Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 44(12): e2200965, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37082797

RESUMO

Because of the versatility of superhydrophobic materials, they have attracted a lot of attention even in power electronics, transportation, engineering, and other fields. The volume fraction of fluorinated silicon oxide nanoparticles in superhydrophobic materials is one of the most important factors. Increasing the volume fraction will decrease the stability between the coating and the hydrophobic surface. Especially, the flashover voltage of the coating gradually decreases from 10 to 35 vol.%. Meanwhile, the flashover voltage dispersion of the coating increases drastically after 30 vol.%. In order to improve the electrical properties of the superhydrophobic coating, self-assembly of surface energy differences strategy is proposed in this work. A binary filling phase of the coating is introduced by 2D boron nitride nanosheets and silicon oxide nanoparticles. Although Hexagonal boron nitride with high surface energy and low roughness, it will be spontaneously assembled and wrapped by silicon oxide nanoparticle based on surface energy differences, which forming a low surface energy filled phase. Experiment results prove that the flashover voltage of the superhydrophobic coating is optimized by the binary filling phase coating. This method offers new ideas for the selection of filling phase and application of superhydrophobic materials.


Assuntos
Compostos de Boro , Dióxido de Silício , Propriedades de Superfície , Interações Hidrofóbicas e Hidrofílicas , Dióxido de Silício/química
2.
Materials (Basel) ; 12(3)2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30708994

RESUMO

Carbon composite is widely used in various fields, including the aerospace industry, electrical engineering, transportation engineering, etc. For electrified railways, the pantograph strip utilizes carbon composite as the current collector, which might bear multiple impacts from electrical, mechanical, or thermal aspects, from unwanted arcing, rain, and other diverse operation conditions. In this paper, a thermal shock damage experiment on the carbon composite of a pantograph strip was carried out. The thermal shock processes were realized by the adoption of muffle furnace heating and water cooling. The effect of thermal shock processes on carbon strip porosity, compressive strength, electrical resistivity, and surface topography were studied. In order to verify the mechanism of thermal shock damage to the pantograph strip, the porosity of the pantograph strip is discussed in detail. The results showed that the thermal shock process increased the porosity of the carbon strip and caused reductions in compressive strength and electrical resistivity. The multiple thermal shock processes caused irreversible damage to the pantograph strip, which was attributed to the spillover and scouring of large quantities of water vapor in the pores.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA