHODS: Web of Science and PubMed were searched from inception to October 1, 2022. The search was limited to the English language only. Two reviewers independently identified studies related to EC metabolism in sepsis. The exclusion criteria were duplicate articles according to multiple search criteria. RESULTS: Sixty articles were included, and most of them were cell and animal studies. These studies reported the role of glycolysis, oxidative phosphorylation, fatty acid metabolism, and amino acid metabolism in EC homeostasis. including glycolysis, oxidative phosphorylation, fatty acid metabolism and amino acid metabolism. However, dysregulation of EC metabolism can contribute to sepsis progression. CONCLUSION: There are few clinical studies on EC metabolism in sepsis. Related research mainly focuses on basic research, but some scientific problems have also been clarified. Therefore, this review may provide an overall comprehension and novel aspects of EC metabolism in sepsis.

4.
Tissue Cell ; 81: 102039, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36805774

RESUMO

BACKGROUND: Accumulation of glutamate damages neurons via the reactive oxygen species (ROS) injury, which was involved in the development of neurodegenerative diseases. However, the mechanism of neuronal oxidative stress damage caused by glutamate and the intervention targets still needs to be further studied. This study explored whether 5' adenosine monophosphate-activated protein kinase (AMPK)-induced glucose metabolic and mitochondrial dysfunction were related to glutamate-dependent ROS injury of the neuron. METHODS: Neuronal oxidative stress injury was induced by glutamate treatment in HT-22 cells. Western blotting was used to evaluate the phosphorylation of the AMPK. The XF24 Flux Analyzer was used to measure the effect of glutamate and Compound C (a well-known pharmacological inhibitor of AMPK phosphorylation) on the cellular oxygen consumption rate (OCR) of HT-22 cells. Glucose uptake, intracellular ROS, mitochondrial potential, apoptosis and cell viability were quantified using biochemical assays. RESULTS: Glutamate caused the phosphorylation of AMPK and subsequently promoted the glucose uptake. Furthermore, AMPK-mediated glucose uptake enhanced OCR and increased the intracellular ROS levels in neurons. The pharmacological inhibition of AMPK phosphorylation by Compound C attenuated glutamate-induced toxicity in HT22 cells by regulating the glucose uptake/mitochondrial respiration/ROS pathway. CONCLUSIONS: The AMPK phosphorylation/glucose uptake/mitochondrial respiration/ROS pathway was involved in glutamate-induced excitotoxic injury in HT22 cells. The inhibition of AMPK phosphorylation may be a potential target for the development of therapeutic agents for treating the glutamate-induced neurotoxicity.


Assuntos
Ácido Glutâmico , Fármacos Neuroprotetores , Espécies Reativas de Oxigênio/metabolismo , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Apoptose , Mitocôndrias/metabolismo , Glucose/metabolismo
5.
Phytomedicine ; 121: 155119, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37801894

RESUMO

BACKGROUND: Previous studies have reported that puerarin possesses cardioprotective, vasodilatory, anti-inflammatory, anti-apoptotic, and hypoglycemic properties. However, the impact of puerarin on sepsis-associated encephalopathy (SAE) remains unexplored. In this study, we explored whether puerarin can modulate microglia-mediated neuroinflammation for the treatment of SAE and delved into the underlying mechanisms. METHODS: We established a murine model of SAE through intraperitoneal injection of lipopolysaccharide (LPS). The puerarin treatment group received pretreatment with puerarin. For in vitro experiments, BV2 cells were pre-incubated with puerarin for 2 h before LPS exposure. We employed network pharmacology, the Morris Water Maze (MWM) test, Novel Object Recognition (NOR) test, immunofluorescence staining, enzyme-linked immunosorbent assay (ELISA), Western blotting, and quantitative real-time PCR (qRT-PCR) to elucidate the molecular mechanism of underlying puerarin's effects in SAE treatment. RESULTS: Our findings demonstrate that puerarin significantly reduced the production of inflammatory cytokines (TNF-α and IL-6) in the peripheral blood of LPS-treated mice. Moreover, puerarin treatment markedly ameliorated sepsis-associated cognitive impairment. Puerarin also exhibited inhibitory effects on the release of TNF-α and IL-6 from microglia, thereby preventing hippocampal neuronal cell death. Network pharmacology analysis identified AKT1 as a potential therapeutic target for puerarin in SAE treatment. Subsequently, we validated these results in both in vitro and in vitro experiments. Our study conclusively demonstrated that puerarin reduced LPS-induced phosphorylation of AKT1, with the AKT activator SC79 reversing puerarin's anti-inflammatory effects through the activation of the AKT1 signaling pathway. CONCLUSION: Puerarin exerts an anti-neuroinflammatory effect against SAE by modulating the AKT1 pathway in microglia.


Assuntos
Encefalopatia Associada a Sepse , Camundongos , Animais , Encefalopatia Associada a Sepse/tratamento farmacológico , Encefalopatia Associada a Sepse/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Microglia , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA