Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Stat Appl Genet Mol Biol ; 22(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36724206

RESUMO

Many human disease conditions need to be measured by ordinal phenotypes, so analysis of ordinal phenotypes is valuable in genome-wide association studies (GWAS). However, existing association methods for dichotomous or quantitative phenotypes are not appropriate to ordinal phenotypes. Therefore, based on an aggregated Cauchy association test, we propose a fast and efficient association method to test the association between genetic variants and an ordinal phenotype. To enrich association signals of rare variants, we first use the burden method to aggregate rare variants. Then we respectively test the significance of the aggregated rare variants and other common variants. Finally, the combination of transformed variant-level P values is taken as test statistic, that approximately follows Cauchy distribution under the null hypothesis. Extensive simulation studies and analysis of GAW19 show that our proposed method is powerful and computationally fast as a gene-based method. Especially, in the presence of an extremely low proportion of causal variants in a gene, our method has better performance.


Assuntos
Variação Genética , Estudo de Associação Genômica Ampla , Humanos , Fenótipo , Modelos Genéticos , Simulação por Computador
2.
Genetica ; 151(2): 97-104, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36656460

RESUMO

Extensive evidence from genome-wide association studies (GWAS) has shown that jointly analyzing multiple phenotypes can improve the power of the association test compared to the traditional single variant versus single trait approach. Here we propose an adaptive test based on principal components (ATPC) that is powerful and efficient for discovering the association between a single variant and multiple traits. Our method only needs GWAS summary statistics that are often available. We first estimate the trait correlation matrix by LD score regression. Then, based on the correlation matrix, we construct a series of test statistics that contain different numbers of principal components. The ultimate test statistic combines the P values of these principal component-based statistics by using the aggregated Cauchy association test. The analytical P-value of the test statistic can be computed quickly without the permutation process, which is the notable feature of our proposed method. The extensive simulation studies demonstrate that ATPC can control the type I error rates and have powerful and robust performance compared to several existing tests in a wide range of simulation settings. The analysis of the lipids GWAS summary data from the Global Lipids Genetics Consortium shows that ATPC identifies 230 new SNPs that are missed by the original single trait association analysis. By searching the GWAS Catalog, some SNPs and mapped genes identified by ATPC are reported to be associated with lipid traits. Through further analysis for GWAS results, we also find some Gene Ontology terms and biological pathways related to lipids.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla/métodos , Fenótipo , Simulação por Computador , Lipídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA