Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Infection ; 51(1): 239-245, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35596057

RESUMO

PURPOSE: Omicron is rapidly spreading as a new SARS-CoV-2 variant of concern (VOC). The question whether this new variant has an impact on SARS-CoV-2 rapid antigen test (RAT) performance is of utmost importance. To obtain an initial estimate regarding differences of RATs in detecting omicron and delta, seven commonly used SARS-CoV-2 RATs from different manufacturers were analysed using cell culture supernatants and clinical specimens. METHODS: For this purpose, cell culture-expanded omicron and delta preparations were serially diluted in Dulbecco's modified Eagle's Medium (DMEM) and the Limit of Detection (LoD) for both VOCs was determined. Additionally, clinical specimens stored in viral transport media or saline (n = 51) were investigated to complement in vitro results with cell culture supernatants. Ct values and RNA concentrations were determined via quantitative reverse transcription polymerase chain reaction (RT-qPCR). RESULTS: The in vitro determination of the LoD showed no obvious differences in detection of omicron and delta for the RATs examined. The LoD in this study was at a dilution level of 1:1,000 (corresponding to 3.0-5.6 × 106 RNA copies/mL) for tests I-V and at a dilution level of 1:100 (corresponding to 3.7-4.9 × 107 RNA copies/mL) for tests VI and VII. Based on clinical specimens, no obvious differences were observed between RAT positivity rates when comparing omicron to delta in this study setting. Overall positivity rates varied between manufacturers with 30-81% for omicron and 42-71% for delta. Test VII was only conducted in vitro with cell culture supernatants for feasibility reasons. In the range of Ct < 23, positivity rates were 50-100% for omicron and 67-93% for delta. CONCLUSION: In this study, RATs from various manufacturers were investigated, which displayed no obvious differences in terms of analytical LoD in vitro and RAT positivity rates based on clinical samples comparing the VOCs omicron and delta. However, differences between tests produced by various manufacturers were detected. In terms of clinical samples, a focus of this study was on specimens with high virus concentrations. Further systematic, clinical and laboratory studies utilizing large datasets are urgently needed to confirm reliable performance in terms of sensitivity and specificity for all individual RATs and SARS-CoV-2 variants.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2 , Técnicas de Cultura de Células , RNA
2.
Infection ; 50(3): 761-766, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35230655

RESUMO

BACKGROUND: Five SARS-CoV-2 variants are currently considered as variants of concern (VOC). Omicron was declared a VOC at the end of November 2021. Based on different diagnostic methods, the occurrence of Omicron was reported by 52 countries worldwide on December 7 2021. First notified by South Africa with alarming reports on increasing infection rates, this new variant was soon suspected to replace the currently pre-dominating Delta variant leading to further infection waves worldwide. METHODS: Using VOC PCR screening and Next Generation Sequencing (NGS) analysis of selected samples, we investigated the circulation of Omicron in the German federal state Bavaria. For this, we analyzed SARS-CoV-2 surveillance data from our laboratory generated from calendar week (CW) 01 to 49/2021. RESULTS: So far, we have detected 69 Omicron cases in our laboratory from CW 47-49/2021 using RT-qPCR followed by melting curve analysis. The first 16 cases were analyzed by NGS and all were confirmed as Omicron. CONCLUSION: Our data strongly support no circulation of the new Omicron variant before CW 47/2021.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/epidemiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/genética
3.
Nucleic Acids Res ; 47(20): 10956-10967, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31566241

RESUMO

RNA replicases catalyse transcription and replication of viral RNA genomes. Of particular interest for in vitro studies are phage replicases due to their small number of host factors required for activity and their ability to initiate replication in the absence of any primers. However, the requirements for template recognition by most phage replicases are still only poorly understood. Here, we show that the active replicase of the archetypical RNA phage MS2 can be produced in a recombinant cell-free expression system. We find that the 3' terminal fusion of antisense RNAs with a domain derived from the reverse complement of the wild type MS2 genome generates efficient templates for transcription by the MS2 replicase. The new system enables DNA-independent gene expression both in batch reactions and in microcompartments. Finally, we demonstrate that MS2-based RNA-dependent transcription-translation reactions can be used to control DNA-dependent gene expression by encoding a viral DNA-dependent RNA polymerase on a MS2 RNA template. Our study sheds light on the template requirements of the MS2 replicase and paves the way for new in vitro applications including the design of genetic circuits combining both DNA- and RNA-encoded systems.


Assuntos
Genes Virais , Levivirus/enzimologia , Levivirus/genética , RNA Viral/genética , RNA Polimerase Dependente de RNA/genética , Sistema Livre de Células , Emulsões/química , Biossíntese de Proteínas , Subunidades Proteicas/genética , Transcrição Gênica
4.
Commun Biol ; 5(1): 264, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338258

RESUMO

The RNA phage MS2 is one of the most important model organisms in molecular biology and virology. Despite its comprehensive characterisation, the composition of the RNA replication machinery remained obscure. Here, we characterised host proteins required to reconstitute the functional replicase in vitro. By combining a purified replicase sub-complex with elements of an in vitro translation system, we confirmed that the three host factors, EF-Ts, EF-Tu, and ribosomal protein S1, are part of the active replicase holocomplex. Furthermore, we found that the translation initiation factors IF1 and IF3 modulate replicase activity. While IF3 directly competes with the replicase for template binding, IF1 appears to act as an RNA chaperone that facilitates polymerase readthrough. Finally, we demonstrate in vitro formation of RNAs containing minimal motifs required for amplification. Our work sheds light on the MS2 replication machinery and provides a new promising platform for cell-free evolution.


Assuntos
Fator Tu de Elongação de Peptídeos , Q beta Replicase , RNA Polimerases Dirigidas por DNA/metabolismo , Levivirus , Fator Tu de Elongação de Peptídeos/metabolismo , Q beta Replicase/química , Q beta Replicase/metabolismo , RNA
5.
Adv Biosyst ; 3(6): e1800313, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-32648707

RESUMO

A key characteristic of living systems is the storage and replication of information, and as such the development of self-replicating systems capable of heredity is of great importance to the fields of synthetic biology and origin of life research. In this review, the design and implementation of self-replicating systems in the context of bottom-up synthetic biology is discussed, with a particular focus on nucleic acid-based replication including nonenzymatic systems, ribozyme-based systems, and complex in vitro translation coupled RNA and DNA replication. The current state and remaining challenges of the respective fields are discussed, and the potential of individual replicators for synthetic biology applications such as the creation of artificial life capable of Darwinian evolution is also summarized.


Assuntos
Biomimética , Replicação do DNA , DNA/biossíntese , RNA/biossíntese , Biologia Sintética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA