Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Immunol ; 205(6): 1554-1563, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32796024

RESUMO

The genetic basis and mechanisms of disparate antitumor immune response was investigated in Diversity Outbred (DO) F1 mice that express human HER2. DO mouse stock samples nearly the entire genetic repertoire of the species. We crossed DO mice with syngeneic HER2 transgenic mice to study the genetics of an anti-self HER2 response in a healthy outbred population. Anti-HER2 IgG was induced by Ad/E2TM or naked pE2TM, both encoding HER2 extracellular and transmembrane domains. The response of DO F1 HER2 transgenic mice was remarkably variable. Still, immune sera inhibited HER2+ SKBR3 cell survival in a dose-dependent fashion. Using DO quantitative trait locus (QTL) analysis, we mapped the QTL that influences both total IgG and IgG2(a/b/c) Ab response to either Ad/E2TM or pE2TM. QTL from these four datasets identified a region in chromosome 17 that was responsible for regulating the response. A/J and NOD segments of genes in this region drove elevated HER2 Ig levels. This region is rich in MHC-IB genes, several of which interact with inhibitory receptors of NK cells. (B6xA/J)F1 and (B6xNOD)F1 HER2 transgenic mice received Ad/E2TM after NK cell depletion, and they produced less HER2 IgG, demonstrating positive regulatory function of NK cells. Depletion of regulatory T cells enhanced response. Using DO QTL analysis, we show that MHC-IB reactive NK cells exert positive influence on the immunity, countering negative regulation by regulatory T cells. This new, to our knowledge, DO F1 platform is a powerful tool for revealing novel immune regulatory mechanisms and for testing new interventional strategies.


Assuntos
Autoantígenos/metabolismo , Isoantígenos/metabolismo , Células Matadoras Naturais/fisiologia , Locos de Características Quantitativas/genética , Receptor ErbB-2/metabolismo , Linfócitos T Reguladores/imunologia , Animais , Animais não Endogâmicos , Autoantígenos/genética , Autoantígenos/imunologia , Feminino , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Imunidade , Imunoglobulina G/sangue , Isoantígenos/genética , Isoantígenos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Domínios Proteicos/genética , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia
2.
iScience ; 26(4): 106320, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36968078

RESUMO

HER2-targeted therapy has improved breast cancer survival, but treatment resistance and disease prevention remain major challenges. Genes that enable HER2/Neu oncogenesis are the next intervention targets. A bioinformatics discovery platform of HER2/Neu-expressing Diversity Outbred (DO) F1 Mice was established to identify cancer-enabling genes. Quantitative Trait Loci (QTL) associated with onset ages and growth rates of spontaneous mammary tumors were sought. Twenty-six genes in 3 QTL contain sequence variations unique to the genetic backgrounds that are linked to aggressive tumors and 21 genes are associated with human breast cancer survival. Concurrent identification of TSC22D3, a transcription factor, and its target gene LILRB4, a myeloid cell checkpoint receptor, suggests an immune axis for regulation, or intervention, of disease. We also investigated TIEG1 gene that impedes tumor immunity but suppresses tumor growth. Although not an actionable target, TIEG1 study revealed genetic regulation of tumor progression, forming the basis of the genetics-based discovery platform.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA