Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Drug Metab Dispos ; 51(10): 1350-1361, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429729

RESUMO

AZD8233, a liver-targeting antisense oligonucleotide (ASO), inhibits subtilisin/kexin type 9 protein synthesis. It is a phosphorothioated 3-10-3 gapmer with a central DNA sequence flanked by constrained 2'-O-ethyl 2',4'-bridged nucleic acid (cEt-BNA) wings and conjugated to a triantennary N-acetylgalactosamine (GalNAc) ligand at the 5'-end. Herein we report the biotransformation of AZD8233, as given by liver, kidney, plasma and urine samples, after repeated subcutaneous administration to humans, mice, rats, rabbits, and monkeys. Metabolite profiles were characterized using liquid chromatography high-resolution mass spectrometry. Metabolite formation was consistent across species, mainly comprising hydrolysis of GalNAc sugars, phosphodiester-linker hydrolysis releasing the full-length ASO, and endonuclease-mediated hydrolysis within the central DNA gap followed by exonuclease-mediated 5'- or 3'-degradation. All metabolites contained the 5'- or 3'-cEt-BNA terminus. Most shortmer metabolites had the free terminal alcohol at 5'- and 3'-positions of ribose, although six were found retaining the terminal 5'-phosphorothioate group. GalNAc conjugated shortmer metabolites were also observed in urine. Synthesized metabolite standards were applied for (semi)quantitative metabolite assessment. Intact AZD8233 was the major component in plasma, whereas the unconjugated full-length ASO was predominant in tissues. In plasma, most metabolites were shortmers retaining the 3'-cEt-BNA terminus, whereas metabolites containing the 5'- or 3'-cEt-BNA terminus were detected in both tissues and urine. All metabolites in human plasma were also detected in all nonclinical species, and all human urine metabolites were detected in monkey urine. In general, metabolite profiles in animal species were qualitatively similar and quantitatively exceeded the exposures of the circulating metabolites in humans at the doses studied. SIGNIFICANCE STATEMENT: This study presents metabolite identification and profiling of AZD8233, an N-acetylgalactosamine-conjugated antisense oligonucleotide (ASO), across species. A biotransformation strategy for ASOs was established by utilizing biologic samples collected from toxicology and/or clinical studies and liquid chromatography high-resolution mass spectrometry analysis without conducting bespoke radiolabeled absorption, distribution, metabolism, and excretion studies. The generated biotransformation package was considered adequate by health authorities to progress AZD8233 into a phase 3 program, proving its applicability to future metabolism studies of ASOs in drug development.


Assuntos
Acetilgalactosamina , Oligonucleotídeos Antissenso , Humanos , Ratos , Camundongos , Animais , Coelhos , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/metabolismo , Oligonucleotídeos , Cromatografia Líquida , Espectrometria de Massas/métodos
2.
Drug Metab Dispos ; 51(4): 464-479, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36653117

RESUMO

We report herein an in-depth analysis of the metabolism of the novel myeloperoxidase inhibitor AZD4831 ((R)-1-(2-(1-aminoethyl)-4-chlorobenzyl)-2-thioxo-2,3-dihydro-1H-pyrrolo[3,2-d]pyrimidin-4(5H)-one) in animals and human. Quantitative and qualitative metabolite profiling were performed on samples collected from mass balance studies in rats and humans. Exposure of circulating human metabolites with comparable levels in animal species used in safety assessment were also included. Structural characterization of 20 metabolites was performed by liquid chromatography high-resolution mass spectrometry, and quantification was performed by either 14C analysis using solid phase scintillation counting or accelerator mass spectrometry and, where available, authentication with synthesized metabolite standards. A complete mass balance study in rats is presented, while data from dogs and human are limited to metabolite profiling and characterization. The metabolism of AZD4831 is mainly comprised of reactions at the primary amine nitrogen and the thiourea sulfur, resulting in several conjugated metabolites with or without desulfurization. A carbamoyl glucuronide metabolite of AZD4831 (M7) was the most abundant plasma metabolite in both human healthy volunteers and heart failure patients after single and repeated dose administration of AZD4831, accounting for 75%-80% of the total drug-related exposure. Exposures to M7 and other human circulating metabolites were covered in rats and/or dogs, the two models most frequently used in the toxicology studies, and were also highly abundant in the mouse, the second model other than rat used in carcinogenicity studies. The carbamoyl glucuronide M7 was the main metabolite in rat bile, while a desulfurized and cyclized metabolite (M5) was abundant in rat plasma and excreta. SIGNIFICANCE STATEMENT: The biotransformation of AZD4831, a novel myeloperoxidase inhibitor inhibiting xanthine derivative bearing thiourea and primary aliphatic amine functions, is described. Twenty characterized metabolites demonstrate the involvement of carbamoylation with glucuronidation, desulfurization, and cyclization as main biotransformation reactions. The carbamoyl glucuronide was the main metabolite in human plasma, likely governed by a significant species difference in plasma protein binding for this metabolite, but this and other human plasma metabolites were covered in animals used in the toxicity studies.


Assuntos
Glucuronídeos , Peroxidase , Humanos , Ratos , Camundongos , Animais , Cães , Biotransformação , Cromatografia Líquida de Alta Pressão , Aminas
3.
Drug Metab Dispos ; 51(4): 451-463, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36639243

RESUMO

This study evaluated the mass balance and disposition of AZD4831, a novel myeloperoxidase inhibitor, in six healthy participants using a 14C-labeled microtracer coupled with analysis by accelerator mass spectrometry (AMS). A single oral dose of 10 mg 14C-AZD4831 (14.8 kBq) was administered as a solution, and 14C levels were quantified by AMS in blood, urine, and feces over 336 hours postdose. AZD4831 was rapidly absorbed, and AZD4831 plasma concentrations declined in a biphasic manner, with a long half-life of 52 hours. AZD4831 was eliminated via metabolism and renal excretion. An N-carbamoyl glucuronide metabolite of AZD4831 (M7), formed primarily via UGT1A1, was the predominant circulating metabolite. Presumably, M7 contributed to the long half-life of AZD4831 via biliary elimination and hydrolysis/enterohepatic recirculation of AZD4831. On average, ∼84% of administered 14C-AZD4831 was recovered by 336 hours postdose (urine, 51.2%; feces, 32.4%). Between 32%-44% of the dose was excreted as unchanged AZD4831 in urine, indicating renal elimination as the major excretory route. Only 9.7% of overall fecal recovery was recorded in the first 48 hours, with the remainder excreted over 48%-336 hours, suggesting that most fecal recovery was due to biliary elimination. Furthermore, only 6% of unchanged AZD4831 was recovered in feces. Overall, the fraction of the administered AZD4831 dose absorbed was high. 14C-AZD4831 was well tolerated. These findings contribute to increasing evidence that human absorption, distribution, metabolism, and excretion studies can be performed with acceptable mass balance recovery at therapeutically relevant doses and low radiolabel-specific activity using an AMS-14C microtracer approach. SIGNIFICANCE STATEMENT: In this study, the human absorption, distribution, metabolism, and excretion (hADME) of the novel myeloperoxidase inhibitor AZD4831 was assessed following oral administration. This included investigation of the disposition of M7, the N-carbamoyl glucuronide metabolite. Resolution of challenges highlighted in this study contributes to increasing evidence that hADME objectives can be achieved in a single study for compounds with therapeutically relevant doses and low radiolabel-specific activity by using an AMS-14C microtracer approach, thus reducing the need for preclinical radiolabeled studies.


Assuntos
Glucuronídeos , Peroxidase , Humanos , Glucuronídeos/análise , Pirimidinas , Fezes/química , Espectrometria de Massas , Administração Oral , Radioisótopos de Carbono/análise
4.
Drug Metab Dispos ; 50(2): 150-157, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34853068

RESUMO

This open-label, single-period study describes the human absorption, distribution, metabolism, excretion, and pharmacokinetics of velsecorat (AZD7594). Healthy subjects received inhaled velsecorat (non-radiolabeled; 720 µg) followed by intravenous infusion of carbon 14 (14C)-velsecorat (30 µg). Plasma, urine, and feces were collected up to 168 hours post-dose. Objectives included identification and quantification of velsecorat and its metabolites (i.e., drug-related material) in plasma and excreta, and determining the elimination pathways of velsecorat by measuring the rate and route of excretion, plasma half-life (t1/2), clearance, volume of distribution and mean recovery of radioactivity. On average, 76.0% of administered 14C dose was recovered by the end of the sampling period (urine = 24.4%; feces = 51.6%), with no unchanged compound recovered in excreta, suggesting that biliary excretion is the main elimination route. Compared with intravenous 14C-velsecorat, inhaled velsecorat had a longer t1/2 (27 versus 2 hours), confirming that plasma elimination is absorption-rate-limited from the lungs. Following intravenous administration, t1/2 of 14C-drug-related material was longer than for unchanged velsecorat, and 20% of the 14C plasma content was related to unchanged velsecorat. The geometric mean plasma clearance of velsecorat was high (70.7 l/h) and the geometric mean volume of distribution at steady state was 113 l. Velsecorat was substantially metabolized via O-dealkylation of the indazole ether followed by sulfate conjugation, forming the M1 metabolite, the major metabolite in plasma. There were 15 minor metabolites. Velsecorat was well tolerated, and these results support the progression of velsecorat to phase 3 studies. SIGNIFICANCE STATEMENT: This study describes the human pharmacokinetics and metabolism of velsecorat, a selective glucocorticoid receptor modulator, evaluated via co-administration of a radiolabeled intravenous microtracer dose and a non-radiolabeled inhaled dose. This study provides a comprehensive assessment of the disposition of velsecorat in humans. It also highlights a number of complexities associated with determining human absorption, distribution, metabolism, and excretion for velsecorat, related to the inhaled route, the high metabolic clearance, sequential metabolite formation and the low intravenous dose.


Assuntos
Indazóis , Administração Intravenosa , Administração Oral , Disponibilidade Biológica , Radioisótopos de Carbono , Dioxinas , Fezes , Furanos , Voluntários Saudáveis , Humanos , Taxa de Depuração Metabólica
5.
Regul Toxicol Pharmacol ; 110: 104524, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31734179

RESUMO

Regulatory Guidance documents ICH Q3A (R2) and ICH Q3B (R2) state that "impurities that are also significant metabolites present in animal and/or human studies are generally considered qualified". However, no guidance is provided regarding data requirements for qualification, nor is a definition of the term "significant metabolite" provided. An opportunity is provided to define those categories and potentially avoid separate toxicity studies to qualify impurities. This can reduce cost, animal use and time, and avoid delays in drug development progression. If the concentration or amount of a metabolite, in animals or human, is similar to that of the known, structurally identical impurity (arising from the administered test material), the qualification of the impurity on the grounds of it also being a metabolite is justified. We propose two complementary approaches to support conclusions to this effect: 1) demonstrate that the impurity is formed by metabolism in animals and/or man, based preferably on plasma exposures or, alternatively, amounts excreted in urine, and, where appropriate, 2) show that animal exposure to (or amount of) the impurity/metabolite is equal or greater in animals than in humans. An important factor of both assessments is the maximum theoretical concentration (or amount) (MTC or MTA) of the impurity/metabolite achievable from the administered dose and recommendations on the estimation of the MTC and MTA are presented.


Assuntos
Contaminação de Medicamentos , Preparações Farmacêuticas/metabolismo , Animais , Biotransformação , Humanos , Testes de Toxicidade
6.
Drug Metab Dispos ; 47(11): 1247-1256, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31492694

RESUMO

AZD1979 [(3-(4-(2-oxa-6-azaspiro[3.3]heptan-6-ylmethyl)phenoxy)azetidin-1-yl)(5-(4-methoxyphenyl)-1,3,4-oxadiazol-2-yl)methanone] is a melanin-concentrating hormone receptor 1 antagonist designed for the treatment of obesity. In this study, metabolite profiles of AZD1979 in human hepatocytes revealed a series of glutathione-related metabolites, including the glutathionyl, cysteinyl, cysteinylglycinyl, and mercapturic acid conjugates. The formation of these metabolites was not inhibited by coincubation with the cytochrome P450 (P450) inhibitor 1-aminobenzotriazole. In efforts to identify the mechanistic features of this pathway, investigations were performed to characterize the structure of the glutathionyl conjugate M12 of AZD1979 and to identify the enzyme system catalyzing its formation. Studies with various human liver subcellular fractions established that the formation of M12 was NAD(P)H-independent and proceeded in cytosol and S9 fractions but not in microsomal or mitochondrial fractions. The formation of M12 was inhibited by ethacrynic acid, an inhibitor of glutathione S-transferases (GSTs). Several human recombinant GSTs, including GSTA1, A2-2, M1a, M2-2, T1-1, and GST from human placenta, were incubated with AZD1979. All GSTs tested catalyzed the formation of M12, with GSTA2-2 being the most efficient. Metabolite M12 was purified from rat liver S9 incubations and its structure elucidated by NMR. These results establish that M12 is the product of the GST-catalyzed glutathione attack on the carbon atom α to the nitrogen atom of the strained spiro-azetidinyl moiety to give, after ring opening, the corresponding amino-thioether conjugate product, a direct conjugation pathway that occurs without the prior substrate bioactivation by P450. SIGNIFICANCE STATEMENT: The investigated compound, AZD1979, contains a 6-substituted-2-oxa-6-azaspiro[3.3]heptanyl derivative that is an example of strained heterocycles, including spiro-fused ring systems, that are widely used in synthetic organic chemistry. An unusual azetidinyl ring-opening reaction involving a nucleophilic attack by glutathione, which does not involve prior cytochrome P450-catalyzed bioactivation of the substrate and which is catalyzed by glutathione transferases, is reported. We propose a mechanism involving the protonated cyclic aminyl intermediate that undergoes nucleophilic attack by glutathione thiolate anion in this reaction, catalyzed by glutathione transferases.


Assuntos
Azetidinas/metabolismo , Glutationa Transferase/fisiologia , Oxidiazóis/metabolismo , Ativação Metabólica , Catálise , Cromatografia Líquida de Alta Pressão , Glutationa/metabolismo , Humanos , Fígado/metabolismo , Espectroscopia de Ressonância Magnética , Espectrometria de Massas em Tandem
7.
Arch Toxicol ; 92(9): 2819-2828, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30094548

RESUMO

The metabolic fate of the human hepatotoxin fenclozic acid ([2-(4-chlorophenyl)-1,3-thiazol-4-yl]acetic acid) (Myalex) was studied in normal and bile-cannulated chimeric mice with a humanized liver, following oral administration of 10 mg/kg. This in vivo animal model was investigated to assess its utility to study "human" metabolism of fenclozic acid, and in particular to explore the formation of electrophilic reactive metabolites (RMs), potentially unique to humans. Metabolism was extensive, particularly involving the carboxylic acid-containing side chain. Metabolism resulted in the formation of a large number of metabolites and involved biotransformation via both oxidative and conjugative routes. The oxidative metabolites detected included a variety of hydroxylations as well as cysteinyl-, N-acetylcysteinyl-, and cysteinylglycine metabolites. The latter resulted from the formation of glutathione adducts/conjugates providing evidence for the production of RMs. The production of other classes of RMs included acyl-glucuronides, and the biosynthesis of acyl carnitine, taurine, glutamine, and glycine conjugates via potentially reactive acyl-CoA intermediates was also demonstrated. A number of unique "human" metabolites, e.g., those providing evidence for side-chain extension, were detected in the plasma and excreta of the chimeric liver-humanized mice that were not previously characterised in, e.g., the excreta of rat and C57BL/6 mice. The different pattern of metabolism seen in these chimeric mice with a humanized liver compared to the conventional rodents may offer clues to the factors that contributed to the drug-induced liver injury seen in humans.


Assuntos
Fígado/metabolismo , Tiazóis/farmacocinética , Administração Oral , Animais , Bile/efeitos dos fármacos , Bile/metabolismo , Quimera , Fezes , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/citologia , Fígado/efeitos dos fármacos , Masculino , Camundongos SCID , Tiazóis/administração & dosagem , Tiazóis/sangue , Distribuição Tecidual
8.
Drug Metab Dispos ; 45(8): 966-973, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28600384

RESUMO

Oxetanyl building blocks are increasingly used in drug discovery because of the improved drug-like properties they confer on drug candidates, yet little is currently known about their biotransformation. A series of oxetane-containing analogs was studied and we provide the first direct evidence of oxetane hydrolysis by human recombinant microsomal epoxide hydrolase (mEH). Incubations with human liver fractions and hepatocytes were performed with and without inhibitors of cytochrome P450 (P450), mEH and soluble epoxide hydrolase (sEH). Reaction dependence on NADPH was investigated in subcellular fractions. A full kinetic characterization of oxetane hydrolysis is presented, in both human liver microsomes and human recombinant mEH. In human liver fractions and hepatocytes, hydrolysis by mEH was the only oxetane ring-opening metabolic route, with no contribution from sEH or from cytochrome P450-catalyzed oxidation. Minimally altering the structural elements in the immediate vicinity of the oxetane can greatly modulate the efficiency of hydrolytic ring cleavage. In particular, higher pKa in the vicinity of the oxetane and an increased distance between the oxetane ring and the benzylic nitrogen improve reaction rate, which is further enhanced by the presence of methyl groups near or on the oxetane. This work defines oxetanes as the first nonepoxide class of substrates for human mEH, which was previously known to catalyze the hydrolytic ring opening of electrophilic and potentially toxic epoxide-containing drugs, drug metabolites, and exogenous organochemicals. These findings will be of value for the development of biologically active oxetanes and may be exploited for the biocatalytic generation of enantiomerically pure oxetanes and diols.


Assuntos
Epóxido Hidrolases/metabolismo , Éteres Cíclicos/metabolismo , Microssomos Hepáticos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Hepatócitos/metabolismo , Humanos , Cinética , Fígado/metabolismo , Oxirredução
9.
Drug Metab Dispos ; 44(8): 1341-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27256986

RESUMO

Oxetane moieties are increasingly being used by the pharmaceutical industry as building blocks in drug candidates because of their pronounced ability to improve physicochemical parameters and metabolic stability of drug candidates. The enzymes that catalyze the biotransformation of the oxetane moiety are, however, not well studied. The in vitro metabolism of a spiro oxetane-containing compound AZD1979 [(3-(4-(2-oxa-6-azaspiro[3.3]heptan-6-ylmethyl)phenoxy)azetidin-1-yl)(5-(4-ethoxyphenyl)-1,3,4-oxadiazol-2-yl)methanone] was studied and one of its metabolites, M1, attracted our interest because its formation was NAD(P)H independent. The focus of this work was to elucidate the structure of M1 and to understand the mechanism(s) of its formation. We established that M1 was formed via hydration and ring opening of the oxetanyl moiety of AZD1979. Incubations of AZD1979 using various human liver subcellular fractions revealed that the hydration reaction leading to M1 occurred mainly in the microsomal fraction. The underlying mechanism as a hydration, rather than an oxidation reaction, was supported by the incorporation of (18)O from H2 (18)O into M1. Enzyme kinetics were performed probing the formation of M1 in human liver microsomes. The formation of M1 was substantially inhibited by progabide, a microsomal epoxide hydrolase inhibitor, but not by trans-4-[4-(1-adamantylcarbamoylamino)cyclohexyloxy]benzoic acid, a soluble epoxide hydrolase inhibitor. On the basis of these results, we propose that microsomal epoxide hydrolase catalyzes the formation of M1. The substrate specificity of microsomal epoxide hydrolase should therefore be expanded to include not only epoxides but also the oxetanyl ring system present in AZD1979.


Assuntos
Azetidinas/metabolismo , Epóxido Hidrolases/metabolismo , Microssomos Hepáticos/enzimologia , Oxidiazóis/metabolismo , Azetidinas/química , Biotransformação , Catálise , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Humanos , Cinética , Microssomos Hepáticos/efeitos dos fármacos , Estrutura Molecular , Oxidiazóis/química , Especificidade por Substrato , Ácido gama-Aminobutírico/análogos & derivados , Ácido gama-Aminobutírico/farmacologia
10.
Drug Metab Dispos ; 44(5): 732-40, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26868617

RESUMO

As part of the drug discovery and development process, it is important to understand the human metabolism of a candidate drug prior to clinical studies. Preclinical in vitro and in vivo experiments across species are conducted to build knowledge concerning human circulating metabolites in preparation for clinical studies; therefore, the quality of these experiments is critical. Within AstraZeneca, all metabolite identification (Met-ID) information is stored in a global database using ACDLabs software. In this study, the Met-ID information derived from in vitro and in vivo studies for 27 AstraZeneca drug candidates that underwent human absorption, distribution, metabolism, and excretion studies was extracted from the database. The retrospective analysis showed that 81% of human circulating metabolites were previously observed in preclinical in vitro and/or in vivo experiments. A detailed analysis was carried out to understand which human circulating metabolites were not captured in the preclinical experiments. Metabolites observed in human hepatocytes and rat plasma but not seen in circulation in humans (extraneous metabolites) were also investigated. The majority of human specific circulating metabolites derive from multistep biotransformation reactions that may not be observed in in vitro studies within the limited time frame in which cryopreserved hepatocytes are active. Factors leading to the formation of extraneous metabolites in preclinical studies seemed to be related to species differences with respect to transporter activity, secondary metabolism, and enzyme kinetics. This retrospective analysis assesses the predictive value of Met-ID experiments and improves our ability to discriminate between metabolites expected to circulate in humans and irrelevant metabolites seen in preclinical studies.


Assuntos
Preparações Farmacêuticas/metabolismo , Animais , Cães , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Hepatócitos/metabolismo , Humanos , Macaca fascicularis , Masculino , Camundongos , Coelhos , Ratos , Estudos Retrospectivos
11.
Chem Res Toxicol ; 28(5): 886-96, 2015 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-25803559

RESUMO

Xenobiotic carboxylic acids may be metabolized to oxidative metabolites, acyl glucuronides, and/or S-acyl-CoA thioesters (CoA conjugates) in vitro, e.g., in hepatocytes, and in vivo. These metabolites can potentially be reactive species and bind covalently to tissue proteins and are generally considered to mediate adverse drug reactions in humans. Acyl glucuronide metabolites have been the focus of reactive metabolite research for decades, whereas drug-CoA conjugates, which have been shown to be up to 40-70 times more reactive, have been given much less attention. In an attempt to dissect the contribution of different pathways to covalent binding, we utilized human liver microsomes supplemented with NADPH, uridine 5'-diphosphoglucuronic acid (UDPGA), or CoA to evaluate the reactivity of each metabolite separately. Seven carboxylic acid drugs were included in this study. While ibuprofen and tolmetin are still on the market, ibufenac, fenclozic acid, tienilic acid, suprofen, and zomepirac were stopped before their launch or withdrawn. The reactivities of the CoA conjugates of ibuprofen, ibufenac, fenclozic acid, and tolmetin were higher compared to those of their corresponding oxidative metabolites and acyl glucuronides, as measured by the level of covalent binding to human liver microsomal proteins. The highest covalent binding was observed for ibuprofenyl-CoA and ibufenacyl-CoA, to levels of 1000 and 8600 pmol drug eq/mg protein, respectively. In contrast and in agreement with the proposed P450-mediated toxicity for these drug molecules, the reactivities of oxidative metabolites of suprofen and tienilic acid were higher compared to the reactivities of their conjugated metabolites, with NADPH-dependent covalent binding of 250 pmol drug eq/mg protein for both drugs. The seven drugs all formed UDPGA-dependent acyl glucuronides, but none of these resulted in covalent binding. This study shows that, unlike studies with hepatocytes or in vivo, human liver microsomes provide an opportunity to investigate the reactivity of individual metabolites.


Assuntos
Acil Coenzima A/metabolismo , Ácidos Carboxílicos/metabolismo , Glucuronídeos/metabolismo , Microssomos Hepáticos/metabolismo , Preparações Farmacêuticas/metabolismo , Xenobióticos/metabolismo , Acilação , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Oxirredução , Ligação Proteica , Proteínas/metabolismo
12.
Drug Metab Dispos ; 42(6): 1016-21, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24658456

RESUMO

During preclinical and early phase clinical studies of drug candidates, exposure to metabolites should be monitored to determine whether safety conclusions drawn from studies in animals can be extrapolated to humans. Metabolites accounting for more than 10% of total exposure to drug-related material (DRM) in humans are of regulatory concern, and for any such metabolites, adequate exposure should be demonstrated in animals before large-scale phase 3 clinical trials are conducted. We have previously identified six metabolites, M1-M6, of the gastroesophageal reflux inhibitor lesogaberan. In this study, we measured exposure in humans, rats, and beagle dogs to lesogaberan and these metabolites. Plasma samples were taken at various time points after lesogaberan dosing in two clinical and three preclinical studies. Concentrations of lesogaberan and its metabolites were measured, and exposures during a single dosing interval were calculated. The parent compound and metabolites M1, M2, M4, and M5 were together shown to constitute all significant exposure to DRM in humans. Only M4 and M5 were present at levels of regulatory concern (10.6% and 18.9% of total exposure to DRM, respectively, at steady state). Absolute exposure to M5 was greater in rats during toxicology studies than the highest absolute exposure observed in humans at steady state (117.0 µmol × h/liter vs. 52.2 µmol × h/liter). In contrast, exposure to M4 in rats was less than 50% of the highest absolute exposure observed in humans. Further safety testing of this metabolite may therefore be required.


Assuntos
Biomarcadores Farmacológicos/sangue , Ácidos Fosfínicos/metabolismo , Ácidos Fosfínicos/toxicidade , Propilaminas/metabolismo , Propilaminas/toxicidade , Animais , Cães , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Ácidos Fosfínicos/química , Propilaminas/química , Ratos , Especificidade da Espécie
13.
Xenobiotica ; 44(2): 186-95, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24417752

RESUMO

1. The biotransformation, hepatic transporter and blood chemistry effects of troglitazone were investigated following 7 days of dosing at 600 mg/kg/day to chimeric murinized or humanized FRG mice, Mo-FRG and Hu-FRG mice, respectively. 2. Clinical chemistry and histopathology analysis revealed a significant drop in humanization over the time course of the study for the Hu-FRG mice but no significant changes associated with troglitazone treatment in either the Mo-FRG or the Hu-FRG models. No changes in transporter expression in livers of these mice were observed. Oxidative and conjugative metabolic pathways were identified with a 15- to 18-fold increase in formation of troglitazone sulfate in the Hu-FRG mice compared with the Mo-FRG mice in blood and bile, respectively. This resembles the troglitazone metabolism in human and these data are comparable with the formation of this metabolite in the chimeric uPA(+/+)/SCID mice. 3. However, larger amounts of troglitazone glucuronide were also observed in the Hu-FRG mouse compared with the Mo-FRG mouse which may be an effect of the drop in humanization of the Hu-FRG mouse during the study. 4. Highly humanized mice have a considerable potential in providing a useful first insight into circulating human metabolites of candidate drugs metabolized in the liver.


Assuntos
Cromanos/metabolismo , Cromanos/farmacocinética , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Tiazolidinedionas/metabolismo , Tiazolidinedionas/farmacocinética , Animais , Bile/metabolismo , Análise Química do Sangue , Hepatócitos/transplante , Humanos , Hidrolases/genética , Inativação Metabólica , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Ésteres do Ácido Sulfúrico/metabolismo , Quimeras de Transplante , Troglitazona
14.
Chem Res Toxicol ; 26(8): 1139-55, 2013 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-23790050

RESUMO

While xenobiotic carboxylic acids (XCAs) have been studied extensively with respect to their enzymatic conversion to potentially reactive acyl glucuronides with implications to drug induced hepatotoxicity, the formation of xenobiotic-S-acyl-CoA thioesters (xenobiotic-CoAs) have been much less studied in spite of data indicating that such conjugates may be equally or more reactive than the corresponding acyl glucuronides. This review addresses enzymes and cell organelles involved in the formation of xenobiotic-CoAs, the reactivity of such conjugates toward biological macromolecules, and in vitro and in vivo methodology to assess consequences of such reactivity. Further, the propensity of xenobiotic-CoAs to interfere with endogenous lipid metabolism, e.g., inhibition of ß-oxidation or depletion of the CoA or carnitine pools, adds to the complexity of the potential contribution of XCAs to hepatotoxicity by a number of mechanisms in addition to those in common with the corresponding acyl glucuronides. On the basis of our review of the literature on xenobiotic-CoA conjugates, there appear to be a number of gaps in our understanding of the bioactivation of XCA both with respect to the mechanisms involved and the experimental approaches to distinguish between the role of acyl glucuronides and xenobiotic-CoA conjugates. These aspects are focused upon and described in detail in this review.


Assuntos
Ácidos Carboxílicos/metabolismo , Coenzima A/metabolismo , Xenobióticos/metabolismo , Animais , Ácidos Carboxílicos/química , Coenzima A/química , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Glucuronídeos/química , Glucuronídeos/toxicidade , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Microssomos Hepáticos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Xenobióticos/química
15.
J Pharmacol Exp Ther ; 343(1): 134-44, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22776955

RESUMO

Major human specific metabolites, not detected during in vivo and in vitro preclinical studies, may cause unexpected drug interactions and toxicity in human and delays in clinical programs. Thus, reliable preclinical tools for the detection of major human metabolites are of high importance. The aim of this study was to compare major drug metabolic pathways in HepaRG cells, a human hepatoma cell line, to fresh human hepatocytes, cryopreserved human hepatocytes, and human in vivo data. Furthermore, the maintenance of cytochrome P450 (P450) and UDP-glucuronosyltransferase (UGT) activities in a dynamic three-dimensional (3D) bioreactor were evaluated over time by using HepaRG cells and human hepatocytes. (14)C-diclofenac and a candidate from AstraZeneca's drug development program, (14)C-AZD6610, which are metabolized by P450 and UGT in vivo, were used as model substrates. The proportion of relevant biotransformation pathways of the investigated drug was clearly different in the various cell systems. The hydroxylation route was favored in primary human hepatocytes, whereas the glucuronidation route was favored in HepaRG cells. The human in vivo metabolite profile of AZD6610 was best represented by human hepatocytes, whereas all major diclofenac metabolites were detected in HepaRG cells. Moreover, the metabolite profiles in cryopreserved and fresh human hepatocytes were essentially the same. The liver bioreactor using both fresh human hepatocytes and HepaRG cells retained biotransformation capacity over 1 week. Thus, the incubation time can be increased from a few hours in suspension to several days in 3D cultures, which opens up for detection of metabolites from slowly metabolized drugs.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/métodos , Hepatócitos/metabolismo , Redes e Vias Metabólicas/fisiologia , Preparações Farmacêuticas/metabolismo , Adulto , Idoso de 80 Anos ou mais , Células Cultivadas , Avaliação Pré-Clínica de Medicamentos/métodos , Feminino , Hepatócitos/efeitos dos fármacos , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Preparações Farmacêuticas/administração & dosagem , Suspensões
16.
Chem Res Toxicol ; 25(3): 532-42, 2012 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22372867

RESUMO

As part of the drug discovery and development process, it is important to understand the fate of the drug candidate in humans and the relevance of the animal species used for preclinical toxicity and pharmacodynamic studies. Therefore, various in vitro and in vivo studies are conducted during the different stages of the drug development process to elucidate the absorption, distribution, metabolism, and excretion properties of the drug candidate. Although state-of-the-art LC/MS techniques are commonly employed for these studies, radiolabeled molecules are still frequently required for the quantification of metabolites and to assess the retention and excretion of all drug related material without relying on structural information and MS ionization properties. In this perspective, we describe the activities of Isotope Chemistry at AstraZeneca and give a brief overview of different commonly used approaches for the preparation of (14)C- and (3)H-labeled drug candidates. Also various drug metabolism and pharmacokinetic studies utilizing radiolabeled drug candidates are presented with in-house examples where relevant. Finally, we outline strategic changes to our use of radiolabeled compounds in drug metabolism and pharmacokinetic studies, with an emphasis on delaying of in vivo studies employing radiolabeled drug molecules.


Assuntos
Preparações Farmacêuticas/metabolismo , Farmacocinética , Animais , Radioisótopos de Carbono/farmacocinética , Descoberta de Drogas , Humanos , Trítio/farmacocinética
17.
Chem Res Toxicol ; 25(8): 1616-32, 2012 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-22646477

RESUMO

Idiosyncratic adverse drug reactions (IADRs) in humans can result in a broad range of clinically significant toxicities leading to attrition during drug development as well as postlicensing withdrawal or labeling. IADRs arise from both drug and patient related mechanisms and risk factors. Drug related risk factors, resulting from parent compound or metabolites, may involve multiple contributory mechanisms including organelle toxicity, effects related to compound disposition, and/or immune activation. In the current study, we evaluate an in vitro approach, which explored both cellular effects and covalent binding (CVB) to assess IADR risks for drug candidates using 36 drugs which caused different patterns and severities of IADRs in humans. The cellular effects were tested in an in vitro Panel of five assays which quantified (1) toxicity to THLE cells (SV40 T-antigen-immortalized human liver epithelial cells), which do not express P450s, (2) toxicity to a THLE cell line which selectively expresses P450 3A4, (3) cytotoxicity in HepG2 cells in glucose and galactose media, which is indicative of mitochondrial injury, (4) inhibition of the human bile salt export pump, BSEP, and (5) inhibition of the rat multidrug resistance associated protein 2, Mrp2. In addition, the CVB Burden was estimated by determining the CVB of radiolabeled compound to human hepatocytes and factoring in both the maximum prescribed daily dose and the fraction of metabolism leading to CVB. Combining the aggregated results from the in vitro Panel assays with the CVB Burden data discriminated, with high specificity (78%) and sensitivity (100%), between 27 drugs, which had severe or marked IADR concern, and 9 drugs, which had low IADR concern, we propose that this integrated approach has the potential to enable selection of drug candidates with reduced propensity to cause IADRs in humans.


Assuntos
Pró-Fármacos/efeitos adversos , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocromo P-450 CYP3A/metabolismo , Galactose/farmacologia , Glucose/farmacologia , Células Hep G2 , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Pró-Fármacos/metabolismo , Pró-Fármacos/toxicidade , Ratos , Ratos Sprague-Dawley , Fatores de Risco
18.
Drug Discov Today ; 26(10): 2244-2258, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33862193

RESUMO

Drug properties of antisense oligonucleotides (ASOs) differ significantly from those of traditional small-molecule therapeutics. In this review, we focus on ASO disposition, mainly as characterized by distribution and biotransformation, of nonconjugated and conjugated ASOs. We introduce ASO chemistry to allow the following in-depth discussion on bioanalytical methods and determination of distribution and elimination kinetics at low concentrations over extended periods of time. The resulting quantitative data on the parent oligonucleotide, and the identification and quantification of formed metabolites define the disposition. Proper quantitative understanding of disposition is pivotal for nonclinical to clinical predictions, supports communication with health agencies, and increases the probability of delivering optimal ASO therapy to patients.


Assuntos
Desenvolvimento de Medicamentos/métodos , Oligonucleotídeos Antissenso/administração & dosagem , Animais , Biotransformação , Humanos , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/farmacocinética , Fatores de Tempo , Distribuição Tecidual
19.
Drug Metab Dispos ; 38(1): 73-83, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19812350

RESUMO

The neurotoxic side effects observed for the neuroleptic agent haloperidol have been associated with its pyridinium metabolite. In a previous study, a silicon analog of haloperidol (sila-haloperidol) was synthesized, which contains a silicon atom instead of the carbon atom in the 4-position of the piperidine ring. In the present study, the phase I metabolism of sila-haloperidol and haloperidol was studied in rat and human liver microsomes. The phase II metabolism was studied in rat, dog, and human hepatocytes and also in liver microsomes supplemented with UDP-glucuronic acid (UDPGA). A major metabolite of haloperidol, the pyridinium metabolite, was not formed in the microsomal incubations with sila-haloperidol. For sila-haloperidol, three metabolites originating from opening of the piperidine ring were observed, a mechanism that has not been observed for haloperidol. One of the significant phase II metabolites of haloperidol was the glucuronide of the hydroxy group bound to the piperidine ring. For sila-haloperidol, the analogous metabolite was not observed in the hepatocytes or in the liver microsomal incubations containing UDPGA. If silanol (SiOH) groups are not glucuronidated, introducing silanol groups in drug molecules could provide an opportunity to enhance the hydrophilicity without allowing for direct phase II metabolism. To provide further support for the observed differences in metabolic pathways between haloperidol and sila-haloperidol, the metabolism of another pair of C/Si analogs was studied, namely, trifluperidol and sila-trifluperidol. These studies showed the same differences in metabolic pathways as between sila-haloperidol and haloperidol.


Assuntos
Haloperidol/análogos & derivados , Haloperidol/metabolismo , Desintoxicação Metabólica Fase II/fisiologia , Desintoxicação Metabólica Fase I/fisiologia , Compostos de Organossilício/metabolismo , Animais , Cromatografia Líquida , Cães , Feminino , Haloperidol/farmacocinética , Hepatócitos/metabolismo , Humanos , Masculino , Microssomos Hepáticos/metabolismo , Modelos Químicos , Estrutura Molecular , Compostos de Organossilício/farmacocinética , Ratos , Espectrometria de Massas em Tandem , Trifluperidol/análogos & derivados , Trifluperidol/metabolismo , Trifluperidol/farmacocinética , Uridina Difosfato Ácido Glucurônico/metabolismo
20.
Rapid Commun Mass Spectrom ; 24(9): 1231-40, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-20391593

RESUMO

The metabolites formed via the major metabolic pathways of haloperidol in liver microsomes, N-dealkylation and ring oxidation to the pyridinium species, were produced by electrochemical oxidation and characterized by ultra-performance liquid chromatography/electrospray ionization mass spectrometry (UPLC/ESI-MS). Liver microsomal incubations and electrochemical oxidation in the presence of potassium cyanide (KCN) resulted in two diastereomeric cyano adducts, proposed to be generated from trapping of the endocyclic iminium species of haloperidol. Electrochemical oxidation of haloperidol in the presence of KCN gave a third isomeric cyano adduct, resulting from trapping of the exocyclic iminium species of haloperidol. In the electrochemical experiments, addition of KCN almost completely blocked the formation of the major oxidation products, namely the N-dealkylated products, the pyridinium species and a putative lactam. This major shift in product formation by electrochemical oxidation was not observed for the liver microsomal incubations where the N-dealkylation and the pyridinium species were the major metabolites also in the presence of KCN. The previously not observed dihydropyridinium species of haloperidol was detected in the samples, both from electrochemical oxidation and the liver microsomal incubations, in the presence of KCN. The presence of the dihydropyridinium species and the absence of the corresponding cyano adduct lead to the speculation that an unstable cyano adduct was formed, but that cyanide was eliminated to regenerate the stable conjugated system. The formation of the exocyclic cyano adduct in the electrochemical experiments but not in the liver microsomal incubations suggests that the exocyclic iminium intermediate, obligatory in the electrochemically mediated N-dealkylation, may not be formed in the P450-catalyzed reaction.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Sistema Enzimático do Citocromo P-450/metabolismo , Técnicas Eletroquímicas/métodos , Haloperidol/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Antipsicóticos/química , Antipsicóticos/metabolismo , Haloperidol/química , Humanos , Microssomos Hepáticos/metabolismo , Oxirredução , Cianeto de Potássio/química , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA