Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
New Phytol ; 233(6): 2471-2487, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34665465

RESUMO

ALUMINUM-ACTIVATED MALATE TRANSPORTER1 (ALMT1)-mediated malate exudation from roots is critical for aluminium (Al) resistance in Arabidopsis. Its upstream molecular signalling regulation is not yet well understood. The role of CALMODULIN-LIKE24 (CML24) in Al-inhibited root growth and downstream molecular regulation of ALMT1-meditaed Al resistance was investigated. CML24 confers Al resistance demonstrated by an increased root-growth inhibition of the cml24 loss-of-function mutant under Al stress. This occurs mainly through the regulation of the ALMT1-mediated malate exudation from roots. The mutation and overexpression of CML24 leads to an elevated and reduced Al accumulation in the cell wall of roots, respectively. Al stress induced both transcript and protein abundance of CML24 in root tips, especially in the transition zone. CML24 interacts with CALMODULIN BINDING TRANSCRIPTION ACTIVATOR2 (CAMTA2) and promotes its transcriptional activity in the regulation of ALMT1 expression. This results in an enhanced malate exudation from roots and less root-growth inhibition under Al stress. Both CML24 and CAMTA2 interacted with WRKY46 suppressing the transcriptional repression of ALMT1 by WRKY46. The study provides novel insights into understanding of the upstream molecular signalling of the ALMT1-depdendent Al resistance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Transportadores de Ânions Orgânicos , Alumínio/metabolismo , Alumínio/toxicidade , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calmodulina/metabolismo , Regulação da Expressão Gênica de Plantas , Malatos/metabolismo , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Raízes de Plantas/metabolismo
2.
J Cell Physiol ; 236(6): 4750-4763, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33615471

RESUMO

Excessively high cholesterol content in the blood leads to nonalcohol fatty liver disease (NAFLD) and arteriosclerosis. Although there are increasing publications and patent applications to lower blood cholesterol with small chemical molecules, limited effective drugs can be available in clinic. It is necessary to uncover new targets and drugs to alleviate high cholesterol. Esterase D (ESD) is abundant in liver and it remains unknown about its role in cholesterol metabolism. Here we reported that small chemical molecule fluorescigenic pyrazoline derivative 5 (FPD5), a new ESD activator, could effectively reverse high blood cholesterol level and prevent fatty liver and arteriosclerosis in apoE-/- mice fed the high-fat diet. We also observed that FPD5 could reduce oxidized low density lipoprotein (oxLDL)-induced formation of foam cells. To further investigate the mechanism of FPD5 action on blood cholesterol modulation, we found that ESD trigged by FPD5 was aggregated in lysosome and interacted with Jun activation domain binding protein 1 (JAB1). ESD served as a deacetylase to remove Thr89 acetylation of JAB1 and increased its activity; thus, promoting the ATP-binding cassette transporters A1 (ABCA1) to accelerate cholesterol efflux. Our findings demonstrate that FPD5 decreases blood cholesterol level to ameliorate NAFLD and arteriosclerosis through ESD/JAB1/ABCA1 pathway, and ESD functions as a novel nonclassical deacetylase that hydrolyzes serine/threonine acetyl group. Our findings not only highlight that FPD5 may be a pioneer drug for alleviating blood cholesterol but also indicate that ESD is a potential drug target that promotes cholesterol metabolism.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Anticolesterolemiantes/farmacologia , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Complexo do Signalossomo COP9/metabolismo , Colesterol/sangue , Inibidores Enzimáticos/farmacologia , Células Espumosas/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Tioléster Hidrolases/antagonistas & inibidores , Acetilação , Animais , Doenças da Aorta/sangue , Doenças da Aorta/enzimologia , Doenças da Aorta/patologia , Aterosclerose/sangue , Aterosclerose/enzimologia , Aterosclerose/patologia , Biomarcadores/sangue , Dieta Hiperlipídica , Modelos Animais de Doenças , Regulação para Baixo , Células Espumosas/enzimologia , Células Espumosas/patologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Hepatopatia Gordurosa não Alcoólica/enzimologia , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Placa Aterosclerótica , Processamento de Proteína Pós-Traducional , Células RAW 264.7 , Tioléster Hidrolases/metabolismo
3.
Microb Cell Fact ; 20(1): 142, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301255

RESUMO

BACKGROUND: Vanillin is one of the important phenolic inhibitors in Saccharomyces cerevisiae for bioconversion of lignocellulosic materials and has been reported to inhibit the translation process in cells. In our previous studies, it was confirmed that the deletion of the transcription factor gene YRR1 enhanced vanillin resistance by promoting some translation-related processes at the transcription level. In this work, we investigated the effects of proteomic changes upon induction of vanillin stress and deletion of YRR1 to provide unique perspectives from a transcriptome analysis for comprehending the mechanisms of YRR1 deletion in the protective response of yeast to vanillin. RESULTS: In wild-type cells, vanillin reduced two dozens of ribosomal proteins contents while upregulated proteins involved in glycolysis, oxidative phosphorylation, and the pentose phosphate pathway in cells. The ratios of NADPH/NADP+ and NADH/NAD+ were increased when cells responded to vanillin stress. The differentially expressed proteins perturbed by YRR1 deletion were much more abundant than and showed no overlaps with transcriptome changes, indicating that Yrr1 affects the synthesis of certain proteins. Forty-eight of 112 upregulated proteins were involved in the stress response, translational and transcriptional regulation. YRR1 deletion increased the expression of HAA1-encoding transcriptional activator, TMA17-encoding proteasome assembly chaperone and MBF1-encoding coactivator at the protein level, as confirmed by ELISA. Cultivation data showed that the overexpression of HAA1 and TMA17 enhanced resistance to vanillin in S. cerevisiae. CONCLUSIONS: Cells conserve energy by decreasing the content of ribosomal proteins, producing more energy and NAD(P)H for survival in response to vanillin stress. Yrr1 improved vanillin resistance by increasing the protein quantities of Haa1, Tma17 and Mbf1. These results showed the response of S. cerevisiae to vanillin and how YRR1 deletion increases vanillin resistance at the protein level. These findings may advance our knowledge of how YRR1 deletion protects yeast from vanillin stress and offer novel targets for genetic engineering of designing inhibitor-resistant ethanologenic yeast strains.


Assuntos
Benzaldeídos/farmacologia , Regulação Fúngica da Expressão Gênica , Proteômica , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Deleção de Genes , Perfilação da Expressão Gênica , Mutação , Ativação Transcricional
4.
Mol Microbiol ; 111(4): 1057-1073, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30677184

RESUMO

The vast majority of oceanic dimethylsulfoniopropionate (DMSP) is thought to be catabolized by bacteria via the DMSP demethylation pathway. This pathway contains four enzymes termed DmdA, DmdB, DmdC and DmdD/AcuH, which together catabolize DMSP to acetylaldehyde and methanethiol as carbon and sulfur sources respectively. While molecular mechanisms for DmdA and DmdD have been proposed, little is known of the catalytic mechanisms of DmdB and DmdC, which are central to this pathway. Here, we undertake physiological, structural and biochemical analyses to elucidate the catalytic mechanisms of DmdB and DmdC. DmdB, a 3-methylmercaptopropionate (MMPA)-coenzyme A (CoA) ligase, undergoes two sequential conformational changes to catalyze the ligation of MMPA and CoA. DmdC, a MMPA-CoA dehydrogenase, catalyzes the dehydrogenation of MMPA-CoA to generate MTA-CoA with Glu435 as the catalytic base. Sequence alignment suggests that the proposed catalytic mechanisms of DmdB and DmdC are likely widely adopted by bacteria using the DMSP demethylation pathway. Analysis of the substrate affinities of involved enzymes indicates that Roseobacters kinetically regulate the DMSP demethylation pathway to ensure DMSP functioning and catabolism in their cells. Altogether, this study sheds novel lights on the catalytic and regulative mechanisms of bacterial DMSP demethylation, leading to a better understanding of bacterial DMSP catabolism.


Assuntos
Proteínas de Bactérias/metabolismo , Desmetilação , Propionatos/metabolismo , Roseobacter/enzimologia , Compostos de Sulfônio/metabolismo , Coenzima A/metabolismo , Coenzima A Ligases/metabolismo , Cinética , Oceanos e Mares , Oxirredutases/metabolismo , Roseobacter/genética , Enxofre/metabolismo
5.
BMC Immunol ; 20(1): 48, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842739

RESUMO

BACKGROUND: Yersinia pestis, the etiological pathogen of plague, is capable of repressing the immune response of white blood cells to evade phagocytosis. The V-antigen (LcrV) was found to be involved in this process by binding to human Toll-like Receptor 2 (TLR2). The detailed mechanism behind this LcrV and TLR2 mediated immune response repression, however, is yet to be fully elucidated due to the lack of structural information. RESULTS: In this work, with protein structure modelling, we were able to construct a structure model of the heterotetramer of Y. pestis LcrV and human TLR2. Molecular dynamics simulation suggests the stability of this structure in aquatic environment. The LcrV model has a dumbbell-like structure with two globule domains (G1 at N-terminus and G2 away from membrane) connected with a coiled-coil linker (CCL) domain. The two horseshoe-shape TLR2 subunits form a V-shape structure, are not in direct contact with each other, and are held together by the LcrV homodimer. In this structure model, both the G1 and CCL domains are involved in the formation of LcrV homodimer, while all three domains are involved in LcrV-TLR2 binding. A mechanistic model was proposed based on this heterotetrameric structure model: The LcrV homodimer separates the TLR2 subunits to inhibit the dimerization of TLR2 and subsequent signal transfer for immune response; while LcrV could also inhibit the formation of heterodimers of TLR2 with other TLRs, and leads to immune response repression. CONCLUSIONS: A heterotetrameric structure of Y. pestis LcrV and human TLR2 was modelled in this work. Analysis of this modelled structure showed its stability in aquatic environments and the role of LcrV domains and residues in protein-protein interaction. A mechanistic model for the role of LcrV in Y. pestis pathogenesis is raised based on this heterotetrameric structure model. This work provides a hypothesis of LcrV function, with which further experimental validation may elucidate the role of LcrV in human immune response repression.


Assuntos
Antígenos de Bactérias/química , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Complexos Multiproteicos/química , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/imunologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Receptor 2 Toll-Like/química , Receptor 2 Toll-Like/metabolismo , Domínio Catalítico , Interações Hospedeiro-Patógeno/imunologia , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Complexos Multiproteicos/imunologia , Complexos Multiproteicos/metabolismo , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Relação Estrutura-Atividade
6.
Biochem J ; 475(1): 191-205, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29203646

RESUMO

The Asp-His-His and Asp-His-His-associated (DHH/DHHA1) domain-containing phosphodiesterases (PDEs) that catalyze degradation of cyclic di-adenosine monophosphate (c-di-AMP) could be subdivided into two subfamilies based on the final product [5'-phosphadenylyl-adenosine (5'-pApA) or AMP]. In a previous study, we revealed that Rv2837c, a stand-alone DHH/DHHA1 PDE, employs a 5'-pApA internal flipping mechanism to produce AMPs. However, why the membrane-bound DHH/DHHA1 PDE can only degrade c-di-AMP to 5'-pApA remains obscure. Here, we report the crystal structure of the DHH/DHHA1 domain of GdpP (GdpP-C), and structures in complex with c-di-AMP, cyclic di-guanosine monophosphate (c-di-GMP), and 5'-pApA. Structural analysis reveals that GdpP-C binds nucleotide substrates quite differently from how Rv2837c does in terms of substrate-binding position. Accordingly, the nucleotide-binding site of the DHH/DHHA1 PDEs is organized into three (C, G, and R) subsites. For GdpP-C, in the C and G sites c-di-AMP binds and degrades into 5'-pApA, and its G site determines nucleotide specificity. To further degrade into AMPs, 5'-pApA must slide into the C and R sites for flipping and hydrolysis as in Rv2837c. Subsequent mutagenesis and enzymatic studies of GdpP-C and Rv2837c uncover the complete flipping process and reveal a unified catalytic mechanism for members of both DHH/DHHA1 PDE subfamilies.


Assuntos
Proteínas de Bactérias/química , GMP Cíclico/análogos & derivados , Manganês/química , Diester Fosfórico Hidrolases/química , Staphylococcus aureus/enzimologia , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , GMP Cíclico/química , GMP Cíclico/metabolismo , Fosfatos de Dinucleosídeos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Manganês/metabolismo , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Staphylococcus aureus/genética , Especificidade por Substrato
7.
J Virol ; 91(5)2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28031362

RESUMO

Many types of small GTPases are widely expressed in eukaryotes and have different functions. As a crucial member of the Rho GTPase family, Cdc42 serves a number of functions, such as regulating cell growth, migration, and cell movement. Several RNA viruses employ Cdc42-hijacking tactics in their target cell entry processes. However, the function of Cdc42 in shrimp antiviral immunity is not clear. In this study, we identified a Cdc42 protein in the kuruma shrimp (Marsupenaeus japonicus) and named it MjCdc42. MjCdc42 was upregulated in shrimp challenged by white spot syndrome virus (WSSV). The knockdown of MjCdc42 and injection of Cdc42 inhibitors increased the proliferation of WSSV. Further experiments determined that MjCdc42 interacted with an arginine kinase (MjAK). By analyzing the binding activity and enzyme activity of MjAK and its mutant, ΔMjAK, we found that MjAK could enhance the replication of WSSV in shrimp. MjAK interacted with the envelope protein VP26 of WSSV. An inhibitor of AK activity, quercetin, could impair the function of MjAK in WSSV replication. Further study demonstrated that the binding of MjCdc42 and MjAK depends on Cys271 of MjAK and suppresses the WSSV replication-promoting effect of MjAK. By interacting with the active site of MjAK and suppressing its enzyme activity, MjCdc42 inhibits WSSV replication in shrimp. Our results demonstrate a new function of Cdc42 in the cellular defense against viral infection in addition to the regulation of actin and phagocytosis, which has been reported in previous studies. IMPORTANCE The interaction of Cdc42 with arginine kinase plays a crucial role in the host defense against WSSV infection. This study identifies a new mechanism of Cdc42 in innate immunity and enriches the knowledge of the antiviral innate immunity of invertebrates.


Assuntos
Arginina Quinase/metabolismo , Proteínas de Artrópodes/metabolismo , Penaeidae/virologia , Replicação Viral , Vírus da Síndrome da Mancha Branca 1/fisiologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Animais , Arginina Quinase/química , Proteínas de Artrópodes/química , Sequência Conservada , Indução Enzimática/imunologia , Escherichia coli , Interações Hospedeiro-Patógeno , Imunidade Inata , Simulação de Acoplamento Molecular , Penaeidae/enzimologia , Penaeidae/imunologia , Ligação Proteica , Mapas de Interação de Proteínas , Regulação para Cima , Proteína cdc42 de Ligação ao GTP/química
8.
Plant Cell ; 26(1): 164-80, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24443520

RESUMO

Plant growth inhibition is a common response to salinity. Under saline conditions, Shanrong No. 3 (SR3), a bread wheat (Triticum aestivum) introgression line, performs better than its parent wheat variety Jinan 177 (JN177) with respect to both seedling growth and abiotic stress tolerance. Furthermore, the endogenous reactive oxygen species (ROS) was also elevated in SR3 relative to JN177. The SR3 allele of sro1, a gene encoding a poly(ADP ribose) polymerase (PARP) domain protein, was identified to be crucial for both aspects of its superior performance. Unlike RADICAL-INDUCED CELL DEATH1 and other Arabidopsis thaliana SIMILAR TO RCD-ONE (SRO) proteins, sro1 has PARP activity. Both the overexpression of Ta-sro1 in wheat and its heterologous expression in Arabidopsis promote the accumulation of ROS, mainly by enhancing the activity of NADPH oxidase and the expression of NAD(P)H dehydrogenase, in conjunction with the suppression of alternative oxidase expression. Moreover, it promotes the activity of ascorbate-GSH cycle enzymes and GSH peroxidase cycle enzymes, which regulate ROS content and cellular redox homeostasis. sro1 is also found to be involved in the maintenance of genomic integrity. We show here that the wheat SRO has PARP activity; such activity could be manipulated to improve the growth of seedlings exposed to salinity stress by modulating redox homeostasis and maintaining genomic stability.


Assuntos
Genes de Plantas , Instabilidade Genômica , Proteínas de Plantas/genética , Triticum/genética , Arabidopsis/genética , Sítios de Ligação , Sequestradores de Radicais Livres/metabolismo , Genoma de Planta , Homeostase , Modelos Moleculares , Oxirredução , Proteínas de Plantas/química , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas/fisiologia , Estrutura Terciária de Proteína , Espécies Reativas de Oxigênio/metabolismo , Plântula/genética , Plântula/crescimento & desenvolvimento , Estresse Fisiológico , Triticum/crescimento & desenvolvimento , Triticum/fisiologia
9.
Proc Natl Acad Sci U S A ; 111(3): 1026-31, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24395783

RESUMO

The microbial cleavage of dimethylsulfoniopropionate (DMSP) generates volatile DMS through the action of DMSP lyases and is important in the global sulfur and carbon cycles. When released into the atmosphere from the oceans, DMS is oxidized, forming cloud condensation nuclei that may influence weather and climate. Six different DMSP lyase genes are found in taxonomically diverse microorganisms, and dddQ is among the most abundant in marine metagenomes. Here, we examine the molecular mechanism of DMSP cleavage by the DMSP lyase, DddQ, from Ruegeria lacuscaerulensis ITI_1157. The structures of DddQ bound to an inhibitory molecule 2-(N-morpholino)ethanesulfonic acid and of DddQ inactivated by a Tyr131Ala mutation and bound to DMSP were solved. DddQ adopts a ß-barrel fold structure and contains a Zn(2+) ion and six highly conserved hydrophilic residues (Tyr120, His123, His125, Glu129, Tyr131, and His163) in the active site. Mutational and biochemical analyses indicate that these hydrophilic residues are essential to catalysis. In particular, Tyr131 undergoes a conformational change during catalysis, acting as a base to initiate the ß-elimination reaction in DMSP lysis. Moreover, structural analyses and molecular dynamics simulations indicate that two loops over the substrate-binding pocket of DddQ can alternate between "open" and "closed" states, serving as a gate for DMSP entry. We also propose a molecular mechanism for DMS production through DMSP cleavage. Our study provides important insight into the mechanism involved in the conversion of DMSP into DMS, which should lead to a better understanding of this globally important biogeochemical reaction.


Assuntos
Alphaproteobacteria/metabolismo , Sulfetos/química , Compostos de Sulfônio/química , Sequência de Aminoácidos , Carbono/química , Ciclo do Carbono , Liases de Carbono-Enxofre/química , Catálise , Domínio Catalítico , Dicroísmo Circular , Cristalografia por Raios X , Análise Mutacional de DNA , Metais/química , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Oceanos e Mares , Oxigênio/química , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Enxofre/química , Microbiologia da Água , Zinco/química
10.
J Biol Chem ; 290(40): 24547-60, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26304122

RESUMO

Aerobic microorganisms have evolved a variety of pathways to degrade aromatic and heterocyclic compounds. However, only several classes of oxygenolytic fission reaction have been identified for the critical ring cleavage dioxygenases. Among them, the most well studied dioxygenases proceed via catecholic intermediates, followed by noncatecholic hydroxy-substituted aromatic carboxylic acids. Therefore, the recently reported hydroquinone 1,2-dioxygenases add to the diversity of ring cleavage reactions. Two-subunit hydroquinone 1,2-dioxygenase PnpCD, the key enzyme in the hydroquinone pathway of para-nitrophenol degradation, catalyzes the ring cleavage of hydroquinone to γ-hydroxymuconic semialdehyde. Here, we report three PnpCD structures, named apo-PnpCD, PnpCD-Fe(3+), and PnpCD-Cd(2+)-HBN (substrate analog hydroxyenzonitrile), respectively. Structural analysis showed that both the PnpC and the C-terminal domains of PnpD comprise a conserved cupin fold, whereas PnpC cannot form a competent metal binding pocket as can PnpD cupin. Four residues of PnpD (His-256, Asn-258, Glu-262, and His-303) were observed to coordinate the iron ion. The Asn-258 coordination is particularly interesting because this coordinating residue has never been observed in the homologous cupin structures of PnpCD. Asn-258 is proposed to play a pivotal role in binding the iron prior to the enzymatic reaction, but it might lose coordination to the iron when the reaction begins. PnpD also consists of an intriguing N-terminal domain that might have functions other than nucleic acid binding in its structural homologs. In summary, PnpCD has no apparent evolutionary relationship with other iron-dependent dioxygenases and therefore defines a new structural class. The study of PnpCD might add to the understanding of the ring cleavage of dioxygenases.


Assuntos
Proteínas de Bactérias/química , Dioxigenases/química , Hidroquinonas/química , Pseudomonas aeruginosa/enzimologia , Sequência de Aminoácidos , Catálise , Domínio Catalítico , Dicroísmo Circular , Cristalografia por Raios X , Íons , Ferro/química , Metabolismo , Metais/química , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Nitrilas/química , Nitrofenóis/química , Oxigênio/química , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
11.
J Bacteriol ; 197(21): 3378-87, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26283766

RESUMO

UNLABELLED: Trimethylamine N-oxide (TMAO) is an important nitrogen source for marine bacteria. TMAO can also be metabolized by marine bacteria into volatile methylated amines, the precursors of the greenhouse gas nitrous oxide. However, it was not known how TMAO is recognized and imported by bacteria. Ruegeria pomeroyi DSS-3, a marine Roseobacter, has an ATP-binding cassette transporter, TmoXWV, specific for TMAO. TmoX is the substrate-binding protein of the TmoXWV transporter. In this study, the substrate specificity of TmoX of R. pomeroyi DSS-3 was characterized. We further determined the structure of the TmoX/TMAO complex and studied the TMAO-binding mechanism of TmoX by biochemical, structural, and mutational analyses. A Ca(2+) ion chelated by an extended loop in TmoX was shown to be important for maintaining the stability of TmoX. Molecular dynamics simulations indicate that TmoX can alternate between "open" and "closed" states for binding TMAO. In the substrate-binding pocket, four tryptophan residues interact with the quaternary amine of TMAO by cation-π interactions, and Glu131 forms a hydrogen bond with the polar oxygen atom of TMAO. The π-π stacking interactions between the side chains of Phe and Trp are also essential for TMAO binding. Sequence analysis suggests that the TMAO-binding mechanism of TmoX may have universal significance in marine bacteria, especially in the marine Roseobacter clade. This study sheds light on how marine microorganisms utilize TMAO. IMPORTANCE: Trimethylamine N-oxide (TMAO) is an important nitrogen source for marine bacteria. The products of TMAO metabolized by bacteria are part of the precursors of the greenhouse gas nitrous oxide. It is unclear how TMAO is recognized and imported by bacteria. TmoX is the substrate-binding protein of a TMAO-specific transporter. Here, the substrate specificity of TmoX of Ruegeria pomeroyi DSS-3 was characterized. The TMAO-binding mechanism of TmoX was studied by biochemical, structural, and mutational analyses. Moreover, our results suggest that the TMAO-binding mechanism may have universal significance in marine bacteria. This study sheds light on how marine microorganisms utilize TMAO and should lead to a better understanding of marine nitrogen cycling.


Assuntos
Metilaminas/metabolismo , Rhodobacteraceae/metabolismo , Água do Mar/microbiologia , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Metilaminas/química , Rhodobacteraceae/química , Rhodobacteraceae/genética , Especificidade por Substrato
12.
J Struct Biol ; 192(1): 1-13, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26362077

RESUMO

FleQ is an AAA+ ATPase enhancer-binding protein that regulates both flagella and biofilm formation in the opportunistic pathogen Pseudomonas aeruginosa. FleQ belongs to the NtrC subfamily of response regulators, but lacks the corresponding aspartic acid for phosphorylation in the REC domain (FleQ(R), also named FleQ domain). Here, we show that the atypical REC domain of FleQ is essential for the function of FleQ. Crystal structure of FleQ(R) at 2.3Å reveals that the structure of FleQ(R) is significantly different from the REC domain of NtrC1 which regulates gene expression in a phosphorylation dependent manner. FleQ(R) forms a novel active dimer (transverse dimer), and mediates the dimerization of full-length FleQ in an unusual manner. Point mutations that affect the dimerization of FleQ lead to loss of function of the protein. Moreover, a c-di-GMP binding site deviating from the previous reported one is identified through structure analysis and point mutations.


Assuntos
Proteínas de Bactérias/química , Biofilmes , GMP Cíclico/análogos & derivados , Pseudomonas aeruginosa/fisiologia , Transativadores/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/fisiologia , Sítios de Ligação , Cristalografia por Raios X , GMP Cíclico/química , GMP Cíclico/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Dados de Sequência Molecular , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Secundária de Proteína , Transativadores/fisiologia
13.
J Biol Chem ; 289(43): 29558-69, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25210041

RESUMO

Bacterial alginate lyases, which are members of several polysaccharide lyase (PL) families, have important biological roles and biotechnological applications. The mechanisms for maturation, substrate recognition, and catalysis of PL18 alginate lyases are still largely unknown. A PL18 alginate lyase, aly-SJ02, from Pseudoalteromonas sp. 0524 displays a ß-jelly roll scaffold. Structural and biochemical analyses indicated that the N-terminal extension in the aly-SJ02 precursor may act as an intramolecular chaperone to mediate the correct folding of the catalytic domain. Molecular dynamics simulations and mutational assays suggested that the lid loops over the aly-SJ02 active center serve as a gate for substrate entry. Molecular docking and site-directed mutations revealed that certain conserved residues at the active center, especially those at subsites +1 and +2, are crucial for substrate recognition. Tyr(353) may function as both a catalytic base and acid. Based on our results, a model for the catalysis of aly-SJ02 in alginate depolymerization is proposed. Moreover, although bacterial alginate lyases from families PL5, 7, 15, and 18 adopt distinct scaffolds, they share the same conformation of catalytic residues, reflecting their convergent evolution. Our results provide the foremost insight into the mechanisms of maturation, substrate recognition, and catalysis of a PL18 alginate lyase.


Assuntos
Biocatálise , Modelos Moleculares , Polissacarídeo-Liases/química , Polissacarídeo-Liases/metabolismo , Pseudoalteromonas/enzimologia , Sequência de Aminoácidos , Aminoácidos/metabolismo , Domínio Catalítico , Dicroísmo Circular , Simulação por Computador , Cristalografia por Raios X , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Estrutura Secundária de Proteína , Análise de Sequência de Proteína , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
14.
Proteins ; 82(9): 1708-20, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24470304

RESUMO

The dibenzothiophene (DBT) monooxygenase DszC, which is the key initiating enzyme in "4S" metabolic pathway, catalyzes sequential sulphoxidation reaction of DBT to DBT sulfoxide (DBTO), then DBT sulfone (DBTO2). Here, we report the crystal structure of DszC from Rhodococcus sp. XP at 1.79 Å. Intriguingly, two distinct conformations occur in the flexible lid loops adjacent to the active site (residue 280-295, between α9 and α10). They are named "open"' and "closed" state respectively, and might show the status of the free and ligand-bound DszC. The molecular docking results suggest that the reduced FMN reacts with an oxygen molecule at C4a position of the isoalloxazine ring, producing the C4a-(hydro)peroxyflavin intermediate which is stabilized by H391 and S163. H391 may contribute to the formation of the C4a-(hydro)peroxyflavin by acting as a proton donor to the proximal peroxy oxygen, and it might also be involved in the protonation process of the C4a-(hydro)xyflavin. Site-directed mutagenesis study shows that mutations in the residues involved either in catalysis or in flavin or substrate-binding result in a complete loss of enzyme activity, suggesting that the accurate positions of flavin and substrate are crucial for the enzyme activity.


Assuntos
Oxirredutases/ultraestrutura , Rhodococcus/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Mononucleotídeo de Flavina/química , Flavinas/química , Interações Hidrofóbicas e Hidrofílicas , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oxirredutases/genética , Oxigênio/química , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência , Tiofenos/metabolismo
15.
Nucleic Acids Res ; 40(21): 11073-85, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23002140

RESUMO

YdiV is a negative regulator of cell motility. It interacts with FlhD(4)C(2) complex, a product of flagellar master operon, which works as the transcription activator of all other flagellar operons. Here, we report the crystal structures of YdiV and YdiV(2)-FlhD(2) complex at 1.9 Å and 2.9 Å resolutions, respectively. Interestingly, YdiV formed multiple types of complexes with FlhD(4)C(2). YdiV(1)-FlhD(4)C(2) and YdiV(2)-FlhD(4)C(2) still bound to DNA, while YdiV(3)-FlhD(4)C(2) and YdiV(4)-FlhD(4)C(2) did not. DNA bound FlhD(4)C(2) through wrapping around the FlhC subunit rather than the FlhD subunit. Structural analysis showed that only two peripheral FlhD subunits were accessible for YdiV binding, forming the YdiV(2)-FlhD(4)C(2) complex without affecting the integrity of ring-like structure. YdiV(2)-FlhD(2) structure and the negative staining electron microscopy reconstruction of YdiV(4)-FlhD(4)C(2) suggested that the third and fourth YdiV molecule bound to the FlhD(4)C(2) complex through squeezing into the ring-like structure of FlhD(4)C(2) between the two internal D subunits. Consequently, the ring-like structure opened up, and the complex lost DNA-binding ability. Thus, YdiV inhibits FlhD(4)C(2) only at relatively high concentrations.


Assuntos
Proteínas de Transporte/química , Proteínas de Escherichia coli/química , Transativadores/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , DNA Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Flagelos/metabolismo , Modelos Moleculares , Movimento , Mutação , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Transativadores/metabolismo
16.
Mol Microbiol ; 85(5): 907-15, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22758351

RESUMO

The linker protein L(CM) (ApcE) is postulated as the major component of the phycobilisome terminal energy acceptor (TEA) transferring excitation energy from the phycobilisome to photosystem II. L(CM) is the only phycobilin-attached linker protein in the cyanobacterial phycobilisome through auto-chromophorylation. However, the underlying mechanism for the auto-chromophorylation of L(CM) and the detailed molecular architecture of TEA is still unclear. Here, we demonstrate that the N-terminal phycobiliprotein-like domain of L(CM) (Pfam00502, LP502) can specifically recognize phycocyanobilin (PCB) by itself. Biochemical assays indicated that PCB binds into the same pocket in LP502 as that in the allophycocyanin α-subunit and that Ser152 and Asp155 play a vital role in LP502 auto-chromophorylation. By carefully conducting computational simulations, we arrived at a rational model of the PCB-LP502 complex structure that was supported by extensive mutational studies. In the PCB-LP502 complex, PCB binds into a deep pocket of LP502 with a distorted conformation, and Ser152 and Asp155 form several hydrogen bonds to PCB fixing the PCB Ring A and Ring D. Finally, based on our results, the dipoles and dipole-dipole interactions in TEA are analysed and a molecular structure for TEA is proposed, which gives new insights into the energy transformation mechanism of cyanobacterial phycobilisome.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Ficobilissomas/metabolismo , Ficobilinas/metabolismo , Ficocianina/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína
17.
BMC Struct Biol ; 13: 30, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24252642

RESUMO

BACKGROUND: para-Nitrophenol (PNP) is a highly toxic compound with threats to mammalian health. The pnpE-encoded γ-hydroxymuconic semialdehyde dehydrogenase catalyzes the reduction of γ-hydroxymuconic semialdehyde to maleylacetate in Pseudomonas sp. strain WBC-3, playing a key role in the catabolism of PNP to Krebs cycle intermediates. However, the catalyzing mechanism by PnpE has not been well understood. RESULTS: Here we report the crystal structures of the apo and NAD bound PnpE. In the PnpE-NAD complex structure, NAD is situated in a cleft of PnpE. The cofactor binding site is composed of two pockets. The adenosine and the first ribose group of NAD bind in one pocket and the nicotinamide ring in the other. CONCLUSIONS: Six amino acids have interactions with the cofactor. They are C281, E247, Q210, W148, I146 and K172. Highly conserved residues C281 and E247 were identified to be critical for its catalytic activity. In addition, flexible docking studies of the enzyme-substrate system were performed to predict the interactions between PnpE and its substrate γ-hydroxymuconic semialdehyde. Amino acids that interact extensively with the substrate and stabilize the substrate in an orientation suitable for enzyme catalysis were identified. The importance of these residues for catalytic activity was confirmed by the relevant site-directed mutagenesis and their biochemical characterization.


Assuntos
Apolipoproteínas/metabolismo , Proteínas de Bactérias/química , NAD/metabolismo , Nitrofenóis/metabolismo , Oxirredutases/química , Pseudomonas/enzimologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Evolução Molecular , Ácidos Graxos Insaturados/metabolismo , Humanos , Maleatos/metabolismo , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Oxirredutases/genética , Oxirredutases/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Pseudomonas/química , Pseudomonas/genética , Alinhamento de Sequência , Especificidade por Substrato
19.
Front Oncol ; 13: 1255164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37736545

RESUMO

Introduction: Safranal is an active component of the traditional Tibetan medicine (TTM) saffron, which has potential anticancer activity. Methods and results: Here, we studied the therapeutic effect and mechanism of safranal on GBM. CCK-8, GBM-brain organoid coculture experiments and 3D tumour spheroid invasion assays showed that safranal inhibited GBM cell proliferation and invasion in vitro. Network pharmacology, RNA-seq, molecular docking analysis, western blotting, apoptosis, and cell cycle assays predicted and verified that safranal could promote GBM cell apoptosis and G2/M phase arrest and inhibit the PI3K/AKT/mTOR axis. In vivo experiments showed that safranal could inhibit GBM cell growth alone and in combination with TMZ. Conclusion: This study revealed that safranal inhibits GBM cell growth in vivo and in vitro, promotes GBM cell apoptosis and G2/M phase arrest, inhibits the PI3K/AKT/mTOR axis and cooperate with TMZ.

20.
J Biol Chem ; 286(17): 14922-31, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21324904

RESUMO

EfeB/YcdB is a member of the dye-decolorizing peroxidase (DyP) protein family. A recent study has shown that this protein can extract iron from heme without breaking the tetrapyrrole ring. We report the crystal structure of EfeB from Escherichia coli O157 bound to heme at 1.95 Å resolution. The EfeB monomer contains two domains. The heme molecule is located in a large hydrophobic pocket in the C-terminal domain. A long loop connecting the two domains extensively interacts with the heme, which is a distinctive structural feature of EfeB homologues. A large tunnel formed by this loop and the ß-sheet of C-terminal domain provides a potential cofactor/substrate binding site. Biochemical data show that the production of protoporphyrin IX (PPIX) is closely related to the peroxidation activity. The mutant D235N keeps nearly the same activity of guaiacol peroxidase as the wild-type protein, whereas the corresponding mutation in the classic DyP protein family completely abolished the peroxidation activity. These results suggest that EfeB is a unique member of the DyP protein family. In addition, dramatically enhanced fluorescence excitation and emission of EfeB-PPIX was observed, implying this protein may be used as a red color fluorescence marker.


Assuntos
Escherichia coli O157/química , Proteínas de Escherichia coli/química , Hemeproteínas/química , Sítios de Ligação , Biocatálise , Cristalografia por Raios X , Escherichia coli O157/enzimologia , Fluorescência , Heme/química , Mutação de Sentido Incorreto , Peroxidases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA