RESUMO
Colitis-associated colorectal cancer (CAC) frequently develops in patients with inflammatory bowel disease (IBD) who have been exposed to a prolonged state of chronic inflammation. The investigation of pharmacological agents and their mechanisms to prevent precancerous lesions and inhibit their progression remains a significant focus and challenge in CAC research. Previous studies have demonstrated that vitexin effectively mitigates CAC, however, its precise mechanism of action warrants further exploration. This study reveals that the absence of the Vitamin D receptor (VDR) accelerates the progression from chronic colitis to colorectal cancer. Our findings indicate that vitexin can specifically target the VDR protein, facilitating its translocation into the cell nucleus to exert transcriptional activity. Additionally, through a co-culture model of macrophages and cancer cells, we observed that vitexin promotes the polarization of macrophages towards the M1 phenotype, a process that is dependent on VDR. Furthermore, ChIP-seq analysis revealed that vitexin regulates the transcriptional activation of phenazine biosynthesis-like domain protein (PBLD) via VDR. ChIP assays and dual luciferase reporter assays were employed to identify the functional PBLD regulatory region, confirming that the VDR/PBLD pathway is critical for vitexin-mediated regulation of macrophage polarization. Finally, in a mouse model with myeloid VDR gene knockout, we found that the protective effects of vitexin were abolished in mid-stage CAC. In summary, our study establishes that vitexin targets VDR and modulates macrophage polarization through the VDR/PBLD pathway, thereby alleviating the transition from chronic colitis to colorectal cancer.
Assuntos
Apigenina , Neoplasias Colorretais , Macrófagos , Receptores de Calcitriol , Apigenina/farmacologia , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/agonistas , Receptores de Calcitriol/genética , Animais , Camundongos , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Modelos Animais de Doenças , Colite/tratamento farmacológico , Colite/patologia , Colite/metabolismo , Colite/induzido quimicamente , Progressão da Doença , Células RAW 264.7 , Camundongos Endogâmicos C57BLRESUMO
Neoadjuvant chemoradiotherapy (NCRT) followed by surgery is a standard treatment for locally advanced esophageal squamous cell carcinomas (ESCCs). However, the evolution of genome and immunogenome in ESCCs driven by NCRT remains incompletely elucidated. We performed whole-exome sequencing of 51 ESCC tumors collected before and after NCRT, 36 of which were subjected to transcriptome sequencing. Clonal analysis identified clonal extinction in 13 ESCC patients wherein all pre-NCRT clones disappeared after NCRT, and clonal persistence in 9 patients wherein clones endured following NCRT. The clone-persistent patients showed higher pre-NCRT genomic intratumoral heterogeneity and worse prognosis than the clone-extinct ones. In contrast to the clone-extinct patients, the clone-persistent patients demonstrated a high proportion of subclonal neoantigens within pre-treatment specimens. Transcriptome analysis revealed increased immune infiltrations and up-regulated immune-related pathways after NCRT, especially in the clone-extinct patients. The number of T cell receptor-neoantigen interactions was higher in the clone-extinct patients than in the clone-persistent ones. The decrease in T cell repertoire evenness positively correlated to the decreased number of clonal neoantigens after NCRT, especially in the clone-extinct patients. In conclusion, we identified two prognosis-related clonal dynamic modes driven by NCRT in ESCCs. This study extended our knowledge of the ESCC genome and immunogenome evolutions driven by NCRT.
Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Terapia Neoadjuvante , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/terapia , Carcinoma de Células Escamosas do Esôfago/imunologia , Carcinoma de Células Escamosas do Esôfago/patologia , Terapia Neoadjuvante/métodos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Prognóstico , Sequenciamento do Exoma , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Perfilação da Expressão Gênica , Transcriptoma , Quimiorradioterapia/métodos , AdultoRESUMO
BACKGROUND: The anti-PD-L1 antibody durvalumab has been approved for use in first-line advanced biliary duct cancer (ABC). So far, predictive biomarkers of efficacy are lacking. METHODS: ABC patients who underwent gemcitabine-based chemotherapy with or without durvalumab were retrospectively enrolled, and their baseline clinical pathological indices were retrieved from medical records. Overall (OS) and progression free survival (PFS) were calculated and analyzed. The levels of peripheral biomarkers from 48 patients were detected with assay kits including enzyme-linked immunosorbent assay. Genomic alterations in 27 patients whose tumor tissues were available were depicted via targeted next-generation sequencing. RESULTS: A total of 186 ABC patients met the inclusion criteria between January 2020 and December 2022 were finally enrolled in this study. Of these, 93 patients received chemotherapy with durvalumab and the rest received chemotherapy alone. Durvalumab plus chemotherapy demonstrated significant improvements in PFS (6.77 vs. 4.99 months; hazard ratio 0.65 [95% CI 0.48-0.88]; P = 0.005), but not OS (14.29 vs. 13.24 months; hazard ratio 0.91 [95% CI 0.62-1.32]; P = 0.608) vs. chemotherapy alone in previously untreated ABC patients. The objective response rate (ORR) in patients receiving chemotherapy with and without durvalumab was 19.1% and 7.8%, respectively. Pretreatment sPD-L1, CSF1R and OPG were identified as significant prognosis predictors in patients receiving durvalumab. ADGRB3 and RNF43 mutations were enriched in patients who responded to chemotherapy plus durvalumab and correlated with superior survival. CONCLUSION: This retrospective real-world study confirmed the clinical benefit of durvalumab plus chemotherapy in treatment-naïve ABC patients. Peripheral sPD-L1 and CSF1R are promising prognostic biomarkers for this therapeutic strategy. Presence of ADGRB3 or RNF43 mutations could improve the stratification of immunotherapy outcomes, but further studies are warranted to explore the underlying mechanisms.
Assuntos
Anticorpos Monoclonais , Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias dos Ductos Biliares , Biomarcadores Tumorais , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Estudos Retrospectivos , Idoso , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais/administração & dosagem , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/mortalidade , Neoplasias dos Ductos Biliares/genética , Adulto , PrognósticoRESUMO
miRNAs function as negative regulators that significantly influence plant growth and stress responses. Within rice and other monocotyledonous plants, miR1432 plays a conserved role in seed development and disease resistance. However, its involvement in the response to abiotic stresses remains unclear. Our study aimed to elucidate this mechanism by predicting the targeting of the rice P-type IIB Ca2+ ATPase gene OsACAs by miR1432 and identifying its cleavage sites via 5'RACE. We observed induced expression of miR1432 and its target gene, OsACA6, under abiotic stresses. Overexpression (OX) of miR1432 and suppression of OsACA6 resulted in reduced cold, salt, and drought tolerance, while OsACA6 suppression/knockout and OX had opposite effects on cold tolerance. Additionally, miR1432 may target other OsACA6 homologs. RNA-sequencing data highlighted the differential expression of stress-related genes in miR1432-overexpressing rice. Furthermore, miR1432-overexpressing rice exhibited weakened vigor, dwarfism, yellowing leaves and reduced fertility. Collectively, our results strongly suggest that miR1432 not only negatively modulates abiotic stress tolerance by suppressing Ca2+ ATPase gene(s) but also influences plant growth and development.
Assuntos
Regulação da Expressão Gênica de Plantas , MicroRNAs , Oryza , MicroRNAs/genética , MicroRNAs/metabolismo , Oryza/genética , Oryza/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas , Temperatura Baixa , Secas , RNA de Plantas/genética , ATPases Transportadoras de Cálcio/genética , ATPases Transportadoras de Cálcio/metabolismoRESUMO
Over the years, there has been significant interest in PEGylated lipid-based nanocarriers within the drug delivery field. The inevitable interplay between the nanocarriers and plasma protein plays a pivotal role in their in vivo biological fate. Understanding the factors influencing lipid-based nanocarrier and protein corona interactions is of paramount importance in the design and clinical translation of these nanocarriers. Herein, discoid-shaped lipid nanodiscs (sNDs) composed of different phospholipids with varied lipid tails and head groups were fabricated. We investigated the impact of phospholipid components on the interaction between sNDs and serum proteins, particle stability, and biodistribution. The results showed that all of these lipid nanodiscs remained stable over a 15 day storage period, while their stability in the blood serum demonstrated significant differences. The sND composed of POPG exhibited the least stability due to its potent complement activation capability, resulting in rapid blood clearance. Furthermore, a negative correlation between the complement activation capability and serum stability was identified. Pharmacokinetic and biodistribution experiments indicated that phospholipid composition did not influence the capability of sNDs to evade the accelerated blood clearance phenomenon. Complement deposition on the sND was inversely associated with the area under the curve. Additionally, all lipid nanodiscs exhibited dominant adsorption of apolipoprotein. Remarkably, the POPC-based lipid nanodisc displayed a significantly higher deposition of apolipoprotein E, contributing to an obvious brain distribution, which provides a promising tool for brain-targeted drug delivery.
Assuntos
Nanopartículas , Fosfolipídeos , Coroa de Proteína , Coroa de Proteína/química , Animais , Fosfolipídeos/química , Distribuição Tecidual , Camundongos , Nanopartículas/química , Portadores de Fármacos/química , Nanoestruturas/química , Masculino , Ativação do Complemento/efeitos dos fármacos , Lipídeos/química , Sistemas de Liberação de Medicamentos/métodos , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/químicaRESUMO
BACKGROUND: Asthenozoospermia is a major factor contributing to male infertility. The mitochondrial sheath (MS), an important organelle in the midpiece of spermatozoa, is crucial to sperm motility. ARMC12 is a mitochondrial peripheral membrane protein. Deletion of Armc12 impairs the arrangement of MS and causes infertility in mice. However, the role of ARMC12 in human asthenozoospermia remains unknown. OBJECTIVE: To study the genetic defects in patients with asthenozoospermia. METHODS: A total of 125 patients with asthenozoospermia and 120 men with proven fertility were recruited. Whole-exome sequencing and Sanger sequencing were performed for genetic analysis. Papanicolaou staining, HE staining, immunofluorescent staining, transmission electron microscopy and field emission scanning electron microscopy were employed to observe the morphological and structural defects of the spermatozoa and testes. Armc12-knockout mice were generated using the CRISPR-Cas9 system. Intracytoplasmic sperm injection was used to treat the patients. RESULTS: Biallelic ARMC12 mutations were identified in three patients, including homozygous mutations in two siblings from a consanguineous family and compound heterozygous mutations in one sporadic patient. ARMC12 is mainly expressed in the midpiece of elongated and late spermatids in the human testis. The patients' spermatozoa displayed multiple midpiece defects, including absent MS and central pair, scattered or forked axoneme and incomplete plasma membrane. Spermatozoa from Armc12-/- mice showed parallel defects in the midpiece. Moreover, two patients were treated with intracytoplasmic sperm injection and achieved good outcomes. CONCLUSION: Our findings prove for the first time that defects in ARMC12 cause asthenozoospermia and multiple midpiece defects in humans.
Assuntos
Proteínas do Domínio Armadillo , Astenozoospermia , Infertilidade Masculina , Animais , Humanos , Masculino , Camundongos , Astenozoospermia/genética , Infertilidade Masculina/genética , Camundongos Knockout , Mutação , Sêmen , Motilidade dos Espermatozoides/genética , Espermatozoides , Testículo , Proteínas do Domínio Armadillo/genéticaRESUMO
The global CO2 concentration is predicted to reach 700 µmol·mol-1 by the end of this century. Phoebe bournei (Hemsl.) Yang is a precious timber species and is listed as a national secondary protection plant in China. P. bournei seedlings show obvious photosynthetic decline when grown long-term under an elevated CO2 concentration (eCO2, EC). This decline can be alleviated by high nitrate or ammonium applications. However, the underlying mechanisms have not yet been elucidated. We performed transcriptomic and proteomic analyses of P. bournei of seedlings grown under an ambient CO2 concentration (AC) and applied with either a moderate level of nitrate (N), a high level of nitrate (hN), or a moderate level of ammonium (A) and compared them with those of seedlings grown under eCO2 (i.e., AC_N vs EC_N, AC_hN vs EC_hN, AC_A vs EC_A) to identify differentially expressed genes (DEGs) and differentially expressed proteins (DEPs). We identified 4528 (AC_N vs EC_N), 1378 (AC_hN vs EC_hN), and 252 (AC_A vs EC_A) DEGs and 230, 514, and 234 DEPs, respectively, of which 59 specific genes and 21 specific proteins were related to the regulation of photosynthesis by nitrogen under eCO2. A combined transcriptomic and proteomic analysis identified 7 correlation-DEGs-DEPs genes. These correlation-DEGs-DEPs genes revealed crucial pathways involved in glyoxylate and dicarboxylate metabolism and nitrogen metabolism. The rbcS and glnA correlation-DEGs-DEPs genes were enriched in these two metabolisms. We propose that the rbcS and glnA correlation-DEGs-DEPs genes play an important role in photosynthetic decline and nitrogen regulation. High nitrate or ammonium applications alleviated the downregulation of glnA and rbcS and, hence, alleviated photosynthetic decline. The results of this study provide directions for the screening of germplasm resources and molecular breeding of P. bournei, which is tolerant to elevated CO2 concentrations. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01481-2.
RESUMO
BACKGROUND: SHR7390 is a novel, selective MEK1/2 inhibitor. Here, we report results from two phase I trials conducted to evaluate the tolerability, safety and antitumor activity of SHR7390 monotherapy for advanced solid tumors and SHR7390 plus camrelizumab for treatment-refractory advanced or metastatic colorectal cancer (CRC). PATIENTS AND METHODS: Patients received SHR7390 alone or combined with fixed-dose camrelizumab (200 mg every 2 weeks) in an accelerated titration scheme to determine the maximum tolerated dose (MTD). A recommended dose for expansion was determined based on the safety and tolerability of the dose-escalation stage. The primary endpoints were dose limiting toxicity (DLT) and MTD. RESULTS: In the SHR7390 monotherapy trial, 16 patients were enrolled. DLTs were reported in the 1.0 mg cohort, and the MTD was 0.75 mg. Grade ≥3 treatment-related adverse events (TRAEs) were recorded in 4 patients (25.0%). No patients achieved objective response. In the SHR7390 combination trial, 22 patients with CRC were enrolled. One DLT was reported in the 0.5 mg cohort and the MTD was not reached. Grade ≥3 TRAEs were observed in 8 patients (36.4%), with the most common being rash (n=4). One grade 5 TRAE (increased intracranial pressure) occurred. Five patients (22.7%) achieved partial response, including one of 3 patients with MSS/MSI-L and BRAF mutant tumors, one of 15 patients with MSS/MSI-L and BRAF wild type tumors, and all 3 patients with MSI-H tumors. CONCLUSIONS: SHR7390 0.5 mg plus camrelizumab showed a manageable safety profile. Preliminary clinical activity was reported regardless of MSI and BRAF status.
Assuntos
Neoplasias , Proteínas Proto-Oncogênicas B-raf , Humanos , Neoplasias/tratamento farmacológico , Anticorpos Monoclonais Humanizados/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversosRESUMO
Thallium (Tl) is a rare and extremely toxic metal whose toxicity is significantly higher than cadmium (Cd), lead (Pb) and antimony (Sb). The extensive utilization of Tl-bearing minerals, such as mining activities, has led to severe Tl pollution in a variety of natural settings, while little is known to date about its effect on the microbial diversity in paddy soils. Also, the geochemical behavior of Tl in the periodical alterations between dry and wet conditions of paddy soils remains largely unknown. Herein, the sequential extraction method and 16S rRNA gene sequence analysis were adopted to analyze Tl's migration and transformation behavior and the microbial diversity in the paddy soils with different pollution levels. The results indicated that Tl was mainly concentrated in reducible fraction, which is different from other types of soils, and may be closely attributed to the abundance of Fe-Mn (hydr)oxides in the paddy rhizospheric soils. Further analysis revealed that pH, total S, Pb, Sb, Tl and Cd were the dominant environmental factors, and the enrichment level of these potentially toxic metal(loid)s (PTMs) exerted obvious impacts on the diversity and abundance of microorganism in the rhizospheric soils, and regulating microbial community. The geochemical fractionation of Tl was closely correlated to soil microorganisms such as Fe reducing bacteria (Geothrix) and sulfate reducing bacteria (Anaerolinea), playing a critical role in Tl geochemical cycle through redox reaction. Hence, further study on microorganisms of paddy rhizospheric soils is of great significance to the countermeasures for remediating Tl-polluted paddy fields and protect the health of residents.
Assuntos
Poluentes do Solo , Tálio , Tálio/análise , Tálio/química , Tálio/toxicidade , Solo/química , Poluentes do Solo/análise , RNA Ribossômico 16S/genética , Cádmio/análise , Chumbo/análise , SulfetosRESUMO
Ferric citrate (FC) has been used as an iron fortifier and nutritional supplement, which is reported to induce colitis in rats, however the underlying mechanism remains to be elucidated. We performed a 16-week study of FC in male healthy C57BL/6 mice (nine-month-old) with oral administration of Ctr (0.9 % NaCl), 1.25 % FC (71 mg/kg/bw), 2.5 % FC (143 mg/kg/bw) and 5 % FC (286 mg/kg/bw). FC-exposure resulted in colon iron accumulation, histological alteration and reduce antioxidant enzyme activities, such as glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and total antioxidant capacity (T-AOC), together with enhanced lipid peroxidation level, including malondialdehyde (MDA) level and 4-Hydroxynonenal (4-HNE) protein expression. Exposure to FC was associated with upregulated levels of the interleukin (IL)- 6, IL-1ß, IL-18, IL-8 and tumor necrosis factor α (TNF-α), while down-regulated levels of IL-4 and IL-10. Exposure to FC was positively associated with the mRNA and protein expressions of cysteine-aspartic proteases (Caspase)- 9, Caspase-3, Bcl-2-associated X protein (Bax), while negatively associated with B-cell lymphoma 2 (Bcl2) in mitochondrial apoptosis signaling pathway. FC-exposure changed the diversity and composition of gut microbes. Additionally, the serum lipopolysaccharide (LPS) contents increased in FC-exposed groups when compared with the control group, while the expression of colonic tight junction proteins (TJPs), such as Claudin-1 and Occludin were decreased. These findings indicate that the colonic mucosal injury induced by FC-exposure are associated with oxidative stress generation, inflammation response and cell apoptosis, as well as the changes in gut microbes diversity and composition.
Assuntos
Apoptose , Colo , Compostos Férricos , Alimentos Fortificados , Microbioma Gastrointestinal , Inflamação , Estresse Oxidativo , Animais , Masculino , Camundongos , Ratos , Apoptose/efeitos dos fármacos , Colo/efeitos dos fármacos , Colo/metabolismo , Compostos Férricos/toxicidade , Alimentos Fortificados/toxicidade , Microbioma Gastrointestinal/efeitos dos fármacos , Glutationa/metabolismo , Inflamação/induzido quimicamente , Inflamação/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Ferro/metabolismo , Camundongos Endogâmicos C57BL , Superóxido Dismutase/metabolismoRESUMO
Folic acid (FA) is one of the most widely utilized small-molecule ligands for cancer targeted drug delivery. Natural IgM was recently found to avidly absorb on the surface of FA-functionalized liposomes (FA-sLip), negatively regulating the in vivo performance by efficiently activating complement. Herein, FA-functionalized lipodiscs (FA-Disc) were constructed to successfully circumvent IgM-mediated opsonization and retained binding activity with folate receptors in vivo. The FA moiety along with the bound IgM was restricted to the highly curved rim of lipodiscs, leading to IgM incapability of presenting the membrane-bound conformation to trigger complement activation. The C1q docking, C3 binding, and C5a release were blocked and accelerated blood clearance phenomenon was mitigated of FA-Disc. FA-Disc retained folate binding activity and could effectively target folate receptor positive tumors in vivo. The present study provides a useful solution to avoid the negative regulation by IgM and achieve FA-enabled targeting by exploring disc-shaped nanocarriers.
Assuntos
Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Ácido Fólico/química , Ácido Fólico/metabolismo , Humanos , Imunoglobulina M , Lipossomos/química , OpsonizaçãoRESUMO
Melanoma differentiation-associated gene 9 (MDA-9) is a small adaptor protein with tandem PDZ domains that promotes tumor progression and metastasis in various human cancers. However, it is difficult to develop drug-like small molecules with high affinity due to the narrow groove of the PDZ domains of MDA-9. Herein, we identified four novel hits targeting the PDZ1 and PDZ2 domains of MDA-9, namely PI1A, PI1B, PI2A, and PI2B, using a protein-observed nuclear magnetic resonance (NMR) fragment screening method. We also solved the crystal structure of the MDA-9 PDZ1 domain in complex with PI1B and characterized the binding poses of PDZ1-PI1A and PDZ2-PI2A, guided by transferred paramagnetic relaxation enhancement. The protein-ligand interaction modes were then cross-validated by the mutagenesis of the MDA-9 PDZ domains. Competitive fluorescence polarization experiments demonstrated that PI1A and PI2A blocked the binding of natural substrates to the PDZ1 and PDZ2 domains, respectively. Furthermore, these inhibitors exhibited low cellular toxicity, but suppressed the migration of MDA-MB-231 breast carcinoma cells, which recapitulated the phenotype of MDA-9 knockdown. Our work has paved the way for the development of potent inhibitors using structure-guided fragment ligation in the future.
Assuntos
Neoplasias da Mama , Melanoma , Feminino , Humanos , Proteínas Adaptadoras de Transdução de Sinal , Diferenciação Celular , Domínios PDZ , Ligação ProteicaRESUMO
In recent years, olfactory dysfunction has attracted increasingly more attention as a hallmark symptom of neurodegenerative diseases (ND). Deeply understanding the molecular basis underlying the development of the olfactory bulb (OB) will provide important insights for ND studies and treatments. Now, with a genetic knockout mouse model, we show that TRIM67, a new member of the tripartite motif (TRIM) protein family, plays an important role in regulating the proliferation and development of mitral cells in the OB. TRIM67 is abundantly expressed in the mitral cell layer of the OB. The genetic deletion of TRIM67 in mice leads to excessive proliferation of mitral cells in the OB and defects in its synaptic development, resulting in reduced olfactory function in mice. Finally, we show that TRIM67 may achieve its effect on mitral cells by regulating the Semaphorin 7A/Plexin C1 (Sema7A/PlxnC1) signaling pathway.
Assuntos
Bulbo Olfatório , Olfato , Animais , Camundongos , Homeostase , Deleção de Genes , Proteínas com Motivo Tripartido , Proteínas do CitoesqueletoRESUMO
BACKGROUND: Phoebe bournei (P. bournei) is an important and endemic wood species in China. However, the plantation, nursing, and preservation of P. bournei are often affected by light. To investigate its physiological changes and molecular mechanism of low light tolerance, two-year-old P. bournei seedlings were subjected to different shading conditions. With the increase of light intensity in the shade, the leaf color of P. bournei seedlings became darkened, the aboveground/underground biomass significantly increased, the content of chlorophyll increased and the net photosynthetic rate significantly increased. RESULTS: de novo transcriptome analysis showed that 724 and 3,248 genes were differentially expressed due to low light intensity at T1 (35% light exposure) and T2 (10% light exposure), respectively, when compared to the controls. Furthermore, the differentially expressed genes (DEGs) were implicated in photosynthesis, nitrogen metabolism, plant hormone signal transduction, biosynthesis of secondary metabolites, and protein processing in the endoplasmic reticulum by functional enrichment analysis. Moreover, the expression of HSP, CAB, HEMA1, GSA, DVR, MYB, bHLH, PORA, CAO, GLK, and photosystem I and II complex-related genes significantly increased after low light exposure at T2 and T1. CONCLUSIONS: The present study suggests that the rapid growth of P. bournei seedlings under shading conditions may be the result of the accelerated expression of genes related to photosynthesis and chlorophyll biosynthesis, which enable plants to maintain a high photosynthesis rate even under low light conditions.
Assuntos
Lauraceae , Fotossíntese , Clorofila/metabolismo , Perfilação da Expressão Gênica , Lauraceae/genética , Fotossíntese/genética , Plântula/genética , Plântula/metabolismoRESUMO
To further reveal the active ingredients of Danshen, we systematically studied its chemical components and obtained two new lithospermic acid derivatives (compounds 1 and 2) together with five known phenylpropionic acids (compounds 3-7) from the dried rhizomes of Salvia miltiorrhiza. The structures of the two new compounds were determined by multiple spectral analyses (UV, IR, HR-ESI-MS, NMR, and ECD). In addition, the absolute configurations were established by chiral analysis and calculated and experimental circular dichroism spectra. Biological research indicated that compound 1 could significantly inhibit the proliferation of isoproterenol (ISO)-treated cardiac fibroblasts (AC16 cells), and MMP9 was found to be the most likely target of compound 1. The protein expression and mRNA levels of MMP9 were increased in ISO-induced AC16 cells, which could be reversed by treatment with compound 1. Furthermore, this treatment could alleviate the migration and activation of ISO-induced cardiac fibroblasts.
Assuntos
Salvia miltiorrhiza , Descarboxilação , Metaloproteinase 9 da Matriz , Raízes de Plantas/química , Rizoma , Salvia miltiorrhiza/químicaRESUMO
Nuclear receptor corepressor 1 (NCoR1) is a corepressor of the epigenetic regulation of gene transcription that has important functions in metabolism and inflammation, but little is known about its role in alcohol-associated liver disease (ALD). In this study, we developed mice with hepatocyte-specific NCoR1 knockout (NCoR1Hep-/-) using the albumin-Cre/LoxP system and investigated the role of NCoR1 in the pathogenesis of ALD and the underlying mechanisms. The traditional alcohol feeding model and NIAAA model of ALD were both established in wild-type and NCoR1Hep-/- mice. We showed that after ALD was established, NCoR1Hep-/- mice had worse liver injury but less steatosis than wild-type mice. We demonstrated that hepatocyte-specific loss of NCoR1 attenuated liver steatosis by promoting fatty acid oxidation by upregulating BMAL1 (a circadian clock component that has been reported to promote peroxisome proliferator activated receptor alpha (PPARα)-mediated fatty ß-oxidation by upregulating de novo lipid synthesis). On the other hand, hepatocyte-specific loss of NCoR1 exacerbated alcohol-induced liver inflammation and oxidative stress by recruiting monocyte-derived macrophages via C-C motif chemokine ligand 2 (CCL2). In the mouse hepatocyte line AML12, NCoR1 knockdown significantly increased ethanol-induced CCL2 release. These results suggest that hepatocyte NCoR1 plays distinct roles in controlling liver inflammation and steatosis, which provides new insights into the development of treatments for steatohepatitis induced by chronic alcohol consumption.
Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Fígado Gorduroso , Hepatopatias Alcoólicas , Animais , Quimiocinas/metabolismo , Modelos Animais de Doenças , Epigênese Genética , Etanol/toxicidade , Hepatócitos/metabolismo , Inflamação/metabolismo , Ligantes , Fígado/metabolismo , Hepatopatias Alcoólicas/patologia , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Correpressor 1 de Receptor Nuclear/genética , Correpressor 1 de Receptor Nuclear/metabolismoRESUMO
HDAC inhibitors (HDACis) have been intensively studied for their roles and potential as drug targets in T-cell lymphomas and other hematologic malignancies. Bisthianostat is a novel bisthiazole-based pan-HDACi evolved from natural HDACi largazole. Here, we report the preclinical study of bisthianostat alone and in combination with bortezomib in the treatment of multiple myeloma (MM), as well as preliminary first-in-human findings from an ongoing phase 1a study. Bisthianostat dose dependently induced acetylation of tubulin and H3 and increased PARP cleavage and apoptosis in RPMI-8226 cells. In RPMI-8226 and MM.1S cell xenograft mouse models, oral administration of bisthianostat (50, 75, 100 mg·kg-1·d-1, bid) for 18 days dose dependently inhibited tumor growth. Furthermore, bisthianostat in combination with bortezomib displayed synergistic antitumor effect against RPMI-8226 and MM.1S cell in vitro and in vivo. Preclinical pharmacokinetic study showed bisthianostat was quickly absorbed with moderate oral bioavailability (F% = 16.9%-35.5%). Bisthianostat tended to distribute in blood with Vss value of 0.31 L/kg. This distribution parameter might be beneficial to treat hematologic neoplasms such as MM with few side effects. In an ongoing phase 1a study, bisthianostat treatment was well tolerated and no grade 3/4 nonhematological adverse events (AEs) had occurred together with good pharmacokinetics profiles in eight patients with relapsed or refractory MM (R/R MM). The overall single-agent efficacy was modest, stable disease (SD) was identified in four (50%) patients at the end of first dosing cycle (day 28). These preliminary in-patient results suggest that bisthianostat is a promising HDACi drug with a comparable safety window in R/R MM, supporting for its further phase 1b clinical trial in combination with traditional MM therapies.
Assuntos
Inibidores de Histona Desacetilases , Mieloma Múltiplo , Acetilação , Animais , Protocolos de Quimioterapia Combinada Antineoplásica , Bortezomib/uso terapêutico , Inibidores de Histona Desacetilases/farmacocinética , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Ácidos Hidroxâmicos/uso terapêutico , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologiaRESUMO
BACKGROUND: Timely diagnosis and treatment are crucial for reducing HIV transmission;therefore, estimating the time from HIV infection to antiretroviral therapy (ART) initiation becomes particularly important for people living with HIV. METHODS: We used a well-characterised CD4 depletion model to estimate the time from HIV infection to initiation of ART and the rate of delayed HIV diagnosis (infection to diagnosis >1year) and treatment initiation (diagnosis to treatment >1year), based on HIV notification data for adults (aged ≥18years) in Xi'an city, China, during 2008-19. RESULTS: Overall, 7402 reported HIV diagnoses were included. We estimated more than two-thirds of HIV infections remained undiagnosed (66.1%, 9489/14 345). The estimated proportion of HIV diagnoses that were delayed (>1year) was 80.3% (5941/7402) during 2008-19, and it increased from 72.7% (32/44) in 2008 to 83.5% (908/1088) in 2019. In contrast, the proportion of cases with delayed treatment (>1year) was 13.1% (971/7402) during 2008-19, and it reduced from 75.0% (33/44) in 2008 to 1.5% (16/1088) in 2019. The estimated median time from HIV infection to diagnosis increased from 5.05 (IQR, 0.27-8.15) years to 5.81 (IQR, 2.31-10.28) years, whereas the time from diagnosis to ART initiation reduced from 3.06 (IQR, 1.01-5.20) years in 2008 to 0.07 (IQR, 0.04-0.12) year in 2019. CONCLUSIONS: Early treatment after diagnosis has significantly improved, but timely diagnosis of HIV infections may still require further improvement. The estimated proportion of undiagnosed HIV cases remains high in 2019 in Xi'an city and is likely to impede effective control.
Assuntos
Infecções por HIV , Humanos , Infecções por HIV/diagnóstico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/epidemiologia , Tempo para o Tratamento , China/epidemiologiaRESUMO
Heterosis, an important biological phenomenon wherein F1 hybrids exhibit better performance than any of their parents, has been widely applied; however, its underlying mechanism remains largely unknown. Here, we studied and compared the dynamic transcriptional profiles of super-hybrid rice LY2186 and its parents at 17 time points during 2 day/night cycles and identified 1552 rhythmic differentially expressed genes (RDGs). Cluster and functional enrichment analyses revealed that the day- and night-phased RDGs were mainly enriched in the photosynthesis and stress response categories, respectively. Regulatory network analysis indicated that circadian-related RDGs are core components in both the day and night phases and extensively regulate downstream genes involved in photosynthesis, starch synthesis, plant hormone signal transduction, and other pathways. Furthermore, among the 282 RDGs mapped onto the quantitative tract loci of small intervals (≤100 genes), 72.3% were significantly enriched in the yield, vigor, and anatomy categories. These findings provide valuable information for exploring heterosis mechanisms further and guiding breeding practices.
Assuntos
Oryza , Ritmo Circadiano/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oryza/metabolismo , Melhoramento Vegetal , TranscriptomaRESUMO
It remains challenging to precisely decipher the structural and functional characteristics of protein coronas. To overcome the drawbacks frequently occurring in the traditional separation methods, an anti-PEG single-chain variable fragment (PEG-scFv) based affinity chromatography (AfC) was developed to achieve precise and efficient separation of protein coronas on PEGylated liposomes (sLip). His-tagged PEG-scFv could readily capture sLip without affecting protein corona compositions, and separate sLip/protein complex from plasma protein aggregates and endogenous vesicles through the Ni-NTA column. AfC demonstrated 43-fold higher protein corona collecting efficiency than centrifugation, which was extremely crucial for separation of in vivo protein coronas due to the limitation of sample size. AfC evaded contamination by endogenous vesicles and protein aggregates occurring in centrifugation, and reserved the loosely bound proteins, providing an unprecedented approach to deeply decipher protein coronas. The scFv-based AfC also paves new avenues for the separation of protein coronas formed on other nanomedicines.