Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nat Methods ; 18(12): 1489-1495, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34862503

RESUMO

For quality, interpretation, reproducibility and sharing value, microscopy images should be accompanied by detailed descriptions of the conditions that were used to produce them. Micro-Meta App is an intuitive, highly interoperable, open-source software tool that was developed in the context of the 4D Nucleome (4DN) consortium and is designed to facilitate the extraction and collection of relevant microscopy metadata as specified by the recent 4DN-BINA-OME tiered-system of Microscopy Metadata specifications. In addition to substantially lowering the burden of quality assurance, the visual nature of Micro-Meta App makes it particularly suited for training purposes.


Assuntos
Metadados , Microscopia Confocal/instrumentação , Microscopia Confocal/métodos , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Aplicativos Móveis , Linguagens de Programação , Software , Animais , Linhagem Celular , Biologia Computacional/métodos , Humanos , Processamento de Imagem Assistida por Computador , Camundongos , Reconhecimento Automatizado de Padrão , Controle de Qualidade , Reprodutibilidade dos Testes , Interface Usuário-Computador , Fluxo de Trabalho
2.
J Microsc ; 294(3): 350-371, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38752662

RESUMO

Bioimage data are generated in diverse research fields throughout the life and biomedical sciences. Its potential for advancing scientific progress via modern, data-driven discovery approaches reaches beyond disciplinary borders. To fully exploit this potential, it is necessary to make bioimaging data, in general, multidimensional microscopy images and image series, FAIR, that is, findable, accessible, interoperable and reusable. These FAIR principles for research data management are now widely accepted in the scientific community and have been adopted by funding agencies, policymakers and publishers. To remain competitive and at the forefront of research, implementing the FAIR principles into daily routines is an essential but challenging task for researchers and research infrastructures. Imaging core facilities, well-established providers of access to imaging equipment and expertise, are in an excellent position to lead this transformation in bioimaging research data management. They are positioned at the intersection of research groups, IT infrastructure providers, the institution´s administration, and microscope vendors. In the frame of German BioImaging - Society for Microscopy and Image Analysis (GerBI-GMB), cross-institutional working groups and third-party funded projects were initiated in recent years to advance the bioimaging community's capability and capacity for FAIR bioimage data management. Here, we provide an imaging-core-facility-centric perspective outlining the experience and current strategies in Germany to facilitate the practical adoption of the FAIR principles closely aligned with the international bioimaging community. We highlight which tools and services are ready to be implemented and what the future directions for FAIR bioimage data have to offer.


Assuntos
Microscopia , Pesquisa Biomédica/métodos , Gerenciamento de Dados/métodos , Processamento de Imagem Assistida por Computador/métodos , Microscopia/métodos
3.
EMBO Rep ; 23(6): e54105, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35373503

RESUMO

Maintenance and homeostasis of the stem cell niche (SCN) in the Arabidopsis root is essential for growth and development of all root cell types. The SCN is organized around a quiescent center (QC) maintaining the stemness of cells in direct contact. The key transcription factors (TFs) WUSCHEL-RELATED HOMEOBOX 5 (WOX5) and PLETHORAs (PLTs) are expressed in the SCN where they maintain the QC and regulate distal columella stem cell (CSC) fate. Here, we describe the concerted mutual regulation of the key TFs WOX5 and PLTs on a transcriptional and protein interaction level. Additionally, by applying a novel SCN staining method, we demonstrate that both WOX5 and PLTs regulate root SCN homeostasis as they control QC quiescence and CSC fate interdependently. Moreover, we uncover that some PLTs, especially PLT3, contain intrinsically disordered prion-like domains (PrDs) that are necessary for complex formation with WOX5 and its recruitment to subnuclear microdomains/nuclear bodies (NBs) in the CSCs. We propose that this partitioning of PLT-WOX5 complexes to NBs, possibly by phase separation, is important for CSC fate determination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Meristema , Raízes de Plantas , Nicho de Células-Tronco , Células-Tronco/metabolismo
4.
J Mol Cell Cardiol ; 175: 29-43, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36493853

RESUMO

Regenerating the injured heart remains one of the most vexing challenges in cardiovascular medicine. Cell therapy has shown potential for treatment of myocardial infarction, but low cell retention so far has limited its success. Here we show that intramyocardial injection of highly apoptosis-resistant unrestricted somatic stem cells (USSC) into infarcted rat hearts resulted in an unprecedented thickening of the left ventricular wall with cTnT+/BrdU+ cardiomyocytes that was paralleled by progressively restored ejection fraction. USSC induced significant T-cell enrichment in ischemic tissue with enhanced expression of T-cell related cytokines. Inhibition of T-cell activation by anti-CD28 monoclonal antibody, fully abolished the regenerative response which was restored by adoptive T-cell transfer. Secretome analysis of USSC and lineage tracing studies suggest that USSC secrete paracrine factors over an extended period of time which boosts a T-cell driven endogenous regenerative response mainly from adult cardiomyocytes.


Assuntos
Células-Tronco Adultas , Infarto do Miocárdio , Ratos , Animais , Linfócitos T , Infarto do Miocárdio/terapia , Miócitos Cardíacos , Citocinas
5.
Nature ; 548(7665): 97-102, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28746306

RESUMO

During multicellular development, specification of distinct cell fates is often regulated by the same transcription factors operating differently in distinct cis-regulatory modules, either through different protein complexes, conformational modification of protein complexes, or combinations of both. Direct visualization of different transcription factor complex states guiding specific gene expression programs has been challenging. Here we use in vivo FRET-FLIM (Förster resonance energy transfer measured by fluorescence lifetime microscopy) to reveal spatial partitioning of protein interactions in relation to specification of cell fate. We show that, in Arabidopsis roots, three fully functional fluorescently tagged cell fate regulators establish cell-type-specific interactions at endogenous expression levels and can form higher order complexes. We reveal that cell-type-specific in vivo FRET-FLIM distributions reflect conformational changes of these complexes to differentially regulate target genes and specify distinct cell fates.


Assuntos
Arabidopsis/citologia , Arabidopsis/metabolismo , Transferência Ressonante de Energia de Fluorescência , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem da Célula , Endoderma/citologia , Endoderma/metabolismo , Células HeLa , Proteínas de Homeodomínio/genética , Humanos , Microscopia de Fluorescência , Mutação , Especificidade de Órgãos , Ligação Proteica , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(12): 6741-6751, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32152117

RESUMO

Neurodegenerative diseases feature specific misfolded or misassembled proteins associated with neurotoxicity. The precise mechanisms by which protein aggregates first arise in the majority of sporadic cases have remained unclear. Likely, a first critical mass of misfolded proteins starts a vicious cycle of a prion-like expansion. We hypothesize that viruses, having evolved to hijack the host cellular machinery for catalyzing their replication, lead to profound disturbances of cellular proteostasis, resulting in such a critical mass of protein aggregates. Here, we investigated the effect of influenza virus (H1N1) strains on proteostasis of proteins associated with neurodegenerative diseases in Lund human mesencephalic dopaminergic cells in vitro and infection of Rag knockout mice in vivo. We demonstrate that acute H1N1 infection leads to the formation of α-synuclein and Disrupted-in-Schizophrenia 1 (DISC1) aggregates, but not of tau or TDP-43 aggregates, indicating a selective effect on proteostasis. Oseltamivir phosphate, an antiinfluenza drug, prevented H1N1-induced α-synuclein aggregation. As a cell pathobiological mechanism, we identified H1N1-induced blocking of autophagosome formation and inhibition of autophagic flux. In addition, α-synuclein aggregates appeared in infected cell populations connected to the olfactory bulbs following intranasal instillation of H1N1 in Rag knockout mice. We propose that H1N1 virus replication in neuronal cells can induce seeds of aggregated α-synuclein or DISC1 that may be able to initiate further detrimental downstream events and should thus be considered a risk factor in the pathogenesis of synucleinopathies or a subset of mental disorders. More generally, aberrant proteostasis induced by viruses may be an underappreciated factor in initiating protein misfolding.


Assuntos
Proteínas de Homeodomínio/fisiologia , Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Humana/complicações , Infecções por Orthomyxoviridae/complicações , Proteostase , Sinucleinopatias/etiologia , alfa-Sinucleína/química , Animais , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Feminino , Humanos , Influenza Humana/virologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Infecções por Orthomyxoviridae/virologia , Multimerização Proteica , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia , alfa-Sinucleína/metabolismo
7.
Appl Environ Microbiol ; 88(3): e0189621, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34851699

RESUMO

Secretion systems are essential for Gram-negative bacteria, as these nanomachineries allow communication with the outside world by exporting proteins into the extracellular space or directly into the cytosol of a host cell. For example, type I secretion systems (T1SS) secrete a broad range of substrates across both membranes into the extracellular space. One well-known example is the hemolysin A (HlyA) T1SS from Escherichia coli, which consists of an ABC transporter (HlyB), a membrane fusion protein (HlyD), the outer membrane protein TolC, and the substrate HlyA, a member of the family of repeats in toxins (RTX) toxins. Here, we determined the amount of TolC at the endogenous level (parental strain, UTI89) and under conditions of overexpression [T7 expression system, BL21(DE3)-BD]. The overall amount of TolC was not influenced by the overexpression of the HlyBD complex. Moving one step further, we determined the localization of the HlyA T1SS by superresolution microscopy. In contrast to other bacterial secretion systems, no polarization was observed with respect to endogenous or overexpression levels. Additionally, the cell growth and division cycle did not influence polarization. Most importantly, the size of the observed T1SS clusters did not correlate with the recently proposed outer membrane islands. These data indicate that T1SS clusters at the outer membrane, generating domains of so-far-undescribed identity. IMPORTANCE Uropathogenic Escherichia coli (UPEC) strains cause about 110 million urinary tract infections each year worldwide, representing a global burden to the health care system. UPEC strains secrete many virulence factors, among these, the TX toxin hemolysin A via a cognate T1SS into the extracellular space. In this study, we determined the endogenous copy number of the HlyA T1SS in UTI89 and analyzed the surface localization in BL21(DE3)-BD and UTI89, respectively. With approximately 800 copies of the T1SS in UTI89, this is one of the highest expressed bacterial secretion systems. Furthermore, and in clear contrast to other secretion systems, no polarized surface localization was detected. Finally, quantitative analysis of the superresolution data revealed that clusters of the HlyA T1SS are not related to the recently identified outer membrane protein islands. These data provide insights into the quantitative molecular architecture of the HlyA T1SS.


Assuntos
Proteínas de Escherichia coli , Proteínas Hemolisinas , Escherichia coli Uropatogênica , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Hemolisinas/metabolismo , Sistemas de Secreção Tipo I
8.
EMBO Rep ; 21(3): e49776, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32067344

RESUMO

The mitochondrial inner membrane can reshape under different physiological conditions. How, at which frequency this occurs in living cells, and the molecular players involved are unknown. Here, we show using state-of-the-art live-cell stimulated emission depletion (STED) super-resolution nanoscopy that neighbouring crista junctions (CJs) dynamically appose and separate from each other in a reversible and balanced manner in human cells. Staining of cristae membranes (CM), using various protein markers or two lipophilic inner membrane-specific dyes, further revealed that cristae undergo continuous cycles of membrane remodelling. These events are accompanied by fluctuations of the membrane potential within distinct cristae over time. Both CJ and CM dynamics depended on MIC13 and occurred at similar timescales in the range of seconds. Our data further suggest that MIC60 acts as a docking platform promoting CJ and contact site formation. Overall, by employing advanced imaging techniques including fluorescence recovery after photobleaching (FRAP), single-particle tracking (SPT), live-cell STED and high-resolution Airyscan microscopy, we propose a model of CJ dynamics being mechanistically linked to CM remodelling representing cristae membrane fission and fusion events occurring within individual mitochondria.


Assuntos
Membranas Mitocondriais , Proteínas Mitocondriais , Células HeLa , Humanos , Mitocôndrias , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo
9.
BMC Biol ; 18(1): 200, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33349255

RESUMO

BACKGROUND: A major task of the endosomal sorting complex required for transport (ESCRT) machinery is the pinching off of cargo-loaded intraluminal vesicles (ILVs) into the lumen of maturing endosomes (MEs), which is essential for the complete degradation of transmembrane proteins in the lysosome. The ESCRT machinery is also required for the termination of signalling through activated signalling receptors, as it separates their intracellular domains from the cytosol. At the heart of the machinery lies the ESCRT-III complex, which is required for an increasing number of processes where membrane regions are abscised away from the cytosol. The core of ESCRT-III, comprising four members of the CHMP protein family, organises the assembly of a homopolymer of CHMP4, Shrub in Drosophila, that is essential for abscission. We and others identified the tumour-suppressor lethal (2) giant discs (Lgd)/CC2D1 as a physical interactor of Shrub/CHMP4 in Drosophila and mammals, respectively. RESULTS: Here, we show that the loss of function of lgd constitutes a state of reduced activity of Shrub/CHMP4/ESCRT-III. This hypomorphic shrub mutant situation causes a slight decrease in the rate of ILV formation that appears to result in incomplete incorporation of Notch into ILVs. We found that the forced incorporation in ILVs of lgd mutant MEs suppresses the uncontrolled and ligand-independent activation of Notch. Moreover, the analysis of Su(dx) lgd double mutants clarifies their relationship and suggests that they are not operating in a linear pathway. We could show that, despite prolonged lifetime, the MEs of lgd mutants have a similar ILV density as wild-type but less than rab7 mutant MEs, suggesting the rate in lgd mutants is slightly reduced. The analysis of the MEs of wild-type and mutant cells in the electron microscope revealed that the ESCRT-containing electron-dense microdomains of ILV formation at the limiting membrane are elongated, indicating a change in ESCRT activity. Since lgd mutants can be rescued to normal adult flies if extra copies of shrub (or its mammalian ortholog CHMP4B) are added into the genome, we conclude that the net activity of Shrub is reduced upon loss of lgd function. Finally, we show that, in solution, CHMP4B/Shrub exists in two conformations. LGD1/Lgd binding does not affect the conformational state of Shrub, suggesting that Lgd is not a chaperone for Shrub/CHMP4B. CONCLUSION: Our results suggest that Lgd is required for the full activity of Shrub/ESCRT-III. In its absence, the activity of the ESCRT machinery is reduced. This reduction causes the escape of a fraction of cargo, among it Notch, from incorporation into ILVs, which in turn leads to an activation of this fraction of Notch after fusion of the ME with the lysosome. Our results highlight the importance of the incorporation of Notch into ILV not only to assure complete degradation, but also to avoid uncontrolled activation of the pathway.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Proteínas Supressoras de Tumor/genética , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Feminino , Masculino , Proteínas Supressoras de Tumor/metabolismo
11.
Cytometry A ; 97(9): 882-886, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32583531

RESUMO

Operating shared resource laboratories (SRLs) in times of pandemic is a challenge for research institutions. In a multiuser, high-turnover working space, the transmission of infectious agents is difficult to control. To address this challenge, imaging core facility managers being members of German BioImaging discussed how shared microscopes could be operated with minimal risk of spreading SARS-CoV-2 between users and staff. Here, we describe the resulting guidelines and explain their rationale, with a focus on separating users in space and time, protective face masks, and keeping surfaces virus-free. These recommendations may prove useful for other types of SRLs. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals LLC. on behalf of International Society for Advancement of Cytometry.


Assuntos
Betacoronavirus/patogenicidade , Pesquisa Biomédica/organização & administração , Infecções por Coronavirus/prevenção & controle , Controle de Infecções , Laboratórios/organização & administração , Microscopia , Saúde Ocupacional , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , COVID-19 , Comportamento Cooperativo , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Descontaminação , Contaminação de Equipamentos/prevenção & controle , Alemanha , Humanos , Exposição Ocupacional/prevenção & controle , Equipamento de Proteção Individual , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Fatores de Proteção , Pesquisadores/organização & administração , Medição de Risco , Fatores de Risco , SARS-CoV-2 , Fluxo de Trabalho
12.
New Phytol ; 225(1): 250-267, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31487399

RESUMO

The key basic helix-loop-helix (bHLH) transcription factor in iron (Fe) uptake, FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT), is controlled by multiple signaling pathways, important to adjust Fe acquisition to growth and environmental constraints. FIT protein exists in active and inactive protein pools, and phosphorylation of serine Ser272 in the C-terminus, a regulatory domain of FIT, provides a trigger for FIT activation. Here, we use phospho-mutant activity assays and study phospho-mimicking and phospho-dead mutations of three additional predicted phosphorylation sites, namely at Ser221 and at tyrosines Tyr238 and Tyr278, besides Ser 272. Phospho-mutations at these sites affect FIT activities in yeast, plant, and mammalian cells. The diverse array of cellular phenotypes is seen at the level of cellular localization, nuclear mobility, homodimerization, and dimerization with the FIT-activating partner bHLH039, promoter transactivation, and protein stability. Phospho-mimicking Tyr mutations of FIT disturb fit mutant plant complementation. Taken together, we provide evidence that FIT is activated through Ser and deactivated through Tyr site phosphorylation. We therefore propose that FIT activity is regulated by alternative phosphorylation pathways.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Bioensaio/métodos , Mutação/genética , Sequência de Aminoácidos , Animais , Proteínas de Arabidopsis/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Células CHO , Cricetinae , Cricetulus , Modelos Biológicos , Fosforilação , Fosfotirosina/metabolismo , Multimerização Proteica , Estabilidade Proteica , Ativação Transcricional/genética
14.
Int J Mol Sci ; 20(3)2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30678160

RESUMO

Protein export in eukaryotes can either occur via the classical pathway traversing the endomembrane system or exploit alternative routes summarized as unconventional secretion. Besides multiple examples in higher eukaryotes, unconventional secretion has also been described for fungal proteins with diverse functions in important processes such as development or virulence. Accumulating molecular insights into the different export pathways suggest that unconventional secretion in fungal microorganisms does not follow a common scheme but has evolved multiple times independently. In this study, we review the most prominent examples with a focus on the chitinase Cts1 from the corn smut Ustilago maydis. Cts1 participates in cell separation during budding growth. Recent evidence indicates that the enzyme might be actively translocated into the fragmentation zone connecting dividing mother and daughter cells, where it supports cell division by the degradation of remnant chitin. Importantly, a functional fragmentation zone is prerequisite for Cts1 release. We summarize in detail what is currently known about this potential lock-type mechanism of Cts1 secretion and its connection to the complex regulation of fragmentation zone assembly and cell separation.


Assuntos
Ustilago/citologia , Ustilago/metabolismo , Divisão Celular/genética , Divisão Celular/fisiologia , Separação Celular , Quitinases/genética , Quitinases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Ustilago/genética
15.
J Cell Sci ; 129(14): 2778-92, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27252385

RESUMO

Septins are conserved cytoskeletal structures functioning in a variety of biological processes including cytokinesis and cell polarity. A wealth of information exists on the heterooligomeric architecture of septins and their subcellular localization at distinct sites. However, the precise mechanisms of their subcellular assembly and their intracellular transport are unknown. Here, we demonstrate that endosomal transport of septins along microtubules is crucial for formation of higher-order structures in the fungus Ustilago maydis Importantly, endosomal septin transport is dependent on each individual septin providing strong evidence that septin heteromeric complexes are assembled on endosomes. Furthermore, endosomal trafficking of all four septin mRNAs is required for endosomal localization of their translation products. Based on these results, we propose that local translation promotes the assembly of newly synthesized septins in heteromeric structures on the surface of endosomes. This is important for the long-distance transport of septins and the efficient formation of the septin cytoskeleton.


Assuntos
Citoesqueleto/metabolismo , Endossomos/metabolismo , Proteínas Fúngicas/metabolismo , Multimerização Proteica , Septinas/metabolismo , Ustilago/metabolismo , Microtúbulos/metabolismo , Modelos Biológicos , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Frações Subcelulares/metabolismo
16.
Plant Physiol ; 168(2): 584-97, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25926482

RESUMO

The MBW (for R2R3MYB, basic helix-loop-helix [bHLH], and WD40) genes comprise an evolutionarily conserved gene cassette that regulates several traits such as (pro)anthocyanin and anthocyanin biosynthesis and epidermal cell differentiation in plants. Trichome differentiation in Arabidopsis (Arabidopsis thaliana) is governed by GLABRA1 (GL1; R2R3MYB), GL3 (bHLH), and transparent TESTA GLABRA1 (TTG1; WD40). They are thought to form a trimeric complex that acts as a transcriptional activation complex. We provide evidence that these three MBW proteins form either GL1 GL3 or GL3 TTG1 dimers. The formation of each dimer is counteracted by the respective third protein in yeast three-hybrid assays, pulldown experiments (luminescence-based mammalian interactome), and fluorescence lifetime imaging microscopy-fluorescence resonance energy transfer studies. We further show that two target promoters, Triptychon (TRY) and CAPRICE (CPC), are differentially regulated: GL1 represses the activation of the TRY promoter by GL3 and TTG1, and TTG1 suppresses the activation of the CPC promoter by GL1 and GL3. Our data suggest that the transcriptional activation by the MBW complex involves alternative complex formation and that the two dimers can differentially regulate downstream genes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ligação Competitiva , Proteínas de Ligação a DNA/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transferência Ressonante de Energia de Fluorescência , Regulação da Expressão Gênica de Plantas , Microscopia de Fluorescência , Modelos Biológicos , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Transformação Genética , Técnicas do Sistema de Duplo-Híbrido
17.
Life Sci Alliance ; 7(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37957016

RESUMO

Cristae membranes have been recently shown to undergo intramitochondrial merging and splitting events. Yet, the metabolic and bioenergetic factors regulating them are unclear. Here, we investigated whether and how cristae morphology and dynamics are dependent on oxidative phosphorylation (OXPHOS) complexes, the mitochondrial membrane potential (ΔΨm), and the ADP/ATP nucleotide translocator. Advanced live-cell STED nanoscopy combined with in-depth quantification were employed to analyse cristae morphology and dynamics after treatment of mammalian cells with rotenone, antimycin A, oligomycin A, and CCCP. This led to formation of enlarged mitochondria along with reduced cristae density but did not impair cristae dynamics. CCCP treatment leading to ΔΨm abrogation even enhanced cristae dynamics showing its ΔΨm-independent nature. Inhibition of OXPHOS complexes was accompanied by reduced ATP levels but did not affect cristae dynamics. However, inhibition of ADP/ATP exchange led to aberrant cristae morphology and impaired cristae dynamics in a mitochondrial subset. In sum, we provide quantitative data of cristae membrane remodelling under different conditions supporting an important interplay between OXPHOS, metabolite exchange, and cristae membrane dynamics.


Assuntos
Mitocôndrias , Membranas Mitocondriais , Animais , Carbonil Cianeto m-Clorofenil Hidrazona/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Fosforilação Oxidativa , Trifosfato de Adenosina/metabolismo , Mamíferos/metabolismo
18.
Matrix Biol ; 128: 1-10, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38378098

RESUMO

The extracellular matrix (ECM) is a network of macromolecules that presents a vital scaffold for cells and enables multiple ways of cellular communication. Thus, it is essential for many physiological processes such as development, tissue morphogenesis, homeostasis, the shape and partially the size of the body and its organs. To ensure these, the composition of the ECM is tissue-specific and highly dynamic. ECM homeostasis is therefore tightly controlled by several mechanisms. Here, we show that FMI-1, the homolog of the Adhesion GPCR Flamingo/CELSR/ADGRC in the nematode Caenorhabditis elegans, modulates the composition of the ECM by controlling the production both of ECM molecules such as collagens and also of ECM modifying enzymes. Thereby, FMI-1 affects the morphology and functionality of the nematode´s cuticle, which is mainly composed of ECM, and also modulates the body size. Mechanistic analyses highlight the fact that FMI-1 exerts its function from neurons non-cell autonomously (trans) solely via its extracellular N terminus. Our data support a model, by which the activity of the receptor, which has a well-described role in the planar cell polarity (PCP) pathway, involves the PCP molecule VANG-1, but seems to be independent of the DBL-1/BMP pathway.


Assuntos
Caderinas , Proteínas de Caenorhabditis elegans , Animais , Tamanho Corporal , Caderinas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Comunicação Celular , Matriz Extracelular/metabolismo
19.
J Biol Chem ; 287(33): 27452-66, 2012 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-22730319

RESUMO

One of the most abundantly IFN-γ-induced protein families in different cell types is the 65-kDa guanylate-binding protein family that is recruited to the parasitophorous vacuole of the intracellular parasite Toxoplasma gondii. Here, we elucidate the relationship between biochemistry and cellular host defense functions of mGBP2 in response to Toxoplasma gondii. The wild type protein exhibits low affinities to guanine nucleotides, self-assembles upon GTP binding, forming tetramers in the activated state, and stimulates the GTPase activity in a cooperative manner. The products of the two consecutive hydrolysis reactions are both GDP and GMP. The biochemical characterization of point mutants in the GTP-binding motifs of mGBP2 revealed amino acid residues that decrease the GTPase activity by orders of magnitude and strongly impair nucleotide binding and multimerization ability. Live cell imaging employing multiparameter fluorescence image spectroscopy (MFIS) using a Homo-FRET assay shows that the inducible multimerization of mGBP2 is dependent on a functional GTPase domain. The consistent results indicate that GTP binding, self-assembly, and stimulated hydrolysis activity are required for physiological localization of the protein in infected and uninfected cells. Ultimately, we show that the GTPase domain regulates efficient recruitment to T. gondii in response to IFN-γ.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Multimerização Proteica , Toxoplasma , Toxoplasmose/enzimologia , Vacúolos/enzimologia , Animais , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/imunologia , Guanosina Difosfato/genética , Guanosina Difosfato/imunologia , Guanosina Difosfato/metabolismo , Guanosina Monofosfato/genética , Guanosina Monofosfato/imunologia , Guanosina Monofosfato/metabolismo , Imunidade Inata , Interferon gama/genética , Interferon gama/imunologia , Interferon gama/metabolismo , Camundongos , Microscopia de Fluorescência por Excitação Multifotônica , Estrutura Terciária de Proteína , Toxoplasmose/genética , Toxoplasmose/imunologia , Vacúolos/genética , Vacúolos/imunologia , Vacúolos/parasitologia
20.
Microlife ; 4: uqad002, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37223739

RESUMO

The formation of plaques represents the hallmark of phage infection visualizing the clearance of the bacterial lawn in structured environments. In this study, we have addressed the impact of cellular development on phage infection in Streptomyces undergoing a complex developmental life cycle. Analysis of plaque dynamics revealed, after a period of plaque size enlargement, a significant regrowth of transiently phage-resistant Streptomyces mycelium into the lysis zone. Analysis of Streptomyces venezuelae mutant strains defective at different stages of cellular development indicated that this regrowth was dependent on the onset of the formation of aerial hyphae and spores at the infection interface. Mutants restricted to vegetative growth (ΔbldN) featured no significant constriction of plaque area. Fluorescence microscopy further confirmed the emergence of a distinct zone of cells/spores with reduced cell permeability towards propidium iodide staining at the plaque periphery. Mature mycelium was further shown to be significantly less susceptible to phage infection, which is less pronounced in strains defective in cellular development. Transcriptome analysis revealed the repression of cellular development at the early stages of phage infection probably facilitating efficient phage propagation. We further observed an induction of the chloramphenicol biosynthetic gene cluster highlighting phage infection as a trigger of cryptic metabolism in Streptomyces. Altogether, our study emphasizes cellular development and the emergence of transient phage resistance as an important layer of Streptomyces antiviral immunity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA