Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 629(8010): 74-79, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693415

RESUMO

Within the family of two-dimensional dielectrics, rhombohedral boron nitride (rBN) is considerably promising owing to having not only the superior properties of hexagonal boron nitride1-4-including low permittivity and dissipation, strong electrical insulation, good chemical stability, high thermal conductivity and atomic flatness without dangling bonds-but also useful optical nonlinearity and interfacial ferroelectricity originating from the broken in-plane and out-of-plane centrosymmetry5-23. However, the preparation of large-sized single-crystal rBN layers remains a challenge24-26, owing to the requisite unprecedented growth controls to coordinate the lattice orientation of each layer and the sliding vector of every interface. Here we report a facile methodology using bevel-edge epitaxy to prepare centimetre-sized single-crystal rBN layers with exact interlayer ABC stacking on a vicinal nickel surface. We realized successful accurate fabrication over a single-crystal nickel substrate with bunched step edges of the terrace facet (100) at the bevel facet (110), which simultaneously guided the consistent boron-nitrogen bond orientation in each BN layer and the rhombohedral stacking of BN layers via nucleation near each bevel facet. The pure rhombohedral phase of the as-grown BN layers was verified, and consequently showed robust, homogeneous and switchable ferroelectricity with a high Curie temperature. Our work provides an effective route for accurate stacking-controlled growth of single-crystal two-dimensional layers and presents a foundation for applicable multifunctional devices based on stacked two-dimensional materials.

2.
Small ; : e2311729, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38415811

RESUMO

Rare earth-doped upconversion nanoparticles (UCNPs) have achieved a wide range of applications in the sensing field due to their unique anti-Stokes luminescence property, minimized background interference, excellent biocompatibility, and stable physicochemical properties. However, UCNPs-based sensing platforms still face several challenges, including inherent limitations from UCNPs such as low quantum yields and narrow absorption cross-sections, as well as constraints related to energy transfer efficiencies in sensing systems. Therefore, the construction of high-performance UCNPs-based sensing platforms is an important cornerstone for conducting relevant research. This work begins by providing a brief overview of the upconversion luminescence mechanism in UCNPs. Subsequently, it offers a comprehensive summary of the sensors' types, design principles, and optimized design strategies for UCNPs sensing platforms. More cost-effective and promising point-of-care testing applications implemented based on UCNPs sensing systems are also summarized. Finally, this work addresses the future challenges and prospects for UCNPs-based sensing platforms.

3.
Nano Lett ; 22(12): 4661-4668, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35640103

RESUMO

Confined nanospaces provide a new platform to promote catalytic reactions. However, the mechanism of catalytic enhancement in the nanospace still requires insightful exploration due to the lack of direct visualization. Here, we report operando investigations on the etching and growth of graphene in a two-dimensional (2D) confined space between graphene and a Cu substrate. We observed that the graphene layer between the Cu and top graphene layer was surprisingly very active in etching (more than 10 times faster than the etching of the top graphene layer). More strikingly, at a relatively low temperature (∼530 °C), the etched carbon radicals dissociated from the bottom layer, in turn feeding the growth of the top graphene layer with a very high efficiency. Our findings reveal the in situ dynamics of the anomalous confined catalytic processes in 2D confined spaces and thus pave the way for the design of high-efficiency catalysts.

4.
Nat Mater ; 20(2): 202-207, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32958881

RESUMO

The integrated in-plane growth of graphene nanoribbons (GNRs) and hexagonal boron nitride (h-BN) could provide a promising route to achieve integrated circuitry of atomic thickness. However, fabrication of edge-specific GNRs in the lattice of h-BN still remains a significant challenge. Here we developed a two-step growth method and successfully achieved sub-5-nm-wide zigzag and armchair GNRs embedded in h-BN. Further transport measurements reveal that the sub-7-nm-wide zigzag GNRs exhibit openings of the bandgap inversely proportional to their width, while narrow armchair GNRs exhibit some fluctuation in the bandgap-width relationship. An obvious conductance peak is observed in the transfer curves of 8- to 10-nm-wide zigzag GNRs, while it is absent in most armchair GNRs. Zigzag GNRs exhibit a small magnetic conductance, while armchair GNRs have much higher magnetic conductance values. This integrated lateral growth of edge-specific GNRs in h-BN provides a promising route to achieve intricate nanoscale circuits.

5.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293554

RESUMO

Doublesex (Dsx) is a polymorphic transcription factor of the DMRTs family, which is involved in male sex trait development and controls sexual dimorphism at different developmental stages in arthropods. However, the transcriptional regulation of the Dsx gene is largely unknown in decapods. In this study, we reported the cDNA sequence of PmDsx in Penaeus monodon, which encodes a 257 amino acid polypeptide. It shared many similarities with Dsx homologs and has a close relationship in the phylogeny of different species. We demonstrated that the expression of the male sex differentiation gene Dsx was predominantly expressed in the P. monodon testis, and that PmDsx dsRNA injection significantly decreased the expression of the insulin-like androgenic gland hormone (IAG) and male sex-determining gene while increasing the expression of the female sex-determining gene. We also identified a 5'-flanking region of PmIAG that had two potential cis-regulatory elements (CREs) for the PmDsx transcription. Further, the dual-luciferase reporter analysis and truncated mutagenesis revealed that PmDsx overexpression significantly promoted the transcriptional activity of the PmIAG promoter via a specific CRE. These results suggest that PmDsx is engaged in male reproductive development and positively regulates the transcription of the PmIAG by specifically binding upstream of the promoter of the PmIAG. It provides a theoretical basis for exploring the sexual regulation pathway and evolutionary dynamics of Dmrt family genes in P. monodon.


Assuntos
Insulinas , Penaeidae , Animais , Masculino , Feminino , Penaeidae/genética , Sequência de Aminoácidos , DNA Complementar , Sequência de Bases , Filogenia , Fatores de Transcrição/genética , Hormônios , Aminoácidos/genética , Insulinas/genética
6.
Anal Chim Acta ; 1310: 342705, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811142

RESUMO

BACKGROUND: Reliability and robustness have been recognized as key challenges for Surface-enhanced Raman scattering (SERS) analytical techniques. Quantifying the concentration of an analyte using a single characteristic peak from SERS has been a controversial topic because the Raman signal is susceptible to highly concentrated electromagnetic hotspots, inhomogeneity of SERS substrate, or non-standardization of measurement conditions. Ratiometric SERS strategies have been demonstrated as a promising solution to effectively balance and compensate for signal fluctuations caused by matrix heterogeneity. However, it is not easy to construct ratiometric SERS sensors with monitoring the ratio of two different signal intensities for target analysis. RESULTS: An attempt has been made to develop a novel ratiometric biosensor that can be applied to detect okadaic acid (OA). Aptamer-anchored magnetic particles were first combined with gold-tagged short complementary DNA (Au-cDNA) to create heterogeneous nanostructures. When the target was present, the Au-cDNA was dissociated from nanostructures, and 4-nitrothiophenol (4-NTP) was initiated to reduce to 4-aminothiophenol (4-ATP) in the presence of hydrogen sources. The SERS ratio change of 4-NTP and 4-ATP was finally detected by AuNPs-coated film. OA was successfully quantified, and the detection limit was as low as 2.4524 ng/mL. The constructed biosensor had good stability and reproducibility with a relative standard deviation of less than 4.47%. The proposed method used gold nanoparticles as an intermediate to achieve catalytic signal amplification and subsequently increased the sensitivity of the biosensor. SIGNIFICANCE AND NOVELTY: Catalytic reaction-based ratiometric SERS biosensors combine the multiple advantages of catalytic signal amplification and signal self-calibration and provide new insights into the development of stable, reproducible, and reliable SERS detection techniques. This ratiometric SERS technique offered a universal method that is anticipated to be applicable for the detection of other targets by substituting the aptamer.


Assuntos
Técnicas Biossensoriais , Ouro , Nanopartículas Metálicas , Ácido Okadáico , Análise Espectral Raman , Análise Espectral Raman/métodos , Ouro/química , Técnicas Biossensoriais/métodos , Ácido Okadáico/análise , Nanopartículas Metálicas/química , Aptâmeros de Nucleotídeos/química , Contaminação de Alimentos/análise , Limite de Detecção , Análise de Alimentos/métodos , Propriedades de Superfície
7.
Sci Data ; 11(1): 197, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351104

RESUMO

The South China Sea (SCS) is a marginal sea characterized by strong land-sea biogeochemical interactions. SCS has a distinctive landscape with a multitude of seamounts in its basin. Seamounts create "seamount effects" that influence the diversity and distribution of planktonic microorganisms in the surrounding oligotrophic waters. Although the vertical distribution and community structure of marine microorganisms have been explored in certain regions of the global ocean, there is a lack of comprehensive microbial genomic surveys for uncultured microorganisms in SCS, particularly in the seamount regions. Here, we employed a metagenomic approach to study the uncultured microbial communities sampled from the Xianbei seamount region to the North Coast waters of SCS. A total of 1887 non-redundant prokaryotic metagenome-assembled genomes (MAGs) were reconstructed, of which, 153 MAGs were classified as high-quality MAGs based on the MIMAG standards. The community structure and genomic information provided by this dataset could be used to analyze microbial distribution and metabolism in the SCS.


Assuntos
Metagenoma , Microbiota , Microbiologia da Água , China , Genômica , Metagenômica , Oceanos e Mares
8.
Nat Commun ; 15(1): 4130, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755189

RESUMO

Compared to transition metal dichalcogenide (TMD) monolayers, rhombohedral-stacked (R-stacked) TMD bilayers exhibit remarkable electrical performance, enhanced nonlinear optical response, giant piezo-photovoltaic effect and intrinsic interfacial ferroelectricity. However, from a thermodynamics perspective, the formation energies of R-stacked and hexagonal-stacked (H-stacked) TMD bilayers are nearly identical, leading to mixed stacking of both H- and R-stacked bilayers in epitaxial films. Here, we report the remote epitaxy of centimetre-scale single-crystal R-stacked WS2 bilayer films on sapphire substrates. The bilayer growth is realized by a high flux feeding of the tungsten source at high temperature on substrates. The R-stacked configuration is achieved by the symmetry breaking in a-plane sapphire, where the influence of atomic steps passes through the lower TMD layer and controls the R-stacking of the upper layer. The as-grown R-stacked bilayers show up-to-30-fold enhancements in carrier mobility (34 cm2V-1s-1), nearly doubled circular helicity (61%) and interfacial ferroelectricity, in contrast to monolayer films. Our work reveals a growth mechanism to obtain stacking-controlled bilayer TMD single crystals, and promotes large-scale applications of R-stacked TMD.

9.
Science ; 385(6704): 99-104, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38963849

RESUMO

Rhombohedral-stacked transition-metal dichalcogenides (3R-TMDs), which are distinct from their hexagonal counterparts, exhibit higher carrier mobility, sliding ferroelectricity, and coherently enhanced nonlinear optical responses. However, surface epitaxial growth of large multilayer 3R-TMD single crystals is difficult. We report an interfacial epitaxy methodology for their growth of several compositions, including molybdenum disulfide (MoS2), molybdenum diselenide, tungsten disulfide, tungsten diselenide, niobium disulfide, niobium diselenide, and molybdenum sulfoselenide. Feeding of metals and chalcogens continuously to the interface between a single-crystal Ni substrate and grown layers ensured consistent 3R stacking sequence and controlled thickness from a few to 15,000 layers. Comprehensive characterizations confirmed the large-scale uniformity, high crystallinity, and phase purity of these films. The as-grown 3R-MoS2 exhibited room-temperature mobilities up to 155 and 190 square centimeters per volt second for bi- and trilayers, respectively. Optical difference frequency generation with thick 3R-MoS2 showed markedly enhanced nonlinear response under a quasi-phase matching condition (five orders of magnitude greater than monolayers).

10.
Science ; 384(6700): 1100-1104, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843317

RESUMO

One-dimensional transition metal dichalcogenides exhibiting an enhanced bulk photovoltaic effect have the potential to exceed the Shockley-Queisser limit efficiency in solar energy harvest within p-n junction architectures. However, the collective output of these prototype devices remains a challenge. We report on the synthesis of single-crystalline WS2 ribbon arrays with defined chirality and coherent polarity through an atomic manufacturing strategy. The chirality of WS2 ribbon was defined by substrate couplings into tunable armchair, zigzag, and chiral species, and the polarity direction was determined by the ribbon-precursor interfacial energy along a coherent direction. A single armchair ribbon showed strong bulk photovoltaic effect and the further integration of ~1000 aligned ribbons with coherent polarity enabled upscaling of the photocurrent.

11.
J Hazard Mater ; 458: 132025, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37453351

RESUMO

Exposure to endocrine-disrupting chemicals (EDCs) can lead to detrimental impacts on human health, making their detection a critical issue. A novel approach utilizing on-chip microfluidic biosensors was developed for the simultaneous detection of two EDCs, namely, bisphenol A (BPA) and diethylstilbestrol (DES), based on upconversion nanoparticles doped with thulium (Tm) and erbium (Er), respectively. From the perspective of single nanoparticles, the construction of an active core-inert shell structure enhanced the luminescence of nanoparticles by 2.28-fold (Tm) and 1.72-fold (Er). From the perspective of the nanoparticle population, the study exploited an aptamer-mediated bridging flocculation mechanism and effectively enhanced the upconversion luminescence of biosensors by 8.94-fold (Tm) and 7.10-fold (Er). A chip with 138 tangential semicircles or quarter-circles was designed and simulated to facilitate adequate mixing, reaction, magnetic separation, and detection conditions. The on-chip microfluidic biosensor demonstrated exceptional capabilities for the simultaneous detection of BPA and DES with ultrasensitive detection limits of 0.0076 µg L-1, and 0.0131 µg L-1, respectively. The first reported aptamer-mediated upconversion nanoparticle bridging flocculation provided enhanced luminescence and detection sensitivity for biosensors, as well as offering a new perspective to address the instability of nanobiosensors.


Assuntos
Técnicas Biossensoriais , Disruptores Endócrinos , Nanopartículas , Humanos , Luminescência , Floculação , Microfluídica , Nanopartículas/química , Érbio/química
12.
J Agric Food Chem ; 71(1): 857-866, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36562196

RESUMO

Reproducibility and stability are important indicators for the evaluation of quantitative sensing methods based on surface-enhanced Raman scattering (SERS) technology. Developing a SERS substrate with self-calibration capabilities is vital for effectively quantifying targets. In this work, a competitive ratiometric SERS aptasensor was developed. 4-Aminothiophenol as an internal standard (IS) was embedded in the substrate followed by gradually loading with the aptamer and methylene blue functionalizing of the complementary sequences of the aptamer (MB-cDNA). Recognition and binding of the target to the aptamer resulted in the shedding of MB-cDNA after magnetic separation reducing the SERS signal of MB, allowing for the ratiometric determination of the target based on the constant intensity from the IS. For the selective detection of okadaic acid (OA), a good negative correlation was achieved between the SERS ratiometric intensity and OA concentration in the range of 0.5-100 ng/mL. The magnetic separation strategy effectively simplifies the production steps of the aptasensor, and the ratiometric strategy effectively improved the reproducibility and stability of the OA sensing. This ratiometric aptasensor has been successfully employed to detect OA in food and environmental samples and is expected to be extended to detect other targets.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Nanopartículas Metálicas , Aptâmeros de Nucleotídeos/química , DNA Complementar , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Reprodutibilidade dos Testes , Ouro/química , Limite de Detecção
13.
Food Chem ; 414: 135705, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36808025

RESUMO

Surface-enhanced Raman spectroscopy (SERS) and deep learning models were adopted for detecting zearalenone (ZEN) in corn oil. First, gold nanorods were synthesized as a SERS substrate. Second, the collected SERS spectra were augmented to improve the generalization ability of regression models. Third, five regression models, including partial least squares regression (PLSR), random forest regression (RFR), Gaussian progress regression (GPR), one-dimensional convolutional neural networks (1D CNN), and two-dimensional convolutional neural networks (2D CNN), were developed. The results showed that 1D CNN and 2D CNN models possessed the best prediction performance, i.e., determination of prediction set (RP2) = 0.9863 and 0.9872, root mean squared error of prediction set (RMSEP) = 0.2267 and 0.2341, ratio of performance to deviation (RPD) = 6.548 and 6.827, limit of detection (LOD) = 6.81 × 10-4 and 7.24 × 10-4 µg/mL. Therefore, the proposed method offers an ultrasensitive and effective strategy for detecting ZEN in corn oil.


Assuntos
Aprendizado Profundo , Zearalenona , Análise Espectral Raman/métodos , Óleo de Milho , Redes Neurais de Computação
14.
Nat Commun ; 14(1): 592, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36737606

RESUMO

The great challenge for the growth of non-centrosymmetric 2D single crystals is to break the equivalence of antiparallel grains. Even though this pursuit has been partially achieved in boron nitride and transition metal dichalcogenides (TMDs) growth, the key factors that determine the epitaxy of non-centrosymmetric 2D single crystals are still unclear. Here we report a universal methodology for the epitaxy of non-centrosymmetric 2D metal dichalcogenides enabled by accurate time sequence control of the simultaneous formation of grain nuclei and substrate steps. With this methodology, we have demonstrated the epitaxy of unidirectionally aligned MoS2 grains on a, c, m, n, r and v plane Al2O3 as well as MgO and TiO2 substrates. This approach is also applicable to many TMDs, such as WS2, NbS2, MoSe2, WSe2 and NbSe2. This study reveals a robust mechanism for the growth of various 2D single crystals and thus paves the way for their potential applications.

15.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121854, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36162210

RESUMO

Peanuts are nutritionally valuable for both humans and animals due to their high content of flavonoids and phenolic compounds. Herein, we explored the potential of near-infrared (NIR) spectroscopy coupled with efficient variable selection algorithms for quantitative prediction of total flavonoids (TFC) and total phenolics content (TPC) in raw peanut seeds. Spectrophotometrically, the reference results of the extracts for TFC and TPC were analysed and recorded. The integrated application of the synergy interval coupled competitive adaptive reweighted sampling-partial least squares (Si-CARS-PLS) were used for prediction. The model performance appraisal was based on the correlation coefficients of prediction (Rp), root mean square error of prediction (RMSEP), and residual predictive deviation (RPD). The Si-CARS-PLS performed optimally for TFC (Rp = 0.9137, RPD = 2.49) and TPC (Rp = 0.9042, RPD = 2.31), respectively. Moreover, the model (Si-CARS-PLS) was found to have an acceptable fit for the analytes under study since it achieved 0.88 for TFC and 0.86 for TPC based on the external validation. Therefore, these results showed that NIR coupled with Si-CARS-PLS could be used for the quantitative prediction of flavonoids and phenolic contents in raw peanut seeds.


Assuntos
Arachis , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Flavonoides/análise , Análise dos Mínimos Quadrados , Fenóis/análise , Algoritmos , Sementes/química
16.
Nat Commun ; 14(1): 6421, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828069

RESUMO

Controllable growth of two-dimensional (2D) single crystals on insulating substrates is the ultimate pursuit for realizing high-end applications in electronics and optoelectronics. However, for the most typical 2D insulator, hexagonal boron nitride (hBN), the production of a single-crystal monolayer on insulating substrates remains challenging. Here, we propose a methodology to realize the facile production of inch-sized single-crystal hBN monolayers on various insulating substrates by an atomic-scale stamp-like technique. The single-crystal Cu foils grown with hBN films can stick tightly (within 0.35 nm) to the insulating substrate at sub-melting temperature of Cu and extrude the hBN grown on the metallic surface onto the insulating substrate. Single-crystal hBN films can then be obtained by removing the Cu foil similar to the stamp process, regardless of the type or crystallinity of the insulating substrates. Our work will likely promote the manufacturing process of fully single-crystal 2D material-based devices and their applications.

17.
Anal Chim Acta ; 1209: 339832, 2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35569867

RESUMO

The widespread applications of sulfur dioxide and its derivatives is a double-edged sword in terms of ensuring environmental and food safety. In this work, a recyclable flexible upconversion-luminescence sensor was developed for the determination of sulfite in environmental and foodstuff samples. The upconversion nanoparticles (UCNPs) were uniformly doped with polydimethylsiloxane (PDMS) prepolymer and moulded to prepare a flexible upconversion-luminescence substrate, which was further modified with pararosaniline (PRA) dye based on the typical carbodiimide coupling procedure. The principle of the work was based on the inner filter effect (IFE) mechanism between PRA dye and UCNPs. In the presence of target sulfite ions, it selectively binds to PRA moieties fixed on the surface of the flexible sensor, resulting in its bleaching and restoration of the upconversion fluorescence. Under the optimized conditions, a linear response for sulfite concentration in the range of 10-100 nM was obtained. The limit of detection was calculated as 2.24 nM, and the proposed sensor was successfully regenerated and recycled six times. The method was applied in real rainwater samples with spiked recoveries in the range of 94.85%-99.39%, and the coefficient of variation ranged from 1.65% to 4.93%. Hence, the proposed flexible upconversion-luminescence sensor held the attractive potential for efficient sulfite determination in real environmental and food samples.


Assuntos
Luminescência , Nanopartículas , Fluorescência , Íons , Sulfitos
18.
Anal Methods ; 14(31): 2989-2999, 2022 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-35916118

RESUMO

Given the nutritional importance of peanuts, this study examined the free amino acid (FAA) and crude protein (CP) content in raw peanut seeds. Near-infrared spectroscopy (NIRS) was employed in combination with variable selection algorithms after successful reference data analysis using colorimetric and Kjeldahl methods. Ensuing the application of partial least squares (PLS) as a full spectral model, the genetic algorithm (GA), bootstrapping soft shrinkage (BOSS), uninformative variable elimination (UVE), and random frog (RF) models were tested and assessed. A comparison of correlation coefficients of prediction (Rp), root mean square error of prediction (RMSEP), and residual predictive deviation (RPD) was performed to appraise the performance of the built models. Using RF-PLS, an unsurpassed outcome was achieved for FAA (Rp = 0.937, RPD = 3.38) and CP (Rp = 0.9261, RPD = 3.66). These findings demonstrated that NIR in combination with RF-PLS could be utilized for quantitative, rapid, and nondestructive prediction of FAA and CP in raw peanut seed samples.


Assuntos
Arachis , Espectroscopia de Luz Próxima ao Infravermelho , Aminoácidos , Arachis/química , Calibragem , Sementes , Espectroscopia de Luz Próxima ao Infravermelho/métodos
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 267(Pt 2): 120624, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34824004

RESUMO

Two key parameters (acidity and peroxide content) for evaluation of the oxidation level in crude peanut oil have been studied. The titrimetric analysis was carried out for reference data collection. Then, near-infrared spectroscopy in combination with chemometric algorithms such as partial least square (PLS); bootstrapping soft shrinkage-PLS (BOSS-PLS); uninformative variable elimination-PLS (UVE-PLS), and competitive-adaptive reweighted sampling-PLS (CARS-PLS) were attempted and assessed. The correlation coefficients of prediction (Rp), root mean square error of prediction (RMSEP) and residual predictive deviation (RPD) were used to individually evaluate the performance of the models. Optimum results were noticed with CARS-PLS, 0.9517 ≤ Rc ≤ 0.9670, 0.9503 ≤ Rp ≤ 0.9637, 0.0874 ≤ RMSEP ≤ 0.5650, and 3.14 ≤ RPD ≤ 3.64. Therefore, this affirmed that the near-infrared spectroscopy coupled with CARS-PLS could be used as a simple, fast, and non-invasive technique for quantifying acid value and peroxide value in crude peanut oil.


Assuntos
Petróleo , Espectroscopia de Luz Próxima ao Infravermelho , Algoritmos , Arachis , Análise dos Mínimos Quadrados , Análise Multivariada , Óleo de Amendoim , Peróxidos
20.
Food Chem ; 339: 127843, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32889134

RESUMO

Thiabendazole (TBZ) is extensively used in agriculture to control molds; residue of TBZ may pose a threat to humans. Herein, surface-enhanced Raman spectroscopy (SERS) coupled variable selected regression methods have been proposed as simple and rapid TBZ quantification technique. The nonlinear correlation between the TBZ and SERS data was first diagnosed by augmented partial residual plots method and calculated by runs test. Au@Ag NPs with strong enhancement factor (EF = 4.07 × 106) of Raman signal was used as SERS active material to collect spectra from TBZ. Subsequently, three nonlinear regression models were comparatively investigated and the competitive adaptive reweighted sampling-extreme learning machine (CARS-ELM) achieved a higher correlation coefficient (Rp2 = 0.9406) and the lower root-mean-square-error of prediction (RMSEP = 0.5233 mg/L). Finally, recoveries of TBZ in apple samples were 83.02-93.54% with relative standard deviation (RSD) value < 10%. Therefore, SERS coupled CARS-ELM could be employed as a rapid and sensitive approach for TBZ detection in Fuji apples.


Assuntos
Algoritmos , Análise de Alimentos/métodos , Malus/química , Análise Espectral Raman/métodos , Tiabendazol/análise , Análise de Alimentos/estatística & dados numéricos , Contaminação de Alimentos/análise , Fungicidas Industriais/análise , Humanos , Nanopartículas Metálicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA