Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 44(16)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38395618

RESUMO

Pure-tone audiograms often poorly predict elderly humans' ability to communicate in everyday complex acoustic scenes. Binaural processing is crucial for discriminating sound sources in such complex acoustic scenes. The compromised perception of communication signals presented above hearing threshold has been linked to both peripheral and central age-related changes in the auditory system. Investigating young and old Mongolian gerbils of both sexes, an established model for human hearing, we demonstrate age-related supra-threshold deficits in binaural hearing using behavioral, electrophysiological, anatomical, and imaging methods. Binaural processing ability was measured as the binaural masking level difference (BMLD), an established measure in human psychophysics. We tested gerbils behaviorally with "virtual headphones," recorded single-unit responses in the auditory midbrain and evaluated gross midbrain and cortical responses using positron emission tomography (PET) imaging. Furthermore, we obtained additional measures of auditory function based on auditory brainstem responses, auditory-nerve synapse counts, and evidence for central inhibitory processing revealed by PET. BMLD deteriorates already in middle-aged animals having normal audiometric thresholds and is even worse in old animals with hearing loss. The magnitude of auditory brainstem response measures related to auditory-nerve function and binaural processing in the auditory brainstem also deteriorate. Furthermore, central GABAergic inhibition is affected by age. Because the number of synapses in the apical turn of the inner ear was not reduced in middle-aged animals, we conclude that peripheral synaptopathy contributes little to binaural processing deficits. Exploratory analyses suggest increased hearing thresholds, altered binaural processing in the brainstem and changed central GABAergic inhibition as potential contributors.


Assuntos
Surdez , Perda Auditiva , Masculino , Idoso , Pessoa de Meia-Idade , Feminino , Animais , Humanos , Gerbillinae , Audição/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Limiar Auditivo , Percepção Auditiva/fisiologia , Estimulação Acústica
2.
Kidney Int ; 101(6): 1186-1199, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35271934

RESUMO

Calcimimetic agents allosterically increase the calcium ion sensitivity of the calcium-sensing receptor (CaSR), which is expressed in the tubular system and to a lesser extent in podocytes. Activation of this receptor can reduce glomerular proteinuria and structural damage in proteinuric animal models. However, the precise role of the podocyte CaSR remains unclear. Here, a CaSR knockdown in cultured murine podocytes and a podocyte-specific CaSR knockout in BALB/c mice were generated to study its role in proteinuria and kidney function. Podocyte CaSR knockdown abolished the calcimimetic R-568 mediated calcium ion-influx, disrupted the actin cytoskeleton, and reduced cellular attachment and migration velocity. Adriamycin-induced proteinuria enhanced glomerular CaSR expression in wild-type mice. Albuminuria, podocyte foot process effacement, podocyte loss and glomerular sclerosis were significantly more pronounced in adriamycin-treated podocyte-specific CaSR knockout mice compared to wild-type littermates. Co-treatment of wild-type mice with adriamycin and the calcimimetic cinacalcet reduced proteinuria in wild-type, but not in podocyte-specific CaSR knockout mice. Additionally, four children with nephrotic syndrome, whose parents objected to glucocorticoid therapy, were treated with cinacalcet for one to 33 days. Proteinuria declined transiently by up to 96%, serum albumin increased, and edema resolved. Thus, activation of podocyte CaSR regulates key podocyte functions in vitro and reduced toxin-induced proteinuria and glomerular damage in mice. Hence, our findings suggest a potential novel role of CaSR signaling in control of glomerular disease.


Assuntos
Nefropatias , Podócitos , Animais , Cálcio/metabolismo , Cinacalcete/farmacologia , Cinacalcete/uso terapêutico , Doxorrubicina/toxicidade , Humanos , Nefropatias/metabolismo , Camundongos , Camundongos Knockout , Podócitos/metabolismo , Proteinúria/induzido quimicamente , Proteinúria/genética , Proteinúria/metabolismo , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo
3.
Biochim Biophys Acta Mol Cell Res ; 1870(7): 119531, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37394011

RESUMO

NAADP is one of the most potent calcium mobilizing second messengers. Only recently, two NAADP-binding proteins have been identified: HN1L/JPT2 and LSM12. Further, ASPDH was suggested as a less selective binding partner. Apart from this newly uncovered link, little is known about the shared mechanisms between these proteins. The aim of this review is to assess potential functional connections between NAADP and its binding proteins. We here give a description of two major links. For one, HN1L/JPT2 and LSM12 both have potent oncogenic functions in several cancer types. Second, they are involved in similar cellular pathways in both cancer and immunity.


Assuntos
Proteínas de Transporte , Neoplasias , Humanos , Proteínas de Transporte/metabolismo , Sistemas do Segundo Mensageiro , Transdução de Sinais , NADP/metabolismo , Neoplasias/genética
4.
Sci Signal ; 16(790): eabn9405, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37339181

RESUMO

During an immune response, T cells migrate from blood vessel walls into inflamed tissues by migrating across the endothelium and through extracellular matrix (ECM). Integrins facilitate T cell binding to endothelial cells and ECM proteins. Here, we report that Ca2+ microdomains observed in the absence of T cell receptor (TCR)/CD3 stimulation are initial signaling events triggered by adhesion to ECM proteins that increase the sensitivity of primary murine T cells to activation. Adhesion to the ECM proteins collagen IV and laminin-1 increased the number of Ca2+ microdomains in a manner dependent on the kinase FAK, phospholipase C (PLC), and all three inositol 1,4,5-trisphosphate receptor (IP3R) subtypes and promoted the nuclear translocation of the transcription factor NFAT-1. Mathematical modeling predicted that the formation of adhesion-dependent Ca2+ microdomains required the concerted activity of two to six IP3Rs and ORAI1 channels to achieve the increase in the Ca2+ concentration in the ER-plasma membrane junction that was observed experimentally and that required SOCE. Further, adhesion-dependent Ca2+ microdomains were important for the magnitude of the TCR-induced activation of T cells on collagen IV as assessed by the global Ca2+ response and NFAT-1 nuclear translocation. Thus, adhesion to collagen IV and laminin-1 sensitizes T cells through a mechanism involving the formation of Ca2+ microdomains, and blocking this low-level sensitization decreases T cell activation upon TCR engagement.


Assuntos
Células Endoteliais , Proteínas da Matriz Extracelular , Camundongos , Animais , Proteínas da Matriz Extracelular/metabolismo , Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Colágeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA