Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 88(4): e0215421, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-34936840

RESUMO

Butanetriol and pentanetriol dibiphytanyl glycerol tetraethers (BDGTs and PDGTs, respectively) are recently identified classes of archaeal membrane lipids that are prominent constituents in anoxic subseafloor sediments. These lipids are intriguing, as they possess unusual backbones with four or five carbon atoms instead of the canonical three-carbon glycerol backbone. In this study, we examined the biosynthesis of BDGTs and PDGTs by the methanogen Methanomassiliicoccus luminyensis, the only available isolate known to produce these compounds, via stable isotope labeling with [methyl-13C]methionine followed by mass spectrometry analysis. We show that their biosynthesis proceeds from transfer(s) of the terminal methyl group of methionine to the more common archaeal membrane lipids, i.e., glycerol dibiphytanyl glycerol tetraethers (GDGTs). As this methylation targets a methylene group, a radical mechanism involving a radical S-adenosylmethionine (SAM) enzyme is probable. Over the course of the incubation, the abundance of PDGTs relative to BDGTs, expressed as backbone methylation index, increased, implying that backbone methylation may be related to the growth shift to stationary conditions, possibly due to limited energy and/or substrate availability. The increase of the backbone methylation index with increasing sediment age in a sample set from the Mediterranean Sea adds support for such a relationship. IMPORTANCE Butanetriol and pentanetriol dibiphytanyl glycerol tetraethers are membrane lipids recently discovered in anoxic environments. These lipids differ from typical membrane-spanning tetraether lipids because they possess a non-glycerol backbone. The biosynthetic pathway and physiological role of these unique lipids are currently unknown. Here, we show that in the strain Methanomassiliicoccus luminyensis, these lipids are the result of methyl transfer(s) from an S-adenosyl methionine (SAM) intermediate. We observed a relative increase of the doubly methylated compound, pentanetriol dibiphytanyl glycerol tetraether, in the stationary phase of M. luminyensis as well as in the subseafloor of the Mediterranean Sea and thus introduced a backbone methylation index, which could be used to further explore microbial activity in natural settings.


Assuntos
Archaea , Euryarchaeota , Archaea/metabolismo , Glicerol/metabolismo , Lipídeos de Membrana/metabolismo , Metilação
2.
Sci Total Environ ; 940: 173480, 2024 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796012

RESUMO

The rewetting of formerly drained peatlands can help to counteract climate change through the reduction of CO2 emissions. However, this can lead to resuming CH4 emissions due to changes in the microbiome, favoring CH4-producing archaea. How plants, hydrology and microbiomes interact as ultimate determinants of CH4 dynamics is still poorly understood. Using a mesocosm approach, we studied peat microbiomes, below-ground root biomass and CH4 fluxes with three different water level regimes (stable high, stable low and fluctuating) and four different plant communities (bare peat, Carex rostrata, Juncus inflexus and their mixture) over the course of one growing season. A significant difference in microbiome composition was found between mesocosms with and without plants, while the difference between plant species identity or water regimes was rather weak. A significant difference was also found between the upper and lower peat, with the difference increasing as plants grew. By the end of the growing season, the methanogen relative abundance was higher in the sub-soil layer, as well as in the bare peat and C. rostrata pots, as compared to J. inflexus or mixture pots. This was inversely linked to the larger root area of J. inflexus. The root area also negatively correlated with CH4 fluxes which positively correlated with the relative abundance of methanogens. Despite the absence or low abundance of methanotrophs in many samples, the integration of methanotroph abundance improved the quality of the correlation with CH4 fluxes, and methanogens and methanotrophs together determined CH4 fluxes in a structural equation model. However, water regime showed no significant impact on plant roots and methanogens, and consequently, on CH4 fluxes. This study showed that plant roots determined the microbiome composition and, in particular, the relative abundance of methanogens and methanotrophs, which, in interaction, drove the CH4 fluxes.


Assuntos
Metano , Microbiota , Raízes de Plantas , Metano/metabolismo , Raízes de Plantas/microbiologia , Áreas Alagadas , Hidrologia , Microbiologia do Solo
3.
FEMS Microbiol Ecol ; 99(6)2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37169886

RESUMO

The hydrogen-dependent and methylotrophic order Methanomassiliicoccales consists of the families Methanomethylophilaceae and Methanomassiliicoccaceae. While Methanomethylophilaceae are comparatively well studied, there is a lack of knowledge on Methanomassiliicoccaceae. In this 16S rRNA gene amplicon sequencing-based study we investigated the temporal and spatial dynamics of the Methanomassiliicoccales in drained and rewetted sites of three common temperate fen peatlands. A 2.5-year monitoring of the fen microbiome composition at three peat depths revealed a dynamic methanogen and Methanomassiliicoccales composition across space and time. Four Methanomassiliicoccales phylotypes were found and they were differentially distributed between the fen types. The wetland cluster phylotype was omnipresent and dominant in abundance in all sites along all depths. The Methanomassiliicoccus phylotype was highly abundant in topsoil while the AB364942 phylotype was exclusively found in deeper regions of the rewetted percolation fen. The phylotype affiliated with Methanomassiliicoccales strain U3.2.1 was only detected in the rewetted percolation fen. We discuss the distribution of the four phylotypes with implications for their ecophysiology, where oxygen tolerance and substrate spectrum might play major roles. In conclusion, the Methanomassiliicoccales are widespread and account for a significant proportion of methanogens, which might suggest their importance for methane emissions from peatlands.


Assuntos
Euryarchaeota , Microbiota , Humanos , RNA Ribossômico 16S/genética , Euryarchaeota/genética , Áreas Alagadas , Solo/química , Microbiota/genética , Metano
4.
mSystems ; : e0054621, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34463572

RESUMO

A highly resolved taxonomy for ammonia-oxidizing archaea (AOA) based on the alpha subunit of ammonia monooxygenase (amoA) was recently established, which uncovered novel environmental patterns of AOA, challenging previous generalizations. However, many microbiome studies target the 16S rRNA gene as a marker; thus, the usage of this novel taxonomy is currently limited. Here, we exploited the phylogenetic congruence of archaeal amoA and 16S rRNA genes to link 16S rRNA gene classification to the novel amoA taxonomy. We screened publicly available archaeal genomes and contigs for the co-occurring amoA and 16S rRNA genes and constructed a 16S rRNA gene database with the corresponding amoA clade taxonomy. Phylogenetic trees of both marker genes confirmed congruence, enabling the identification of clades. We validated this approach with 16S rRNA gene amplicon data from peatland soils. We succeeded in linking 16S rRNA gene amplicon sequence variants belonging to the class Nitrososphaeria to seven different AOA (amoA) clades, including two of the most frequently detected clades (Nitrososphaerales γ and δ clades) for which no pure culture is currently available. Water status significantly impacted the distribution of the AOA clades as well as the whole AOA community structure, which was correlated with pH, nitrate, and ammonium, consistent with previous clade predictions. Our study emphasizes the need to distinguish among AOA clades with distinct ecophysiologies and environmental preferences, for a better understanding of the ecology of the globally abundant AOA. IMPORTANCE The recently established phylogeny of amoA provides a finer resolution than previous studies, allowing clustering of AOA beyond the order level and thus revealing novel clades. While the 16S rRNA gene is mostly appreciated in microbiome studies, this novel phylogeny is in limited use. Here, we provide an alternative path to identifying AOA with this novel and highly resolved amoA taxonomy by using 16S rRNA gene sequencing data. We constructed a 16S rRNA gene database with the associated amoA clade taxonomy based on their phylogenetic congruence. With this database, we were able to assign 16S rRNA gene amplicons from peatland soils to different AOA clades, with a level of resolution provided previously only by amoA phylogeny. As 16S rRNA gene amplicon sequencing is still widely employed in microbiome studies, our database may have a broad application for interpreting the ecology of globally abundant AOA.

5.
FEMS Microbiol Ecol ; 97(9)2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34427631

RESUMO

In the last decades, rewetting of drained peatlands is on the rise worldwide, to restore their significant carbon sink function. Despite the increasing understanding of peat microbiomes, little is known about the seasonal dynamics and network interactions of the microbial communities in these ecosystems, especially in rewetted fens (groundwater-fed peatlands). Here, we investigated the seasonal dynamics in both prokaryotic and eukaryotic microbiomes in three common fen types in Northern Germany. The eukaryotic microbiomes, including fungi, protists and microbial metazoa, showed significant changes in their community structures across the seasons in contrast to largely unaffected prokaryotic microbiomes. Furthermore, our results proved that the dynamics in eukaryotic microbiomes in the rewetted sites differed between fen types, specifically in terms of saprotrophs, arbuscular mycorrhiza and grazers of bacteria. The co-occurrence networks also exhibited strong seasonal dynamics that differed between rewetted and drained sites, and the correlations involving protists and prokaryotes were the major contributors to these dynamics. Our study provides the insight that microbial eukaryotes mainly define the seasonal dynamics of microbiomes in rewetted fen peatlands. Accordingly, future research should unravel the importance of eukaryotes for biogeochemical processes, especially the under-characterized protists and metazoa, in these poorly understood ecosystems.


Assuntos
Eucariotos , Microbiota , Sequestro de Carbono , Estações do Ano , Solo
6.
Microbiol Resour Announc ; 10(48): e0044321, 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34854727

RESUMO

The full genome of a Methanomassiliicoccales strain, U3.2.1, was obtained from enrichment cultures of percolation fen peat soil under methanogenic conditions, with methanol and hydrogen as the electron acceptor and donor, respectively. Metagenomic assembly of combined long-read and short-read sequences resulted in a 1.51-Mbp circular genome.

7.
Microorganisms ; 8(4)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290343

RESUMO

Drained peatlands are significant sources of the greenhouse gas (GHG) carbon dioxide. Rewetting is a proven strategy used to protect carbon stocks; however, it can lead to increased emissions of the potent GHG methane. The response to rewetting of soil microbiomes as drivers of these processes is poorly understood, as are the biotic and abiotic factors that control community composition. We analyzed the pro- and eukaryotic microbiomes of three contrasting pairs of minerotrophic fens subject to decade-long drainage and subsequent long-term rewetting. Abiotic soil properties including moisture, dissolved organic matter, methane fluxes, and ecosystem respiration rates were also determined. The composition of the microbiomes was fen-type-specific, but all rewetted sites showed higher abundances of anaerobic taxa compared to drained sites. Based on multi-variate statistics and network analyses, we identified soil moisture as a major driver of community composition. Furthermore, salinity drove the separation between coastal and freshwater fen communities. Methanogens were more than 10-fold more abundant in rewetted than in drained sites, while their abundance was lowest in the coastal fen, likely due to competition with sulfate reducers. The microbiome compositions were reflected in methane fluxes from the sites. Our results shed light on the factors that structure fen microbiomes via environmental filtering.

8.
Sci Total Environ ; 721: 137763, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32172119

RESUMO

Peatland restoration is seen as an effective contribution to help achieve the aims of the Paris Agreement because currently huge amounts of peatlands in Northern Central Europe are under unsustainable drainage-based land use. If net zero greenhouse gas emissions from peatlands shall be reached by 2050, restoration measures have to be done as soon as possible. However, rewetting drained peatlands that were under intensive grassland use frequently results in high methane (CH4) emissions, which is often seen as a counter-argument against rewetting. To find the source of high CH4 emissions after rewetting and to explore the best possible way of peatland restoration (i.e., low CH4 emissions after rewetting) under near-natural conditions, we installed a field trial in a drained bog in north-western Germany. The trial consists of seven plots (~8 × 24 m2) representing the status quo-intensive grassland use- and six restoration approaches with combinations of rewetting either on the original surface or after topsoil removal (TSR), biomass harvesting or spreading Sphagnum spp. to initiate vegetation succession. On all seven plots we measured CH4 fluxes using closed chambers. In addition, we investigated CH4 production potential by incubating soil samples and determining methanogen abundance by quantitative PCR. Compared to rewetting on the original surface, CH4 emissions were reduced on TSR plots by factor 30 to 400. Spreading of Sphagnum spp. had only little effect on CH4 emissions during the first year of establishment. TSR also reduced CH4 production potential and methanogen abundance. Further, the response of CH4 fluxes to methanogen abundance was lower after TSR. This suggests that both reduction in labile substrate and in methanogen abundance contribute to near-zero CH4 emissions after TSR. These are the first field-scale results that demonstrate the efficiency of removing degraded topsoil to avoid high CH4 emissions after rewetting.


Assuntos
Metano/análise , Áreas Alagadas , Dióxido de Carbono/análise , Europa (Continente) , Alemanha , Pradaria , Paris , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA